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Abstract

We study the evolution of random graph processes that are based on the paradigm of
the power of multiple choices. The processes we consider begin with an empty graph on n
vertices. In each subsequent step a set with a specific number ` ≥ 2 of random vertices
is presented, and we may select any edge among them to be included in the graph. For
example, if ` = 2 this corresponds to the classical Erdős-Rényi (ER) process. A striking
characteristic of the ER process is the phase transition with respect to the distribution
of its component sizes. This distribution undergoes a drastic change when the number of
edges is around n/2; at this point the so-called giant component emerges, which contains
a linear fraction of the vertices.

In this paper we address the component-size distribution of a general family rules.
We determine the typical size of the giant component shortly after the phase transition
in all these processes and provide bounds for the size distribution of small components.
In particular, it has been conjectured by various authors that these processes have many
similarities with the ER process, for example that the giant component grows with a
constant “rate”. Our results confirm this conjecture.

On the technical side, we develop a novel method for the analysis of the component size
distribution based on partial differential equations (PDEs). We develop a novel analytic
framework that allows us to study the solutions of a fairly general class of quasi-linear
PDEs, the so-called family of Smoluchowski’s coagulation equations, that have several
far-reaching applications in the study of large systems consisting of interacting particles.
Finally, our family of rules allows us to “approximate” formally any general size rule by a
sequence of appropriately defined bounded size rules, where the given size-bound increases
gradually. Thus, our results open an avenue for the future research on general random
graph processes.
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1 Introduction

An important topic in the analysis of algorithms is the investigation of the so-called paradigm
of the power of multiple choices. In this paper we study processes of graph evolution that
involve this paradigm. The general setting that we consider is as follows. We begin with a
graph G0 with n vertices and no edges. In order to obtain Gm, m ≥ 1, we are presented
a set Sm that contains a specific number ` ≥ 2 of randomly selected vertices, and we may
choose any edge with both endpoints in Sm, which is then added to Gm−1. If ` = 2 (or
if we choose randomly an edge from

(
Sm

2

)
) then we of course obtain the well-known Erdős-

Rényi process [16]. The mathematical properties of this process are very well-understood,
and today we have a very precise picture of the underlying dynamics and critical phenomena,
see e.g. [9, 22, 2]. On the other hand, for general “rules” that dictate how to select one of the
presented edges, our current knowledge is comparatively rather limited.

A particular striking feature in the evolution of the Erdős-Rényi process is the phase
transition that occurs around m = n/2. More precisely, if we write m = tn, then for t < 1/2,
the number L1 of vertices in the largest connected component is whp1 of order log n, whereas
for t > 1/2, L1 is linear in n. Thus, there is a dramatic change in the connectivity structure of
the resulting graph, and the so-called giant component emerges after the critical time tc = 1/2.
The study of more general rules, as described in the previous paragraph, is motivated by the
following question posed by Dimitris Achlioptas: suppose that in each round the edges come
in pairs and we are allowed to choose one of them. Is there an (online) algorithm that changes
the main characteristics of the Erdős-Rényi process, and in particular the point in time of the
phase transition?

Among all possible rules that can be defined in our framework the most natural ones are
the so-called size rules, whose choices depend only on the sizes of the components containing
the vertices in Sm. During the last 15 years the evolution of such processes has received
considerable attention [7, 8, 40, 38, 24, 6, 39], and in particular bounded -size rules were
studied intensely. These rules have the additional property that they treat all sizes larger
than some absolute bound K in the same way. A particular example is the Bohman-Frieze
rule [7, 40] that is presented in each round four vertices v1, v2, v3, v4 and chooses the edge v1v2
only if both v1 and v2 are isolated and v3v4 otherwise. An example of a non-bounded rule is
the so-called product rule given by Achlioptas: v1v2 is added to the graph if the product of
the corresponding component sizes is smaller than the product of the component sizes that
contain v3 and v4.

The bottom line of the current research is that all “reasonable” size rules seem to have
many qualitative similarities with the Erdős-Rényi process; in physics jargon, this means that
they belong to the same universality class. For example, if we consider only bounded-size
rules, then it is known [40, 39] that the random graph undergoes a phase transition at a rule-
dependent time tc: if m = tn and t < tc, then whp the largest component contains O(log n)
vertices, and if t > tc, then again L1 is linear in n. However, prior to our work, no detailed
information about the distribution of components, for example the size of the giant for t > tc,
was available. More crucially, for general size rules, with only a few exceptions [39], we cannot
even tell with certainty where and whether a phase transition occurs. Understanding such
processes, in which there are significant and long-term dependencies between the appearance
of specific edges, requires the development of new tools and methods.

1with high probability, i.e., with probability tending to 1 as n→ ∞
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In this paper we address the component-size distribution of a general family of bounded
size rules. Our contribution is three-fold: first, we are able to pin down the typical size of the
giant component shortly after the phase transition in all these processes, and in addition we
can give bounds for the size distribution of “small” components. Our results further confirm
that these processes have many similarities with the Erdős-Renyi process, in the sense that
the giant component grows with a comparable “rate”. Secondly, in order to obtain such a
precise description we develop a novel method based on the analysis of random processes
via partial differential equations. While it is not very difficult to derive the equation in the
specific setting, finding a solution and describing its properties is a fundamental and hard
problem. Here we develop an appropriate analytic framework that allows us to extract the
relevant properties, and we believe that this methodology will have applications in many other
problems, also outside of computer science and mathematics, as well. Finally, our family of
rules allows us to “approximate” formally any general size rule by a sequence of appropriately
defined bounded size rules, where the given bound increases gradually. Thus, our results open
an avenue for the future research on general random graph processes.

1.1 Main Results

A particular property of the phase transition in the Erdős-Renyi process is that the giant
component grows “smoothly”. More precisely, if t = 1/2 + ε for ε > 0 and we write L1(t)
for the number of vertices in the giant component after tn random edges were added, then
whp L1(t)/n = 2ε+O(ε2). Such a transition is called continuous. In addition to this result,
the continuity of similar transitions in a much more general class of models, where not all
edges are included with the same probability, is also known [10].

The interest in graph processes that exploit the power of choice was triggered immensely
in 2009, when Achlioptas, D’Souza and Spencer [1] announced that already a simple rule –
namely the product rule mentioned previously – seemed to behave vastly different from the
Erdős-Rényi process, i.e. to cause a discontinuous transition. The claims in [1] were supported
by convincing experimental evaluation, and in a very short period of time dozens of papers
were published in which similar phenomena for related rules could be observed. However,
Riordan and Warnke [38] proved that this is not the case for any rule that can choose among
a bounded number of edges; their result shows that the continuity of the phase transition is
such a fundamental property of the Erdős-Rényi model that is not distorted by (essentially)
any rule that offers the possibility to choose among several edges in each step.

Although in [38] the continuity of the phase transition is established, a particular intriguing
question remains open. What can we say about the number of vertices in the giant component?
Apart from the Erdős-Rényi case, the answer is also known for the Bohman-Frieze rule. In [24]
it was shown that if we denote by tc ≈ 0.588 the critical time of that process, then whp the
number L1(t) of vertices in the giant component after tn edges were added satisfies for ε > 0

lim
n→∞

n−1 L1(tc + ε) = γε+O(ε4/3), where γ ≈ 2.463.

This bears a striking qualitative similarity to the estimate n−1L1(1/2+ε) = 2ε+O(ε2) for the
Erdős-Rényi process, where the “rate” with which the giant component grows is constant. The
obvious question is now whether this is just a coincidence, or if it is, like the continuity of the
phase transition, a fundamental property of the Erdős-Rényi model that is stable enough to
persist even if we consider several different rules. Our first main result addresses this question
and shows that a large class of bounded-size rules exhibits exactly the same behavior.
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Before we present our findings let us introduce some notation and the family of rules that
we will study. Suppose that G is a graph with vertex set {1, . . . , n} =: [n]. The rules that we
consider consist of a rule-specific function

R : G× [n]` →
{
{i, j} : 1 ≤ i < j ≤ `

}
that has the following interpretation. Suppose that we are given the graph G and the ver-
tices v1, . . . , v` ∈ [n]. Then if we write R(G, v1, . . . , v`) = {i, j}, the edge that is selected by R
to be added to G is {vi, vj}. Any such rule (i.e. mapping R) defines a random graph process
in the natural way, where we start with an empty graph and in every succeeding round we
present the rule ` randomly and independently selected vertices from the vertex set of G.

Of course, this definition captures the notion of a general rule that may base its decision
on any property of G and of the presented vertices. Here we restrict our focus on specific
R that have the following properties. For a vertex v ∈ [n] we denote by cG(v) the size of
the component in which v is contained. Similarly, for a sequence of vertices v = (v1, . . . , v`)
we write cG(v) = (cG(v1), . . . , cG(v`)). Moreover, let ` ≥ 2,K ≥ 0 be fixed integers. An
(`,K)-bounded rule R that is presented G and v1, . . . , v` has the following characteristics:

• it bases its decision only on cG(v1), . . . , cG(v`−2).

• if any of cG(v1), . . . , cG(v`−2) exceeds K it selects {v`−1, v`}.

In words, R implements an arbitrary choice mechanism among the vertices v1, . . . , v`−2 pro-
vided that all these vertices are contained in components of size ≤ K. Otherwise, it picks a
random edge.

Note that the Erdős-Rényi process and the Bohman-Frieze process belong to the class of
(`,K)-bounded rules. Indeed, Erdős-Rényi is the only (2, 0) process, and Bohman-Frieze is a
(4, 1) process that selects {v1, v2} if and only if cG(v) = (1, 1, 1, 1). Two remarks are in place
here. First of all, our main motivation for studying such rules is that they provide a concise
way of defining a notion of “approximation” for size rules. Indeed, consider for example the
product rule. Then we can define a sequence of (4+2, k)-bounded rules, where k ≥ 0, and the
rule applies the product criterion to v1, . . . , v4 unless one of the corresponding components
has size ≥ k. In that case, it selects {v5, v6}, i.e., a random edge. In other words, the behavior
of the bounded rule differs only if large components are selected, and we would expect that
for large k the behavior resembles qualitatively very much the behavior of the size rule. We
comment more on this issue in Section 5, where we also discuss possible implications for our
results. Second, the family of (`,K)-bounded rules is rather broad, and it contains also rules
that are not bounded size in the sense of Spencer and Wormald [40]; moreover, our rules
are more general that the so-called ’first-edge algorithms’ defined in [8]. Finally, we believe
that our methods can be extended to cover also more general cases, but we leave this for the
moment as an open problem.

Let L1(R; m,n) denote the size of the largest component in the graph if a rule R is
applied m times (and the initial graph contains n vertices and no edge). For any (`,K)-
bounded rule it follows from previous results [39] that there is a phase transition at some
critical (rule-dependent) time that we denote by tR: if m = tn and t < tR, then whp
L1(R; m,n) = O(log n). On the other hand, if t > tR, then whp L1(R; m,n) = Ω(n). Our
results allow us to reprove this fact with a completely different method. In addition to that,
we show an universality phenomenon regarding the rate at which the giant component grows
for t > tR.
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Theorem 1.1. Let ` ≥ 2,K ≥ 0, and let R be an (`,K)-bounded rule. Then there is a
constant cR > 0 such that for any ε > 0 whp

lim
n→∞

n−1L1(R; (tR + ε)n, n) = cRε+O(ε2).

In words, for any (`,K)-bounded rule the giant component grows at a linear rate, estab-
lishing that with respect to this parameter all these rules belong to the same universality
class. Theorem 1.1 thus describes the evolution of the size of the giant component with high
precision for a whole class of rules. Moreover, our proof allows us to compute the value of cR
for any such rule. Indeed, cR is the value of some function that is specified by a small system
of differential equations at a particular point, see Sections 3 and 4. This is of course not as
explicit as we would like; however, even the critical point tR is only given implicitly, so asking
for an explicit expression would be too much to hope for.

Apart from the size of the giant component, we also obtain further information about the
distribution of the component sizes. For a graph G with vertex set [n] and an integer k ≥ 1
let us write

Xk(G) =
∣∣{v ∈ [n] : cG(v) = k}

∣∣ (1.1)

for the number of vertices in components of size k. Equivalently, n−1Xk is the probability
that a random vertex is contained in a component of size k. Let us write Xk(ER; t) if G is
the Erdős-Renyi graph with m = tn edges. It is well-known [23, 26] (see also Section 2) that
whp

n−1Xk(ER; t) = (1 + o(1))
ki−1

k!
(2te−2t)k.

From this, a simple and slightly tedious calculation shows that for t = 1/2 + ε (where ε may
now be also negative) we obtain whp

lim
k→∞

log n−1Xk(ER; t)

k
= −ε2/2 +O(ε3).

In [26] it was forecast that a similar qualitative behavior should hold for the Bohman-Frieze
process. In the spirit of Theorem 1.1 we show also for this parameter the a similar behavior
for all (`,K)-bounded rules.

Theorem 1.2. Let ` ≥ 2,K ≥ 0, and let R be an (`,K)-bounded rule. Let Xk(R; t) be the
number of vertices in components of size k after tn edges were added. Then there is a constant
dR > 0 and an εR > 0 such that for any |ε| < εR whp

lim sup
k→∞

log n−1Xk(R; tR + ε)

k
= −dRε2 +O(ε3).

Proof Techniques As already mentioned in the previous section, for every (`,K)-bounded
rule a phase transition occurs at some critical time that we denote by tR. We will argue in
the next section that tR is given by the solution to the equation S(tR) = 0, where S is defined
by the ordinary differential equation (ODE)

S′(t) = −h(t, z)− g(t)S(t)2 and S(0) = 1. (1.2)

Here h and g are non-negative rule-dependent functions, but we omit the dependence on R
to avoid notational cluttering. The function S corresponds to the inverse of the so-called
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‘susceptibility’, which is the expected size of the component of a randomly selected vertex in
the graph in which tn edges were added. The ODE in (1.2) is in perfect agreement with the
corresponding ODE for bounded-size rules derived in [40].

In order to achieve our main results we go further and actually track simultaneously the
actual component size distribution of the random graph generated by repeated application
of R. Indeed, let as before Xk(R; t) denote the number of vertices in components of size k
after m = tn edges were added. Then we argue, see Section 2, that whp the sequence n−1Xk

converges as n → ∞ to a (deterministic) function xk(R; t) satisfying a certain ODE, which
depends only on x1, . . . , xk. In order to study the whole distribution we define the bivariate
generating function

D(t, z) =
∑
k≥1

xk(R; t)zk

that encodes concisely all the desired quantities. The ODE’s for the xk’s then imply that D
satisfies a non-homogeneous quasi-linear partial differential equation (PDE)

Dt + zg(t)(1−D)Dz = h(t, z) with initial condition D(0, z) = z, (1.3)

where Dx stands for the partial derivative with respect to the variable x, and the function g
is the same as in (1.2) and hz = h in (1.2). There is a vast literature on treatment of such
equations. Indeed, they arise in the context of stochastic models for coalescence in physics,
chemistry and cosmology, see [2] for an excellent survey. In an abstract setting, in these
models n clusters with (possibly different) masses move through space. Any two such clusters
with masses i and j merge at a specific rate, typically denoted by K(i, j), to a new cluster
with mass i + j. This gives rise to a PDE similar to the one in (1.3). However, this PDE is
so general that to our knowledge no complete treatment can be found in the literature; only
some special cases are understood, for example the case K(i, j) = ij that corresponds to the
Erdős-Rényi process. Our main technical contribution is the analysis of the solutions of the
equation (1.3) in a rather general setting. Particularly, it turns out that there is a critical
point (that, of course, coincides with the one given by (1.2) for the special case z = 1), around
which the PDE admits two solutions, which meet at a so-called double point, see Sections 3.1
and 4. We obtain a precise description of the local behavior of these solutions around that
critical point, which then enables us to infer both claimed results. Thus, our contribution
may find several applications in stochastic models for coalescence.

Let us remark at this point that the use of PDE’s to study random graph processes with
various degrees of dependencies is not entirely new. As far as we know, it appeared for the first
time in [37] in the context of “triangle percolation” on random graphs. Moreover, it appears
in several places in the context of analytic combinatorics, see e.g. [17, 29]. However, in all
these applications the considered PDE’s are either solvable explicitly or the properties of the
solutions can be comparatively easily, which simplifies the subsequent analysis significantly.
Finally, in [26] this PDE was studied for the special case of the Bohman-Frieze process.

1.2 Further Related Work

In the classical setting the paradigm of the power of choice was investigated in the context
of various balls-into-bins processes that play a crucial role in the study of load balancing
problems and in resource allocation. In their seminal paper, Azar, Broder, Karlin and Upfal [3]
analyzed the following natural occupancy problem: suppose that we place sequentially n
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balls into n bins, where for each ball we select two bins randomly and then assign it into
the bin that is less full at the time of placement. Then the maximum load, i.e., the number
of balls in the fullest bin, is exponentially smaller compared to the case where the balls
have “no choice” and are just placed randomly. The paper [3] has triggered a long line of
research (see e.g. [33, 41, 13, 5, 36, 4] for a non-exhaustive list) and the main ideas have found
applications in many different areas, for example in the development of more effective hashing
schemes [11, 35, 14], in particular Cuckoo Hashing [34, 19, 12, 20, 21].

On the other hand, in the context of random graphs, quite a few papers have attempted to
settle many open problems about processes that are inspired by the paradigm of choice. Many
of these models are called ‘Achlioptas processes’, since Achlioptas, inspired by the celebrated
result on the power of two choices [3], suggested to investigate generalized versions of the
classical Erdős-Rényi setting, where multiple edges are presented in each step. Except of the
papers mentioned previously, there are results concerning the appearance of subgraphs [32,
18, 31, 30, 27], hamiltonicity [28], and connectivity [25].

2 Component Size Distribution & Derivation of Main Result

2.1 Component Sizes & Differential Equations

For a natural number n we write [n] = {1, . . . , n}. Given an (`,K)-bounded rule R and
τ ≥ 0 we let Gτn(R) be the graph after m = bτnc edges are added, where for τ = 0 it
is the graph with n vertices and no edge. We write Xk(R; τ) for the number of vertices
in components of size k in Gτn(R). We will omit from now on the explicit dependence on
the specific rule R under consideration. Applying Wormald’s differential equation method
(Theorem 5.1 in [42]), in [40] it was shown that for any (4,K)-bounded rule, there exist
deterministic functions xk = xk(τ), where 1 ≤ k ≤ K, such that whp for any τ ≥ 0

n−1Xk(τ) = xk(τ) + o(1),

where the family (xk(τ))1≤k≤K is the solution of a system of ODEs. We extend this result
to any (`,K)-bounded rule for any ` ≥ 2 and, crucially, for all components sizes k. The aim
of this section is to give a concise description of the resulting (infinite) system of ODEs, see
Lemma 2.1, which is the basic object that we study in the rest of this paper.

In order to derive the equations for the dynamics of the random variable Xk we begin
with studying the typical evolution, i.e., the expected change of Xk, in one round. Since it
will be useful in the sequel, we first demonstrate the procedure in the case K = 0, i.e., the
Erdős-Rényi case, where the rule picks in every step a random edge {v`−1, v`}. We note first
that X1 decreases by one exactly when only one of v`−1, v` is an isolated vertex in Gτn; this
event occurs with probability 2n−1X1(τ)

(
1− n−1X1(τ)

)
. Moreover, X1 decreases by two if

both v`−1 and v` are isolated, which happens with probability n−2X1(τ)(X1(τ)−1). In other
words, X1 changes by adding an edge in expectation by

E[X1(τ + n−1)−X1(τ) |Gτn] = −2n−1X1(τ) +O(n−1). (2.1)

For component sizes k ≥ 2 we can use a similar reasoning. The quantity Xk decreases by k
exactly when only one of v`−1, v` is contained in a component of size k in Gτn, which happens
with probability 2n−1Xk(τ)

(
1− n−1Xk(τ)

)
. Additionally, Xk decreases by 2k if both v`−1

and v` are in distinct components of size k, which happens with probability n−2Xk(τ)(Xk(τ)−
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k). On the other hand, Xk can also increase. This happens if v`−1, v` join two components
of sizes j and k − j for some 1 ≤ j < k. Thus

E[Xk(τ + n−1)−Xk(τ) |Gτn] = −2k
Xk(τ)

n
+ k

∑
1≤j<k

Xj(τ)

n

Xk−j(τ)

n
+O(kn−1). (2.2)

The big-O term here includes the contribution of events with small probability, i.e. the case
where both v`−1, v` are contained in the same component. The system of equations (2.1)
and (2.2) describes the expected change of Xk in the Erdős-Renyi case (K = 0).

Let us now consider general K ≥ 1. Suppose we are given the graph G = Gτn generated
by the rule R after τn edges were added, and the randomly selected vertices v1, . . . , v`. In
order to compute E[Xk(τ + n−1)−Xk(τ) |Gτn] we shall consider two cases separately: first,
when v1, . . . , v`−2 are contained in components of size ≤ K – in which case we say that R
picks a non-Erdős-Rényi (non-ER) edge – and second, when {v`−1, v`} is selected (in which
case we say that R picks an ER edge).

Assume that an ER edge is chosen; the probability of this event is

G(τ) = 1− n−`+2(X1(τ) + · · ·+XK(τ))`−2. (2.3)

In this case Xk follows exactly the same trajectory as decipted in Equations (2.1) and (2.2),
since v`−1 and v` are (unconditionally) random vertices. Thus, for any k ≥ 1

E[Xk(τ + n−1)−Xk(τ) |Gτn ∧ ER edge] = −2k
Xk(τ)

n
+ k

∑
1≤j<k

Xj(τ)

n

Xk−j(τ)

n
+O(kn−1).

(2.4)
The case in which R chooses a non-ER edge is significantly more involved. The probability
for this event equals 1−G(τ) = n−`+2(X1(τ) + · · ·+XK(τ))`−2. To capture how the decision
of R influences the expected change of Xk, we introduce a (rule-dependent) auxiliary random
variable Q(G; i, j), where 1 ≤ i, j ≤ K, which denotes the probability that R(G; v1, . . . , v`) =
{x, y} 6= {` − 1, `} such that cG(vx) = i and cG(vy) = j, i.e., the randomly chosen vertices
v1, . . . , v`−2 are such that the rule merges a component of size i with a component of size j in
G. Let us write R−1(i, j) for the set of (`−2)-tuples (c1, . . . , c`−2) ∈ [K]`−2, such that for any
graph G with the property that the vertices v1, . . . , v`−2 satisfy cG(vi) = ci for 1 ≤ i ≤ `− 2
and v`−1, v` are arbitrary we have that R(G; v1, . . . , v`−2, v`−1, v`) = {x, y} and cx = i and
cy = j. Note that R−1 is well-defined and in particular dependent only on the sequence of
component sizes and not on any other property of G, since R is a size rule. With this notation
it follows that

Q(Gτn; i, j) =
∑

(c1,...,c`−2)∈R−1(i,j)

`−2∏
s=1

Xcs(τ)

n
. (2.5)

Note that not necessarily Q(G; i, j) = Q(G; j, i), since R could be asymmetric in terms of
component sizes. In the sequel we omit the explicit dependence of G on Q.

Let us first study the expected change in the number of isolated vertices. X1 decreases by
one whenever the rule merges a component of size one with a component of size 2 ≤ j ≤ K).
Moreover, it decreases by two with probability 2Q(1, 1). Thus we have

E[X1(τ + n−1)−X1(τ) | Gτn ∧ non-ER edge]

= − 1

1−G(τ)

∑
1≤j≤K

(Q(1, j) +Q(j, 1)) +O(K3n−1), (2.6)
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where the error term originates from rare events in which two or more out of the randomly
selected vertices v1, . . . , v` are in the same component of Gτn. For 2 ≤ k ≤ K, Xk decreases
by k when the rule merges a component of size k with a component of size 1 ≤ j ≤ K, j 6= k,
and it decreases by 2k if j = k. Moreover, Xk increases by k if the rule merges a component
of size i with a component of size j with i+ j = k, where 1 ≤ i, j ≤ K. Thus

E[Xk(τ + n−1)−Xk(τ) | Gτn ∧ non-ER edge]

=
1

1−G(τ)

−k ∑
1≤j≤K

(Q(k, j) +Q(j, k)) + k
∑
i+j=k

Q(i, j)

+O(K3n−1). (2.7)

Next, for K < k ≤ 2K, Xk cannot decrease if an non-ER edge was selected. However, it can
increase by k if the total number of vertices in the selected components is k. In this case we
obtain as above

E[Xk(τ + n−1)−Xk(τ) | Gτn ∧ non-ER edge]

=
k

1−G(τ)

∑
1≤i,j≤K
i+j=k

(Q(k, j) +Q(j, k)) +O(K3n−1). (2.8)

Finally, for k > 2K the expected change of Xk conditional on a non-ER edge is 0, since in a
non-ER edge both involved component sizes are at most K.

Summing up, the system (2.3)–(2.8) of equations specifies the expected change of the
quantities Xk, where k ≥ 1, if an edge is added to Gτn. Define the auxiliary functions

q(i, j; x1, . . . , xK) =
∑

(c1,...,c`−2)∈R−1(i,j)

`−2∏
s=1

xcs (2.9)

and fk(x1, . . . , xk), g(x1, . . . , xK) where, at (x1, . . . , xk)

fk = k

−1[1 ≤ k ≤ K]
∑

1≤j≤K
(q(k, j) + q(j, k)) +

∑
i+j=k

q(i, j)1[1 ≤ i, j ≤ K]

 (2.10)

and
g = 1− (x1 + · · ·+ xK)`−2. (2.11)

Note that fk = 0 for k > 2K. If we write X(τ) for the vector (X1(τ), . . . , XK(τ)) then the
system (2.3)–(2.8) implies for k ≥ 1 that

E[Xk(τ + n−1)−Xk(τ) | Gτn]

= fk

(
X(τ)

n

)
+ g

(
X(τ)

n

)
k

−2Xk(τ)

n
+
∑
i+j=k

Xi(τ)

n

Xj(τ)

n

+O
(K3 + k

n

)
. (2.12)

Moreover, for any k ≥ 1 the difference Xk(τ + n−1) − Xk(τ) is bounded, and the functions
on the right-hand side of (2.12) are continuous and satisfy a Lipschitz condition. Following
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the general principle of the differential equations method (see Theorem 5.1 in [42]) we infer
for any k ≥ 1, if we choose the xk’s such that they satisfy the ODE

x′k = fk(x1, . . . , xK) + g(x1, . . . , xK)k

−2xk +
∑
i+j=k

xixj

 (2.13)

then we obtain the following result.

Lemma 2.1. Let R be an (`,K)-bounded rule. Then the system (2.13) with initial conditions
x1(0) = 1 and xk(0) = 0 for k ≥ 2 has a unique solution. Moreover, for any k ≥ 1 we have
that whp

n−1Xk(τ) = xk(τ) + o(1).

Let us illustrate the conclusion with a few examples.

The Erdős-Rényi process. As already mentioned, this process is given by the unique (2, 0)-
bounded rule. We have fk = 0 for all k ≥ 1, and thus

x′k = −2kxk + k
∑
i+j=k

xixj .

Let us remark already at this point that this system can be solved explicitly; we obtain that

xk(τ) =
1

2τ

kk−1

k!
(2τe−2τ )k. (2.14)

The Bohman-Frieze process. This is the unique (4, 1)-bounded rule with

R(G; v1, v2, v3, v4) =

{
{1, 2}, if (cG(v1), cG(v2), cG(v3), cG(v4)) = (1, 1, 1, 1)

{3, 4}, otherwise
.

In words, R selects the edge v1v2 only if v1, v2 are isolated in G. Thus R−1(1, 1) = (1, 1) and
by applying (2.9) we infer that q(1, 1) = x21, and q(i, j) = 0 otherwise. Using (2.10) we further
obtain that f1 = −2q(1, 1) and f2 = 2q(1, 1). Altogether we obtain from (2.13) the system

x′1 = −2x21 − 2(1− x21)x1, x′2 = 2x21 + 2(1− x21)(−2x2 + x21),

and for k ≥ 3

x′k = (1− x21) · k

−2xk +
∑
i+j=k

xixj

 .

The K-Product-Rule. This family of rules are bounded versions of Achlioptas’s original prod-
uct rule, where in the formal limit K → ∞ all choices coincide. More precisely, the K-
Product-Rule is a (6,K)-bounded rule such that if we write v = (v1, . . . , v6) and cG(v) =
(cG(v1), cG(v2), cG(v3), cG(v4), cG(v5), cG(v6)), then

R(G; v) =


{1, 2}, if cG(v1)cG(v2) < cG(v3)cG(v4) and cG(v) ∈ [K]4 × [n]2

{3, 4}, if cG(v1)cG(v2) ≥ cG(v3)cG(v4) and cG(v) ∈ [K]4 × [n]2

{5, 6}, otherwise

.
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So, these rules ’mimic’ the product rule for component sizes up to K, and otherwise choose
a random edge. From the definition it follows that for 1 ≤ i, j ≤ K we have

R−1(i, j) =
{

(i, j, i′, j′) ∈ [K]4 : ij < i′j′
}
∪
{

(i′, j′, i, j) ∈ [K]4 : ij ≤ i′j′
}
.

Together with Equations (2.9)-(2.13) this specifies fully the resulting system of ODEs, where

q(i, j) = xixj ·
∑

(i,j,i′,j′)∈R−1(i,j)

xi′xj′ ·
∑

(i′,j′,i,j)∈R−1(i,j)

xi′xj′ .

2.2 Derivation of Main Results

In this section we prove Theorems 1.1 and 1.2. Let R be an (`,K)-bounded rule and let
(xk(τ))k≥1 denote the system of ODEs from Lemma 2.1. Define a formal power series by

D(τ, z) =
∑
k≥1

xk(τ)zk.

Letting Dx stand for the partial derivative with respect to the variable x we obtain the
following statement.

Lemma 2.2. In the situation of this section we have D(0, z) = z and D satisfies the PDE

Dτ + 2zg(τ)(1−D)Dz = h(τ, z),

where h is given in (2.17) and g(τ) = g(x1(τ), . . . , xK(τ)), where g is given in (2.11).

Proof. The initial condition is implied by the fact x1(0) = 1 and xk(0) = 0 for k ≥ 2,
c.f. Lemma 2.1. To see the second claim, first note that

Dτ =
∑
k≥1

x′k(τ)zk and Dz =
∑
k≥1

kxk(τ)zk−1. (2.15)

Using (2.13) we thus obtain

Dτ =
∑
k≥1

x′k(τ)zk =
∑
k≥1

fk(x1, . . . , xK)zk

+ g(x1, . . . , xK)

−2
∑
k≥1

kxkz
k +

∑
k≥2

k
∑

1≤j<k
xjxk−jz

k

 . (2.16)

Note that

−2
∑
k≥1

kxkz
k +

∑
k≥2

k
∑

1≤j<k
xjxk−jz

k = −2zDz + z
∂

∂z
D2 = −2z(1−D)Dz.

Moreover, by using (2.10) and the fact that fk = 0 for k > 2K we obtain that

h(τ, z) =
∑
k≥1

fk(x1, . . . , xK)zk =
∑

1≤i,j≤K
(−iq(i, j)zi − jq(i, j)zj + (i+ j)q(i, j)zi+j). (2.17)

The proof is completed by plugging this into (2.16).
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Before we proceed with studying the solutions to (2.15) we need the following crucial
properties of the functions g and h.

Corollary 2.3. In the situation of this section

g(τ) > 0 for τ > 0 and

∫ ∞
0

g(τ) dτ >
1

2
,

and
h(τ, 1) = 0, hz(τ, 1), hzz(τ, 1) ≥ 0 for τ > 0.

Proof. The statements for h follow immediately from the explicit expression given in (2.17)
and from the fact q(i, j) ≥ 0 for all 1 ≤ i, j ≤ K. To see that g(τ) > 0 when τ > 0, let us
write y = x1 + · · ·+xK , so that g = 1− y`−2. Then, by the sake of contradiction, let t be the
infimum over all τ > 0 such that g(τ) = 0, and assume that t > 0. By applying (2.10), for all
τ < t

0 = y′(τ) ≤ −(K + 1)
∑

1≤i,j≤K
q(i, j)1[i+ j > K]

So q(i, j) = 0 for all 1 ≤ i, j ≤ K such that i + j > K, and in particular, by (2.9), for all
0 < τ ≤ t

`−2∏
s=1

xcs(τ) = 0 for all (c1, . . . , c`−2) ∈
⋃

1≤i,j≤K
i+j>K

R−1(i, j). (2.18)

Next, let us note that for all τ > 0 we have that 0 < x(τ) < 1. Indeed, (2.14) implies that
for the Erdős-Rényi process we have whp that the limiting fraction of isolated vertices is

x1(ER; τ) = e−2τ .

However, for any (`,K)-bounded rule we have that x1(τ) ≥ x1(ER; `τ), since the graph
generated after adding τn edges is a subgraph of the Erdős-Rényi process with `τn edges,
namely all edges that are presented to the rule.

Since x1(τ) 6= 0, let us consider the terms in (2.18) in which i = 1, j = K. It follows that
xK(τ) = 0 for all 0 ≤ τ ≤ t. Define the function y2 = x1 + · · ·+ xK−1. It follows that

y′2(τ) ≤ −K
∑

1≤i,j≤K
q(i, j)1[i+ j > K − 1]

With the same reasoning as before we infer that xK−1(τ) = 0 for all 0 ≤ τ ≤ t. Moreover, by
iterating this argument for the partial sum x1 + · · · + xi, for any 2 ≤ i ≤ K − 2, we obtain
similarly that x2 = · · · = xK = 0 for all 0 ≤ τ ≤ t. But then, since x1 < 1, we have g > 0, a
contradiction.

Finally, to see that
∫∞
0 g(τ)dτ > 1/2 note that this integral actually diverges. Indeed,

g(t) is non-decreasing (since the fraction of vertices in components with size less than K is
non-increasing). Moreover, if g(t) > ε for some t > 0, then this implies that g(τ) ≥ g(t) for
all τ ≥ t. The claim follows.

Theorem 2.4. Suppose that g(τ) and h(z, τ) are twice differentiable functions that are defined
for τ ≥ 0 and for complex z in a neighborhood of z = 1 that satisfy the conclusions of
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Corollary 2.3, Furthermore, let τc > 0 be defined as the smallest positive zero of the solution
S(τ) of the ODE S′ = −2g(τ)− hz(τ, 1)S2, S(0) = 1.

Then there exist constants c 6= 0, d 6= 0 such that the solution D = D(τ, z) of the PDE

Dτ + 2zg(τ)(1−D)Dz = h(τ, z)

with boundary condition D(0, z) = z has the following properties:

1. Behaviour for z < 1: There exists constants η1 > 0, η2 > 0 such that the solution
D(τ, z) exists for 0 ≤ τ ≤ τc + η1 and 1− τ2 ≤ z < 1 and we have

lim
z→1−

D(τ, z) =

{
1 for 0 ≤ τ ≤ τc,

1− c(τ − τc) +O((τ − τc)2) for τc ≤ τ ≤ τc + η1.

2. Squareroot singularity: There exist constants η3 > 0, η4 > 0 and functions ρ(τ),
a(z, τ), b(z, τ) for τ ∈ [τc− η3, τc + η3] and |z− ρ(τ)| < η4 with the following properties:

• ρ(τ) is the radius of convergence of the function z 7→ D(z, τ), it is nonzero and
satisfies

ρ(τ) = 1 + d(τ − τc)2 +O((τ − τc)3).

• The functions a(z, τ), b(z, τ) are non-zero and the mappings z 7→ a(τ, z) and z 7→
b(τ, z) are analytic for |z − ρ(τ)| < η4.

• The function z 7→ D(τ, z) is represented by

D(τ, z) = a(τ, z)− b(τ, z)
√

1− z

ρ(τ)

for τ ∈ [τc − η3, τc + η3] and |z − ρ(τ)| < η4 with arg(z − ρ(τ)) 6= 0.

It is now easy to deduce Theorems 1.1 and 1.2 from Theorem 2.4.

Proof of Theorem 1.1. We know from [39, Theorem 3] that whp

limn−1L1(R; (τ)n, n) = 1−
∑
i≥1

xi(τ).

Furthermore, from the definition we readily infer that

lim
z→1−

D(τ, z) =
∑
i≥1

xi(τ).

Theorem 1.1 follows. Since
∑

i≥1 xi(τ) ≤ 1 it is clear that c > 0.

Proof of Theorem 2.4. The radius of convergence of the function z 7→ D(τ, z) is given by

ρ(τ) =

(
lim sup
k→∞

xk(τ)1/k
)−1

which implies that

lim sup
k→∞

log xk(τ)

k
= − log ρ(τ) = −d(τ − τc)2 +O((τ − τc)3).

Since 0 < xk(τ) < 1 it is clear that d > 0.
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3 The Erdős-Rényi Case

3.1 First Approach – A Direct Solution

Recall that the PDE for the Erdős-Rényi process is given by

Dτ + 2zDz(1−D) = 0, D(0, z) = z

As already mentioned, this PDE has an explicit solution. Indeed, by using (2.14) we readily
obtain that

D(τ, z) =
1

2τ
T (2τe−2τz) (3.1)

and T (x) =
∑

k≥1 k
k−1xk/k! is the tree function that satisfies

T = xeT . (3.2)

This directly implies that D = D(τ, z) satisfies the equation

D = ze2τ(D−1). (3.3)

It is well known, see e.g. [15], that the function T = T (x) has a critical point at x = 1/e,
where (3.2) has a quadratic branch point, that is, we have two solutions that behave like

T (x) = 1±
√

2
√

1− ex+O(1− ex). (3.4)

Set P (x, T ) = xeT − T . Then the behavior of T follows from the properties

P (x0, T0) = 0, PT (x0, T0) = 0, Px(x0, T0) 6= 0, PTT (x0, T0) 6= 0,

where x0 = 1/e and T0 = 1, see [15] for the details. A heuristic approach to derive the
expression for T is to consider the Taylor-series expansion for P . We have approximately

0 = P (x, T ) = Px(x0, T0)(x− x0) + PTT (x0, T0)(T − T0)2.

Solving this equation gives (3.4). If we try a similar approach to solve (3.3) for D(τ, z)
we recover a critical point at τ0 = 1/2, z0 = 1, and D0 = 1. More precisely, if we set
Q(τ, z,D) = ze2τ(D−1) −D then we have

Q(τ0, z0, D0) = 0, QD(τ0, z0, D0) = 0, Qτ (τ0, z0, D0) = 0, Qz(τ0, z0, D0) = 1 6= 0,

and the second derivatives evaluate to

Qττ (τ0, z0, D0) = 0, QτD(τ0, z0, D0) = 2 6= 0, QDD(τ0, z0, D0) = 1 6= 0.

Actually this leads to a so-called double point of the equation Q = 0 if z = z0 = 1 and to
hyperbola-like solutions if z 6= z0 (but close to z0).

In order to give an intuition for the behavior of the solution we look at the Taylor series
expansion, where we again neglect the higher order terms. We have

Qz(z − 1) +QτD(τ − 1/2)(D − 1) +
1

2
QDD(D − 1)2 = 0.
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If z = z0 = 1 then we have two (linear) solutions

D = 1 and D = 1− 2QτD
QDD

(τ − 1/2), (3.5)

whereas if z 6= 1 we obtain two branches of a hyperbola with asymptotes given by (3.5). For
example, if z < 1 they can be computed explicitly by

D = 1− QτD
QDD

(τ − 1/2)±

√
Q2
τD

Q2
DD

(τ − 1/2)2 − 2Qz
QDD

(z − 1).

Figure 1 shows this behaviour.

Figure 1: Double point (z = 1) and hyperbola solution (z = 0.95, z = 1.05)

Actually this is an explanation from a different point of view why the function D(τ, z)
behaves nicely in τ for all (positive) z < 1 and why we observe a quareroot singularity in τ
for z > 1.

In general we just need the conditions

Q(τ0, z0, D0) = 0,

QD(τ0, z0, D0) = 0,

Qτ (τ0, z0, D0) = 0,

Qz(τ0, z0, D0) 6= 0,

QDD(τ0, z0, D0) 6= 0,

(QττQDD −Q2
τD)(τ0, z0, D0) 6= 0

in order to observe a double point for z = z0 and hyperbola like solutions for z 6= z0. Note that
the condition QDD 6= 0 might be disregarded since it only assures that there is no horizontal
solution.
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3.2 Second Approach – Method of Characteristics

The PDE for any (`,K)-bounded rule is of the form

Dτ + 2zg(τ)(1−D)Dz = h(τ, z), D(0, z) = z.

For this general PDE, it seems impossible to obtain an explicit solution of the form (3.1). In
order to circumvent this difficulty, we explore a different approach that is based on a general
method for solving non-linear PDEs, the so-called method of characteristics. Before we apply
it in order to solve the general equation in Section 4 will illustrate the procedure in the simple
Erdős-Rényi case first.

To begin with, we recall quickly how the solution (3.1) can be found with the help of the
method of characteristics. The differential equation (3.1) is quasi-linear. We introduce D as
a third variable and solve the PDE

fτ + 2z(1−D)fz = 0 (3.6)

for a function f = f(τ, z,D), from which we can reconstruct D = D(τ, z) by solving the
equation f(τ, z,D) = const.

The first step is to introduce a system of ODE’s for functions τ = τ(t), z = z(t), and
D = D(t) of the form

τ
·

= 1, z
·

= 2 z (1−D), D
·

= 0.

The next step is to eliminate the time variable t by considering z̃ = z̃(τ) and D̃ = D̃(τ) that
satisfy the differential equation

z̃′ =
dz̃

dτ
2 z̃ (1− D̃), D̃′ =

dD̃

dτ
= 0

and solve this under the initial conditions z̃(0) = c1 and D̃(0) = c2. In this case this is easily
done in an explicit way and we obtain

z̃ = z̃(τ, c1, c2) = c1e
2τ(1−c2),

D̃ = D̃(τ, c1, c2) = c2.

Next we have to invert this functions to function c̃1(τ, z,D) and c̃2(ρ, z,D). Again this
can be done explicitly:

c̃1 = c̃1(τ, z,D) = ze2τ(D−1), c̃2 = c̃2(τ, z,D) = D

that are precisely the characteristics of the PDF (3.6). Hence f = f(τ, z,D) is given by

f(τ, z,D) = G(c̃1(τ, z,D), c̃2(τ, z,D)) = G(ze2τ(D−1), D),

where G is an arbitrary function satisfying certain differentiability assumptions). Finally, we
can go back to the solution of the original PDE (3.1) by solving the equation

f(τ, z,D) = G(c̃1(τ, z,D), c̃2(τ, z,D)) = const.
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This means that we can rewrite this implicit equation (by assuming that Gc2 6= 0)

c̃1(τ, z,D) = H(c̃2(τ, z,D)) or D = H(ze2τ(D−1))

for some function H (or the other way round). The solution D = D(τ, z) of this implict
equation is then a solution of (3.1). In order to specify the (up to now) unknown function H
we can use the initial condition D(0, z) = z. In this special example this means that z = H(z)
and consequently we derive the equation

c̃1(τ, z,D) = c̃2(τ, z,D) or D = ze2τ(D−1).

Actually we can observe this relation directly from the ODE systems from the above. Since
we have started with z̃(0, c1, c2) = c1 and D̃(0, c1, c2) = c2 and c̃1(τ, z,D) and c̃2(ρ, z,D)
are the inverse functions of z̃(τ, c1, c2) and D̃(τ, c1, c2) it follows that c̃1(0, z,D) = z and
c̃2(0, z,D) = D and consequently

z = H(D).

Of course, the solution of this equation is D(0, z) and since we assume that D(0, z) = z it
follows (whithout any calculation) that H(z) = z.

As mentioned in Section 3.1 the equation D = ze2τ(D−1) is a direct translation of D =
(1/2τ)T (2τze−2τ ). We just have to multiply by 2τ and substibute x = 2τze−2τ and T = 2τD.

4 Proof of Theorem 2.4

In this section we discuss the general PDE

Dτ + 2zg(τ)(1−D)Dz = h(τ, z), (4.1)

where g(τ) and h(τ, z) satisfy the conditions of Theorem 2.4 and we have the boundary
conditions D(0, z) = z.

We will show that the solution of the PDE has in principal the same properties as corre-
sponding solution in the Erdös-Rényi case. Actually we show by the method of characteristics
that there exists a function Q(τ, z,D), where the solution D = D(τ, z) of the equation Q = 0
is solution of the above PDE. Furthermore we will identify in general a point τc > 0 (which is
precisely the smallest positive zero of the solution S(τ) of the ODE S′ = −2g(τ)− hz(τ, 1)S2

with S(0) = 1), such that we have for z0 = 1 and D0 = 1 the properties

Q(τc, z0, D0) = 0,

QD(τc, z0, D0) = 0,

Qτ (τc, z0, D0) = 0,

Qz(τc, z0, D0) 6= 0,

Qττ (τc, z0, D0) = 0,

QτD(τc, z0, D0) 6= 0,

QDD(τc, z0, D0) 6= 0.

Actually all assertions of Theorem 2.4 follow from these properties.

17



1. Behaviour for z < 1: As mentioned at the end of Section 3 the conditions Q = QD =
Qτ = 0, Qz 6= 0, QτD 6= 0, and QDD = 0 ensure that we have a double point at
(τ,D) = (τc, 1) when z = 1 is fixed. In particular the two branches of the solution
Q(τ, 1, D) = 0 are given by

D1(τ, 1) = 1 +O((τ − τc)2) and D2(τ, 1) = 1− c(τ − τc) +O((τ − τc)2),

where

c =
2QτD
QDD

6= 0.

Since Qz 6= 0 we observe that when z 6= 1 (but sufficiently close to 1) there are hyperbola
like solutions for τ sufficiently close to τc. Actually if z → 1− one of the hyperbola arcs
has the limit D1 = 1 for τ ≤ τc and the limit D2 = 1 − c(τ − τc) + O((τ − τc)2) for
τ ≥ τc. (The other hyperbola arc has limit D2 = 1− c(τ − τc) +O((τ − τc)2) for τ ≤ τc
and limit D1 = 1 for τ ≥ τc.)
Furthermore, if 0 < z < 1 the function D(τ, z) =

∑
i≥1 xi(τ)zi exists for all τ ≥ 0 and

we also have limz→1−D(τ, z) = 1 for τ ≤ τc. This means that the first hyperbola has
to coincide with the this function.

2. Squareroot singularity: We now use the properties

Q(τc, z0, D0) = QD(τc, z0, D0) = 0

Qz(τc, z0, D0) 6= 0, QτD(τc, z0, D0) 6= 0, QDD(τc, z0, D0) 6= 0.

Now suppose that τ = τc is fixed and we are searching for the solution of the function
z 7→ D(τc, z). Then the above mentioned properties of the derivatives of Q are precisely
those that are needed to show that all solutions D(τ0, z) have a squareroot singularity
at z = z0 = 1 of the form

D(τc, z) = a(z)± b(z)
√

1− z/z0,

where a and b are analytic at z = z0 = 1 and b(z0) 6= 0, see [15]. Without loss of
generality we can assume that D(τc, z) =

∑
i≥1 xk(τc)z

i = a(z)− b(z)
√

1− z/z0. Next
we show that we have the same kind of singular behaviour if τ is close to τc. Let z0(τ)
and D0(τ) be the solutions of the system of equations

Q(τ, z0(τ), D0(τ)) = 0,

QD(τ, z0(τ), D0(τ)) = 0.

Of course there is a solution for τ = τc: z0(τc) = 1, D0(τc) = 1. The functional
determinant is given by∣∣∣∣ Qz QD

QzD QDD

∣∣∣∣ =

∣∣∣∣ Qz 0
QzD QDD

∣∣∣∣ = QzQDD 6= 0.

Hence, be the implicit function theorem the functions z0(τ) and D0(τ) are uniquely
defined for τ close to τc. Furthermore we also have

Qz(τ, z0(τ), D0(τ)) 6= 0,

QτD(τ, z0(τ), D0(τ)) 6= 0,

QDD(τ, z0(τ), D0(τ)) 6= 0
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if τ is sufficiently close to τc. Summing up, if τ is sufficiently close to τc then we have

D(τc, z) = a(τ, z)− b(τ, z)
√

1− z/z0(τ),

where a and b are analytic and b(τ, z0(τ)) 6= 0.

If τ = τc then we already know that D(τc, z) is regular for |z| < 1 = z0. Hence, z0
is certainly the radius of convergence of the mapping z 7→ D(τc, z). If τ is close to τc
then z0(τ) is certainly a singularity of the mapping z 7→ D(τc, z). Since xi(τ) ≥ 0 the
radius of convergence of D(τ, z) coincides with the smallest singularity on the positive
real line. Consequently z0(τ) = ρ(τ) is the radius of convergence.

Finally we describe the local behaviour of z0(τ). Since z0(τ) (and D0(τ)) satisfy the
equation Q(τ, z0(τ), D0(τ)) = QD(τ, z0(τ), D0(τ)) = 0 we derive by implicit differentia-
tion that

z′0(τc) = −Qτ (τc, 1, 1)

Qz(τc, 1, 1)
= 0

and

z′′0 (τc) =
QτD(τc, 1, 1)2

Qz(τc, 1, 1)QDD(τc, 1, 1)
6= 0.

Hence, if we set d = z′′0 (τc)/2 we are done.

4.1 Method of Characteristics for (4.1)

In order to apply the method of characteristics for the PDE (4.1) we have to consider first
the linear PDE

fτ + 2zg(τ)fz(1−D) + h(τ, z)fD = 0.

for the function f = f(τ, z.D). We introduce a system of ODE’s for functions τ = τ(t),
z = z(t), and D = D(t) of the form

τ
·

= 1, z
·

= 2 z g(τ) (1−D), D
·

= h(τ , z).

and eliminate the variable t by considering z̃ = z̃(τ) and D̃ = D̃(τ) that satisfy the differential
equations

z̃′ =
dz̃

dτ
= 2 z̃ g(τ) (1− D̃), D̃′ =

dD̃

dτ
= h(τ, z̃)

and solve this again under the initial conditions z̃(0) = c1 and D̃(0) = c2. This leads to
functions z̃(τ, c1, c2) and D̃(τ, c1, c2). If we invert them to obtain the functions c̃1(τ, z,D) and
c̃2(τ, z,D) we arrive at the characteristics of the linear PDF for the function f , that is

f = f(τ, z,D) = G(c̃1(τ, z,D), c̃2(τ, z,D))

for some function G. The solution of the original PDE (4.1) is then given by the equation

c̃1(τ, z,D) = H(c̃2(τ, z,D))

for some function H (or the other way round). As in the Erdős-Rénye case we (obviously)
have c̃1(0, z,D) = z and c̃2(0, z,D) = D and thus z = H(D). By assumption D(0, z) = z and
thus H(z) = z. This leads to the general relation

c̃1(τ, z,D) = c̃2(τ, z,D). (4.2)
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Of course we have to justify that we can invert the functions z̃(τ, c1, c2) and D̃(τ, c1, c2). The
functional matrix is given by (

z̃c1 z̃c2
D̃c1 D̃c2

)
.

In particular we have (by assumption)(
z̃c1(0) z̃c2(0)

D̃c1(0) D̃c2(0)

)
=

(
1 0
0 1

)
and

z̃(τ, 1, 1) = D̃(τ, 1, 1) = 1

Thus, if c1 and c2 are sufficiently close to 1 the functions z̃ and D̃ will stay close to 1.
Now, given the function z̃(τ, c1, c2) and D̃(τ, c1, c2), the functions z̃c1 , z̃c2 , D̃c1 , D̃c2 are

solutions of the system of differential equations

z̃′c1 = 2 z̃c1 g(τ) (1− D̃)− 2 z̃ g(τ) D̃c1 ,

z̃′c2 = 2 z̃c2 g(τ) (1− D̃)− 2 z̃ g(τ) D̃c2 ,

D̃′c1 = hz(τ, z̃)z̃c1

D̃′c2 = hz(τ, z̃)z̃c2 .

Hence the factor (1− D̃) ≈ 0 makes the system almost homogeneous. Suppose for a moment
that we can omit the inhomogeneous part. Then (z̃c1 , D̃c1) is the solution with inital condition
(z̃c1(0), D̃c1(0)) = (1, 0) and (z̃c2 , D̃c2) is the solution (of the same homogeneous linear system
of differential equations) with inital condition (z̃c2(0), D̃c2(0)) = (0, 1), that is, (z̃c1 , D̃c1) and
(z̃c2 , D̃c2) are fundamental solutions. In particular it follows that the Wronskian determinant

W (τ) = det

(
z̃c1 z̃c2
D̃c1 D̃c2

)
is non-zero for all τ . By continuity we get the same property for any given interval for τ
provided that z̃(0) = c1 and D̃(0) = c2 are sufficiently close to 1. Hence, it is possible
to invert these functions and so the functions c̃1(τ, z,D) and c̃2(τ, z,D) exist for any given
interval for τ if z and D are sufficently close to 1.

Finally if we set
Q(τ, z,D) = c̃1(τ, z,D)− c̃2(τ, z,D).

then the solution D(τ, z) of the PDF (4.1) with D(z) = z satisfies Q(τ, z,D(τ, z)) = 0. It
is therefore our goal to show that there exists τc > 0 such that the above properties for the
derivatives of Q are satisfied (for (τ, z,D) = (τc, 1, 1)).

4.2 Existence of the Critical Point

The next goal is to show that there exits τc > 0 with QD(τc, z0, D0) = QD(τc, 1, 1) = 0, that
is, we have to find τc > 0 with c̃1,D(τc, 1, 1) = c̃2,D(τc, 1, 1). Since z̃ and D̃ are the inverse
functions of c̃1 and c̃2 (and the functional determinant is non-zero) we have c̃1,D(τ, 1, 1) =
c̃2,D(τ, 1, 1) if and only if

z̃c1(τ, 1, 1) = −z̃c2(τ, 1, 1).
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Let Z = Z(τ) denote the sum Z(τ) = z̃c1(τ, 1, 1) + z̃c2(τ, 1, 1). and T = T (τ) the sum
T (τ) = D̃c1(τ, 1, 1) + D̃c2(τ, 1, 1). Then these functions satisfy the system of differential
equations

Z ′ = −2g(τ)T,

T ′ = hz(τ, 1)Z.

with initial conditions Z(0) = 1 and D(0) = 1. Since we know that g(τ) ≥ 0 and hz(τ, 1) ≥ 0
it follows that Z(τ) is decreasing and T (τ) is increasing for small τ ≥ 0. More precisely, as
long as Z(τ) ≥ 0 it follows that T (τ) is increasing and T (τ) ≥ T (0) = 1 ≥ 0. Thus, Z(τ) is
decreasing. Again by T (τ) ≥ 1 and the assumption∫ ∞

0
g(τ) dτ >

1

2
(4.3)

it follows that Z(τ) has a (smallest) zero τc which is also simple. Summing up, if condition
(4.3) holds then there exists a unique τc > 0 with QD(τc, 1, 1) = 0.

Next we show that τc is precisely the point where the susceptibility Dz(τ, 1) =
∑

i≥1 ixi(τ)
diverges. By differentiating the PDE (4.1) with respect to z and setting z = 1 we obtain

Dτ,z(τ, 1)− 2g(τ)Dz(τ, 1)2 = hz(τ, 1)

and consequently, Dz(τ, 1) satisfies the ODE

H ′ = 2g(τ)H2 + hz(τ, 1), H(0) = 1.

Furthermore the reciprocal S = 1/H is the solution of the ODE

S′ = −hz(τ, 1)S2 − 2g(τ), S(0) = 1.

It is immediate that S is strictly decreasing and has a unique smallest zero. We now compare
this solution with the (above) system of differential equations Z, T . It directly follows that
the quotient Z/T satisfies the ODE(

Z

T

)′
=
Z ′T − ZT ′

T 2
=
−2g(τ)T 2 − hz(τ, 1)Z2

T 2
= −2g(τ)− hz(τ, 1)

(
Z

T

)2

.

Since Z(0)/T (0) = 1 it follows that

S(τ) =
Z(τ)

T (τ)
.

Hence the smallest positive zero of S equals τc and this is precisely the point, where Dz(τ, 1) =
1/S(τ) diverges.
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4.3 Properties of the Critical Point

We have already shown that Q(τc, 1, 1) = QD(τc, 1, 1) = 0 In the next step we show that the
condition Qτ (τc, 1, 1) = 0 is then automatically satisfied. From z̃(τ, c̃1(τ, z,D), c̃2(τ, z,D)) = z
we get

z̃τ + z̃c1 c̃1,τ + z̃c2 c̃2,τ = 0.

However, since z̃(τ, 1, 1) = 1 we obtain z̃τ (τ, 1, 1) = 0. Furthermore, since we have z̃c1 =
−z̃c2 at the critial point (τc, 1, 1) (and also z̃c2 6= 0 since it starts at 0 as is decreasing) we
automatically get

Qτ (τc, 1, 1) = c̃1,τ (τc, 1, 1)− c̃2,τ (τc, 1, 1) = 0.

The next step is to show thatQz(τc, 1, 1) 6= 0. This is equivalent to c̃1,z(τc, 1, 1)−c̃2,z(τc, 1, 1) 6=
0 and also equivalent to D̃c1(τc, 1, 1) + D̃c2(τc, 1, 1) 6= 0. Actually the last condition is just
T (τc) 6= 0, however, this has been proved implicitly when we have constructed the zero τc
of Z(τ). Actually we have T (τc) ≥ 1. We note, however, that c̃1(τ, 1, 1) = c̃2(τ, 1, 1) = 1.
Consequently we observe also from this property c̃1,τ (τc, 1, 1) = c̃2,τ (τc, 1, 1) = 0.

Finally, we have to deal with the second derivatives. We start with the relation

z̃ (τ, c1(τ, z,D), c2(τ, z,D)) = z, (4.4)

D̃ (τ, c1(τ, z,D), c2(τ, z,D)) = D. (4.5)

and recall that Q(τ, z,D) = c1(τ, z,D) − c2(τ, z,D). Furthermore we have z̃(τ, 1, 1) =
D̃(τ, 1, 1) = 1 which implies that we also have c1(τ, 1, 1) = c1(τ, 1, 1) = 1 (for τ ≥ 0). In
particular this implies that

z̃τ (τ, 1, 1) = D̃τ (τ, 1, 1) = c1,τ (τ, 1, 1) = c2,τ (τ, 1, 1) = 0

and similarly for higher derivatives with respect to τ . Note that also gives

Qτ (τ, 1, 1) = Qττ (τ, 1, 1) = 0.

Hence it suffices to show that QDD(τc, 1, 1) 6= 0 and QτD(τc, 1, 1) 6= 0. By taking derivatives
with respect to D in (4.4) we obtain

z̃c1c1,D + z̃c2c2,D = 0. (4.6)

From the above considerations we know already that

z̃c1(τc, 1, 1) = −z̃c2(τc, 1, 1) 6= 0

and
c1,D(τc, 1, 1) = c2,D(τc, 1, 1) 6= 0.

Now by taking the second derivative we obtain

z̃c1c1c
2
1,D + 2z̃c1c2c1,Dc2,D + z̃c2c2c

2
2,D + z̃c1c1,DD + z̃c2c2,DD = 0

and consequently

QDD(τc, 1, 1) = −
(z̃c1c1 + 2z̃c1c2 + z̃c2c2) c21,D

z̃c1
(τc, 1, 1).
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Hence, in order to show that QDD 6= 0 we just have to show that z̃c1c1 + 2z̃c1c2 + z̃c2c2 6= 0.
In passing we can handle QτD. By taking the derivative with respect to τ in (4.6) we get(
z̃′c1 + z̃c1c1c1,τ + z̃c1c2c2,τ

)
c1,D +

(
z̃′c2 + z̃c1c2c1,τ + z̃c2c2c2,τ

)
c2,D + z̃c1c1,τD + z̃c2c2,τD = 0

or (since z̃′c1 + z̃′c2 = Z ′ = −2g(τ)T )

−2g(τc)T, c1,D + z̃c1QτD =,

which, after rearranging yields

QτD(τc, 1, 1) =
2g(τc)T (τc)c1,D(τc, 1, 1)

z̃c1(τc, 1, 1)
6= 0.

It remains to study the function z̃c1c1 +2z̃c1c2 + z̃c2c2 . For this purpose we consider the second
derivatives of the differential equations

z̃′c1 = 2z̃c1g(τ)(1− D̃)− 2z̃g(τ)D̃c1 ,

z̃′c2 = 2z̃c2g(τ)(1− D̃)− 2z̃g(τ)D̃c2 ,

D̃′c1 = hz(τ, z̃) z̃c1 ,

D̃′c2 = hz(τ, z̃) z̃c2 ,

which leads to (for c1 = c2 = z̃ = D̃ = 1)

z̃′c1c1 = 2z̃c1c1g(τ)(1− D̃)− 4z̃c1g(τ)D̃c1 − 2z̃g(τ)D̃c1c1 ,

z̃′c1c2 = 2z̃c1c2g(τ)(1− D̃)− 2z̃c1g(τ)D̃c2 − 2z̃c2g(τ)D̃c1 − 2z̃g(τ)D̃c1c2 ,

z̃′c2c2 = 2z̃c2c2g(τ)(1− D̃)− 4z̃c2g(τ)D̃c2 − 2z̃g(τ)D̃c2c2 ,

D̃′c1c1 = hzz(τ, z̃) z̃
2
c1 + hz(τ, z̃) z̃c1,c1 ,

D̃′c1c2 = hzz(τ, z̃) z̃c1 z̃c2 + hz(τ, z̃) z̃c1,c2 ,

D̃′c2c2 = hzz(τ, z̃) z̃
2
c2 + hz(τ, z̃) z̃c2,c2

and by setting c1 = c2 = z̃ = D̃ = 1 to

z̃′c1c1 = −4z̃c1g(τ)D̃c1 − 2g(τ)D̃c1c1 ,

z̃′c1c2 = −2z̃c1g(τ)D̃c2 − 2z̃c2g(τ)D̃c1 − 2g(τ)D̃c1c2 ,

z̃′c2c2 = −4z̃c2g(τ)D̃c2 − 2g(τ)D̃c2c2 ,

D̃′c1c1 = hzz(τ, 1) z̃2c1 + hz(τ, 1) z̃c1,c1 ,

D̃′c1c2 = hzz(τ, 1) z̃c1 z̃c2 + hz(τ, 1) z̃c1,c2 ,

D̃′c2c2 = hzz(τ, 1) z̃2c2 + hz(τ, 1) z̃c2,c2 .

Now set Z2 = z̃c1c1 + 2z̃c1c2 + z̃c2c2 and T2 = D̃c1c1 + 2D̃c1c2 + D̃c2c2 . With the help of this
notation we obtain

Z ′2 = −2g(τ)T2 − 4g(τ)TZ,

T ′2 = hz(τ, 1)Z2 + hzz(τ, 1)Z2.
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with Z2(0) = T2(0) = 0.
Next we set Z3(τ) = Z(τ)− Z2(τ) and T3(τ) = T (τ)− T2(τ). These functions satisfy

Z ′3 = −2g(τ)T3 + 4g(τ)TZ,

T ′3 = hz(τ, 1)Z3 − hzz(τ, 1)Z2.

with Z3(0) = T3(0) = 1 or

Z3(τ) = 1−
∫ τ

0
2g(t)T3(t) dt+

∫ τ

0
4g(t)T (t)Z(t) dt,

T3(τ) = 1 +

∫ τ

0
hz(t, 1)Z3(t) dt−

∫ τ

0
hzz(t, 1)Z(t)2 dt.

Recall that

Z(τ) = 1−
∫ τ

0
2g(t)T (t) dt,

T (τ) = 1 +

∫ τ

0
hz(t, 1)Z(t) dt.

It is now immediate to derive

Z3(τ) ≥ Z(τ) and T3(τ) ≤ T (τ), 0 ≤ τ ≤ τc.

Actually we have

Z3(τ) > Z(τ) and T3(τ) < T (τ), 0 < τ ≤ τc.

We just remark that

Z3(τ) = 1−
∫ τ

0
2g(t)T3(t) dt+

∫ τ

0
4g(t)T (t)Z(t) dt,≥ 1−

∫ τ

0
2g(t)T (t) dt = Z(τ).

Clearly Z3(τc) = Z(τc)−Z2(τc) > Z(τc) implies Z2(τc) 6= 0 and consequently we arrive at the
desired claim QDD(τc, 1, 1) 6= 0.

5 Size-Rules & Outlook

As already indicated in the introduction, an important motivation for studying the class of
(`,K)-bounded rules is that they provide a concise way of defining a notion of approximation
for general size rules. Indeed, consider for example the product rule, which is presented two
random edges and chooses the one that “locally” minimizes the susceptibility, i.e., the product
of the sizes of the components that are merged. In Section 2.1 we described how this rule
can be approximated with a sequence of (6,K)-bounded rules. For such rule with parameter
K the choice is made according to the product rule, unless the component containing any of
the first four selected vertices contains more than K vertices. In the latter case we join the
fifth and the sixth vertex, i.e., two randomly selected vertices. In Figure 2 simulation results
for some values of K are presented.

Our main result implies all these rules undergo a phase transition, i.e., there is a rule
dependent critical point in time tK such that the (6,K)-bounded product rule PRK has a
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Figure 2: Successive approximations for the product rule (dashed line) with K = 3 (yellow),
5, 10, 20, 75, 200, where n = 5× 108.

giant component if tn edges are added, where t > tK . Moreover, we obtain that there are
constants (cK)K≥1 > 0 such that for ε > 0

lim
n→∞

n−1L1(PRK ; (tK + ε)n) = cKε+O(ε2).

A tantalizing conjecture is now that the sequence of critical times (tK)K≥1 has a limit tPR and
moreover, this limit should coincide with the critical time of the product rule. Our explicit
description of the critical points should in principle allow to conclude that the limit indeed
exists, but currently we have not studied this question in sufficient detail to give an affirmative
answer.

Secondly and more importantly, our results may be used to understand the phenomenon
of ’explosive percolation’ [1] via the study of the sequence of the rates cK . It seems very
plausible that this is a diverging sequence, thus providing a partial explanation of why one
could think that the product rule undergoes a discontinuous transition: the rate at which the
giant component initially grows is unbounded.

Our results also provide a much stronger conjecture about the actual component size dis-
tribution for times t close to tK . Indeed, the square-root expansion of D given in Theorem 2.4
strongly suggests that

xk(τ) ∼ k−3/2α(τ)k for k ≥ 1.

This is much more quantitative compared to our estimate in Theorem 1.2; however, we are
currently not able to establish the validity of the expansion in Theorem 2.4 in a sufficiently
large domain.

Finally, our methods are currently not mature enough to study the size of the giant
component in any rule at point in time much larger than the critical time, i.e., to provide a
“fine” description at times tR + ε for any ε > 0. In principle, all this information is encoded
in the PDE that we study. However, it is an open problem to extract the behavior more
explicitly.

Acknowledgement The last author thanks Amin Coja-Oghlan for several helpful discus-
sions.

25



References

[1] D. Achlioptas, R. M. D’Souza, and J. Spencer. Explosive percolation in random networks. Science,
323(5920):1453–1455, 2009.

[2] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab.,
25(2):812–854, 1997.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM J. Comput., 29(1):180–200,
1999.

[4] P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel. Multiple-choice balanced allocation
in (almost) parallel. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, volume 7408 of Lecture Notes in Computer Science, pages 411–422. Springer, 2012.
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