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Phase Transition in Thermodynamics

The phase transition deals with a sudden change in the properties of an
asymptotically large structure by altering critical parameters.
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Phase Transition in Statistical Physics

Ising model (mathematical model of ferromagnetism)

(up or down) Spins are arranged in lattice which interact with nearest
neighbours

ttdiititttd
PTritiitid
tTritittit
tidttrriitd
itidlittd
titrriitt
trritiitid
ttitttriitd
tidittrtritt
itittritit

Mihyun Kang Phase Transitions in Random Discrete Structures



Phase Transition in Statistical Physics

Ising model (mathematical model of ferromagnetism)
(up or down) Spins are arranged in lattice which interact with nearest

neighbours
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Ordered phase at low temperatures
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Disordered phase at high temperatures
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Percolation in Physics, Materials Science and Geography

the passage of fluid or gas going through porous or disordered media




Percolation in Physics, Materials Science and Geography

Mathematical models of percolation

@ Bond percolation: each bond (or edge) is either open with prob. p
or closed with prob. 1 — p, independently

@ Site percolation: each site (or vertex) is either occupied with prob. p
or empty with prob. 1 — p, independently

p < Pc
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Bond Percolation on Square Lattice Site Percolation on Hexagonal Lattice
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Erddés—Rényi Random Graphs

@ G(n,p): each edge of the complete graph K, is open with probability p,
independently of each other

@ G(n, m): a graph sampled uniformly at random among all graphs
on n vertices and m edges

Paul Erdés (1913 — 1996) Alfréd Rényi (1921 — 1970)

Mihyun Kang Phase Transitions in Random Discrete Structures



Erddés—Rényi Random Graphs

@ G(n,p): each edge of the complete graph K, is open with probability p,
independently of each other

@ G(n, m): a graph sampled uniformly at random among all graphs
on n vertices and m edges

p=1 T complete
p=logn/n —+ connected

p=1/n = cycles

p=0 - empty
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Phase Transition
Binomial random graph G(n, p) [ ERDGS—RENYI 60 ]
Let p = t/nfor a constant t > 0.

@ If { < 1, with probability tending to 1 as n — oo (whp)
all the components have O(log n) vertices.

@ If { > 1, whp there is a unique largest component of order ©(n),
while every other component has O(log n) vertices.

> Component exposure via breath-first search and Galton-Watson tree
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Galton-Watson Tree
Branching Process
The number of children is given by i.i.d. random variable ~ Po(t).

@ If { < 1, the process dies out with probability 1.

@ If t > 1, with positive probability the process continues forever.

,small” component in G(n, p) ,giant” component of order pnin G(n, p)
where 1 —p =e~
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Critical Phase

How big is the largest component in G(n, p), when pn=1+c¢fore = 0o(1) ?
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Béla Bollobas Tomasz tuczak

Mihyun Kang Phase Transitions in Random Discrete Structures



Critical Phase

How big is the largest component in G(n, p), when pn=1+¢cfore = 0o(1) ?

[ BOLLOBAS 84; LuczAK 90; LUCZAK—PITTEL-WIERMAN 94]

@ If=n'/® - —oo, whp all components are of order o(n*/?).
@ Ifn'/® = X\, whp the largest component is of order ©(n?/?).
@ If=n'/® - oo, whp 3 a unique component of order (1 + o(1)) 2=n.
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> Uniform random graph G(n,m): m=n/2+s, sn?°®=¢cn'/3
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Planar Graphs

Planar graphs

A planar graph is a graph that can be embedded in the plane (without
crossing edges).

non-planar
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Planar Graphs

Planar graphs

A planar graph is a graph that can be embedded in the plane (without
crossing edges).

non-planar
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Planar Graphs

Planar graphs
A planar graph is a graph that can be embedded in the plane (without

crossing edges).
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Random Planar Graphs

Planar graphs

A planar graph is a graph that can be embedded in the plane (without
crossing edges).

Random planar graphs
Let P(n, m) be a uniform random planar graph with n vertices and m edges.
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Phase Transition in Random Planar Graphs
Let L(n) denote the number of vertices in the largest component in P(n, m).

Two critical periods [K.— £UCZAK 12]
@ Letm=n/2+s.
lf sn=2/% — —o00, whp L(n) < n?/.
If sn=%/® = o0, whp L(n) = (24 o(1))s > n*/3.

@ letm=n+r.

-3/5

lf rn=3/5 = —co, whp n—L(n) > n®>®.

If rn=%/% = 0o, whp n— L(n) = ©(n*?r=3/2) < n*/5.
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Random Planar Graphs

Look into internal structure =- Kernel of complex components

complex com.
unicyc. com. }
trees \' ‘%

-—

Typical kernel [K.- Luczak 12]

> Cubic planar weighted multigraphs
through singularity analysis of generating functions
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Complex Networks
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Random Graph Processes

A random graph process is a Markov process defined on the set of graphs of
interest; in each step one or several edges are added according to some rule.

> Achlioptas process, Bohman-Frieze process: power of two choices

Frieze

Achlioptas Bohman

In each step, two random edges are present

@ if the first edge would join two isolated vertices, it is added to a graph
@ otherwise the second edge is added
> it delays the appearance of the giant component [ BOHMAN-FRIEZE 01 |
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Bohman-Frieze Process

Phase Transition [ SPENCER—WORMALD 07; JANSON-SPENCER 10+]

@ Susceptibility (= average component size): let t = 2 # edges /n.

1 1
S =23 N0l =230 kXt n).

Here Xi(t, n) is the number of vertices in components of size k at time t.

@ Differential equations method: 3 a deterministic function xk(t) s.t. whp

Xk(t7 n)
n

Xk(t)

Janson Spencer Wormald
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Critical Phase in Bohman-Frieze Process

Let {; be the critical point of the phase transition and t = ;. + ¢ for e small.

Finer behaviour [ K.—PERKINS—SPENCER 12 ]
@ The size of the second largest component at time tis whp  ©(e 2 log n).

@ Vertices in small components: 3 constants a,b >0 s.t.
xk(t) ~ ak 3% exp (— €kb).

Quasi-linear partial differential equation [ K.—PERKINS—SPENCER 12 ]
@ Susceptibility (= average component size):  S(t) ~ >, ¢ k Xk(t)
@ The moment generating function G(,z) = >, x(1) 7" satisfies

0G(t, z)
ot

0G(t, z)
0z

—2z(G(t,z) — 1)

=0, G(0,z)=z
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Concluding Remarks

Ubiquitous phase transitions in
thermodynamics, statistical physics, percolation, random graphs, ...

Cut-off phenomenon of random walks

@ How many riffle shuffles are necessary and sufficient to approximately
randomise n cards? [ DIACONIS 92 ]

Riffle shuffle Persi Diaconis
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Concluding Remarks

Ubiquitous phase transitions in
thermodynamics, statistical physics, percolation, random graphs, ...

Cut-off phenomenon of random walks

@ How many riffle shuffles are necessary and sufficient to approximately
randomise n cards? 2 log, n [ DiACONIS 92 ]

Riffle shuffle Persi Diaconis
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