Random subgraphs of the hypercube

Mihyun Kang

Joint work with
Joshua Erde (TU Graz) and Michael Krivelevich (Tel Aviv University)

Confererence celebrating the 100th anniversary of Rényi's birth

Talk outline

I. Erdős-Rényi random graph and random subgraphs
II. Expansion properties and consequences
III. Proof ideas for an expansion property
IV. Mixing time of lazy random walk

Part 1.

Erdős-Rényi random graph and random subgraphs

Erdős-Rényi random graph

$G(n, m)=$ a graph chosen uniformly at random from the set of all graphs on vertex set $[n]:=\{1, \ldots, n\}$ with $m=m(n)$ edges

Paul Erdős (1913-1996)

Random subgraphs

Given $p \in(0,1)$
$G(n, p)=$ a binomial random graph
$=$ a graph obtained by retaining each edge of complete graph K_{n} independently with probability p
$=$ bond percolation on complete graph K_{n} with edge probability p

Random subgraphs

Given $p \in(0,1)$
$G(n, p)=$ a binomial random graph
$=$ a graph obtained by retaining each edge of complete graph K_{n} independently with probability p
$=$ bond percolation on complete graph K_{n} with edge probability p
$G_{p}=$ a graph obtained by retaining each edge of a given base graph G independently with probability p
$=$ bond percolation on G with edge probability p

The hypercube

Given $d \in \mathbb{N}$, the d-dimensional hypercube Q^{d} is the graph with

- vertex set

$$
V\left(Q^{d}\right)=\{0,1\}^{d}=\left\{x=\left(x_{1}, \ldots, x_{d}\right): x_{i} \in\{0,1\}, 1 \leq i \leq d\right\}
$$

- edge set $E\left(Q^{d}\right): \quad \forall v=\left(v_{1}, \ldots, v_{d}\right), w=\left(w_{1}, \ldots, w_{d}\right) \in V\left(Q^{d}\right)$,

$$
\{v, w\} \in E\left(Q^{d}\right) \quad \text { iff } \quad v \text { and } w \text { differ in exactly one coordinate }
$$

Obvious facts:

- $\left|V\left(Q^{d}\right)\right|=2^{d}$
- Q^{d} is d-regular
- Q^{d} is bipartite
- diameter of Q^{d} is d

Hasse diagram

A random subgraph of the hypercube

Given $p \in(0,1)$
$Q_{p}^{d}=$ a graph obtained by retaining each edge of Q^{d} independently with probability p
$=$ bond percolation on Q^{d} with edge probability p

Typical properties of Q_{p}^{d} around $p=\frac{1}{2}$

Connectivity

$p=\frac{1}{2}$ is a sharp threshold for connectedness: $\quad \forall \varepsilon>0$

$$
\mathbb{P}\left[Q_{p}^{d} \text { is connected }\right] \xrightarrow{d \rightarrow \infty}\left\{\begin{array}{lll}
0 & \text { if } & p<\frac{1-\varepsilon}{2} \\
1 & \text { if } & p>\frac{1+\varepsilon}{2}
\end{array}\right.
$$

Typical properties of Q_{p}^{d} around $p=\frac{1}{2}$

Connectivity

$p=\frac{1}{2}$ is a sharp threshold for connectedness: $\forall \varepsilon>0$

$$
\mathbb{P}\left[Q_{p}^{d} \text { is connected }\right] \xrightarrow{d \rightarrow \infty}\left\{\begin{array}{lll}
0 & \text { if } & p<\frac{1-\varepsilon}{2} \\
1 & \text { if } & p>\frac{1+\varepsilon}{2}
\end{array}\right.
$$

Perfect matching

$p=\frac{1}{2}$ is a sharp threshold for the existence of a perfect matching

Is $p=\frac{1}{2}$ a sharp threshold for Hamiltonicity?
Hamiltonicity
[Condon-Espuny-Díaz-Girão-Kühn-Osthus 21]
$p=\frac{1}{2}$ is a sharp threshold the existence of a Hamiltonian cycle.

Emergence of the giant component in Q_{p}^{d}

Does the component structure of Q_{p}^{d} undergo a phase transition at $p=\frac{1}{d}$?
[ERdős-Spencer 79]

Giant component

$p=\frac{1}{d}$ is a sharp threshold: $\forall \varepsilon>0$

- whp all components are of order $O(d)$ if $\quad p<\frac{1-\varepsilon}{d}$
- whp \exists a unique largest component of order $\Theta\left(2^{d}\right)$ if $\quad p>\frac{1+\varepsilon}{d}$
whp $=$ with high probability $=$ with prob tending to one as $d \rightarrow \infty$

Supercritical regime - open questions

$p=\frac{1+\varepsilon}{d}$ for fixed $\varepsilon>0$
$L_{1}=$ the largest component of Q_{p}^{d}

- diameter of L_{1} ?
- circumference of L_{1} ($=$ length of the longest cycles)?
- Hadwiger number of L_{1} (= order of the largest complete minor)?
- mixing time of lazy simple random walk on L_{1} ?

Part II.

Expansion properties and consequences

Expanders

[Alon 86; Hoory-Linial-Wigderson 06; Krivelevich 19; Krivelevich-Sudakov 09; Sarnak 04; . . .]
Given a graph G

- $\quad N(S)=$ external neighbourhood of a subset $S \subseteq V(G)$

$$
=\{v \in V(G) \backslash S: \exists w \in S \text { with }\{v, w\} \in E(G)\}
$$

- G is an α-expander if

$$
|N(S)| \geq \alpha|S|, \quad \forall S \subseteq V(G) \quad \text { with } \quad|S| \leq \frac{|V(G)|}{2}
$$

Expanders

[Alon 86; Hoory-Linial-Wigderson 06; Krivelevich 19; Krivelevich-Sudakov 09; Sarnak 04; . . .]
Given a graph G

- $\quad N(S)=$ external neighbourhood of a subset $S \subseteq V(G)$

$$
=\{v \in V(G) \backslash S: \exists w \in S \text { with }\{v, w\} \in E(G)\}
$$

- G is an α-expander if

$$
|N(S)| \geq \alpha|S|, \quad \forall S \subseteq V(G) \quad \text { with } \quad|S| \leq \frac{|V(G)|}{2}
$$

Properties of an expander

- small diameter, long cycles, large complete minor, ...
- edge-expansion for graphs with bounded max degree

Expansion properties and consequences

$L_{1}=$ largest component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$
Theorem
whp L_{1}

- is $c d^{-5}$-expander

Expansion properties and consequences

$L_{1}=$ largest component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$
Theorem
whp L_{1}

- is $c d^{-5}$-expander
- contains a $c^{\prime} d^{-2}(\log d)^{-1}$-expander on $\geq 0.99\left|L_{1}\right|$ vertices

Expansion properties and consequences

$L_{1}=$ largest component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$
Theorem
whp L_{1}

- is $c d^{-5}$-expander
- contains a $c^{\prime} d^{-2}(\log d)^{-1}$-expander on $\geq 0.99\left|L_{1}\right|$ vertices
- has diameter $O\left(d^{3}\right)$
- contains a cycle of length $\Omega\left(2^{d} d^{-2}(\log d)^{-1}\right)$
- contains a complete minor of order $\Omega\left(2^{\frac{d}{2}} d^{-2}(\log d)^{-1}\right)$
- has Cheeger constant $\Omega\left(d^{-5}\right)$

Part III.

Proof ideas

Theorem

whp L_{1} is a $\frac{1}{\operatorname{poly}(d)}$-expander
i.e., $\forall S \subseteq V\left(L_{1}\right) \quad$ with $\quad|S| \leq \frac{\left|V\left(L_{1}\right)\right|}{2}$,

$$
|N(S)| \geq \frac{|S|}{\operatorname{poly}(d)}
$$

Sprinkling argument

Sprinkling

$$
\begin{aligned}
& p=\frac{1+\varepsilon}{d} \text { for } \varepsilon>0 \\
& q_{1}=\frac{1+\delta_{1}}{d} \text { and } q_{2}=\frac{\delta_{2}}{d} \text { s.t. } 1-p=\left(1-q_{1}\right)\left(1-q_{2}\right) \text { and } 0<\delta_{2} \ll \delta_{1} \\
& Q_{p}^{d} \sim Q_{q_{1}}^{d} \cup Q_{q_{2}}^{d}
\end{aligned}
$$

Sprinkling argument

Sprinkling

$$
\begin{aligned}
& p=\frac{1+\varepsilon}{d} \text { for } \varepsilon>0 \\
& q_{1}=\frac{1+\delta_{1}}{d} \text { and } q_{2}=\frac{\delta_{2}}{d} \text { s.t. } 1-p=\left(1-q_{1}\right)\left(1-q_{2}\right) \text { and } 0<\delta_{2} \ll \delta_{1} \\
& Q_{p}^{d} \sim Q_{q_{1}}^{d} \cup Q_{q_{2}}^{d}
\end{aligned}
$$

Largest components before and after sprinkling

$$
\begin{array}{rll}
L_{1}^{\prime} & =\text { largest component in } Q_{q_{1}}^{d} & \text { (before sprinkling) } \\
L_{1} & =\text { largest component in } Q_{p}^{d} & \text { (after sprinkling) } \\
\gamma(x) & =\text { survival probability of } \mathrm{Po}(1+x) \text { branching process }
\end{array}
$$

- whp $L_{1}^{\prime} \sim \gamma\left(\delta_{1}\right) 2^{d}$
- whp $L_{1} \sim \gamma(\epsilon) 2^{d}$

Giant component before and after sprinkling

$L_{1}^{\prime}=$ largest component in $Q_{q_{1}}^{d} \quad$ (before sprinkling)
$L_{1}=$ largest component in $Q_{p}^{d} \quad$ (after sprinkling)

Lemma

- whp \forall connected component in $Q_{p}^{d}\left[L_{1}-L_{1}^{\prime}\right]$ is of order $O(d)$
- whp \forall vertex in $V\left(Q^{d}\right)$ is within distance two from $\geq c d^{2}$ vertices in L_{1}^{\prime}

Splitting the largest component into pieces

$$
\begin{aligned}
L_{1}^{\prime}= & \text { largest component (before sprinkling) } \\
= & \text { split into a family } \mathcal{C} \text { of vertex-disjoint connected subgraphs } \\
& (\text { 'pieces'), each of order poly }(d)
\end{aligned}
$$

Splitting the largest component into pieces

$L_{1}^{\prime}=$ largest component (before sprinkling)
$=$ split into a family \mathcal{C} of vertex-disjoint connected subgraphs
('pieces'), each of order poly (d)
$L_{1}=$ largest component (after sprinkling)

Splitting the largest component into pieces

$$
\begin{aligned}
L_{1}^{\prime}= & \text { largest component } \quad \text { (before sprinkling) } \\
= & \text { split into a family } \mathcal{C} \text { of vertex-disjoint connected subgraphs } \\
& \text { ('pieces'), each of order poly }(d) \\
L_{1}= & \text { largest component } \quad \text { (after sprinkling) } \\
S= & \text { arbitrary subset of } V\left(L_{1}\right) \text { with }|S| \leq \frac{\left|V\left(L_{1}\right)\right|}{2}
\end{aligned}
$$

Splitting the largest component into pieces

```
L
    = split into a family }\mathcal{C}\mathrm{ of vertex-disjoint connected subgraphs
        ('pieces'), each of order poly (d)
    L
    S= arbitrary subset of V(L_) with }|S|\leq\frac{|V(\mp@subsup{L}{1}{})|}{2
```



```
\(S_{1}=S-L_{1}^{\prime}\)
\(S_{2}=\) vertices in pieces \(C \in \mathcal{C}\) with \(C \cap S \neq \emptyset\) and \(S-C \neq \emptyset\)
\(S_{3}=\) vertices in pieces \(C \in \mathcal{C}\) with \(C \subseteq S\)
```


Contribution of S_{1} to $N(S)$

$$
\begin{aligned}
& S_{1}=S-L_{1}^{\prime} \\
& S_{2}=\text { vertices in pieces } C \in \mathcal{C} \text { with } C \cap S \neq \emptyset \text { and } S-C \neq \emptyset \\
& S_{3}=\text { vertices in pieces } C \in \mathcal{C} \text { with } C \subseteq S
\end{aligned}
$$

With sprinkling, each component in $Q_{p}^{d}\left[L_{1}-L_{1}^{\prime}\right]$ which intersects with S_{1}

- contributes at least one edge to $N(S)$
- or is connected to $S_{2} \cup S_{3}$

Thus $\quad|N(S)| \geq \frac{c\left|S_{1}\right|}{d} \quad$ or $\quad e\left(S_{1}, S_{2} \cup S_{3}\right) \geq \frac{c\left|S_{1}\right|}{d}$ and thus $\quad\left|S_{2} \cup S_{3}\right| \geq \frac{c\left|S_{1}\right|}{d^{2}}$

Contribution of S_{2} to $N(S)$

$L_{1}^{\prime}=$ split into a family \mathcal{C} of pieces, each of order poly (d)
$S_{2}=$ vertices in pieces $C \in \mathcal{C}$ with $C \cap S \neq \emptyset$ and $S-C \neq \emptyset$
$S_{3}=$ vertices in pieces $C \in \mathcal{C}$ with $C \subseteq S$

Each piece $C \in \mathcal{C}$ with $C \cap S \neq \emptyset$ and $S-C \neq \emptyset$

- contributes at least one edge to $N(S)$
and each piece is of order poly (d)
Thus $\quad|N(S)| \geq \frac{\left|S_{2}\right|}{\operatorname{poly}(d)}$

Contribution of S_{3} to $N(S)$

$L_{1}^{\prime}=$ split into a family \mathcal{C} of pieces, each of order poly (d)
$S_{2}=$ vertices in pieces $C \in \mathcal{C}$ with $C \cap S \neq \emptyset$ and $S-C \neq \emptyset$
$S_{3}=$ vertices in pieces $C \in \mathcal{C}$ with $C \subseteq S$

(1) Partition the family \mathcal{C} of pieces into two disjoint families $\{\mathcal{A}, \mathcal{B}\}$

$$
\mathcal{A}:=\{C \in \mathcal{C}: C \subseteq S\} \quad \text { and } \quad \mathcal{B}:=\mathcal{C}-\mathcal{A}
$$

This partitions $V\left(L_{1}^{\prime}\right)$ into two sets A, B where

$$
A:=V(\mathcal{A})=S_{3} \quad \text { and } \quad B:=V(\mathcal{C}-\mathcal{A})
$$

Contribution of S_{3} to $N(S)$ - extending and connecting

(2) Extending the partition $V\left(L_{1}^{\prime}\right)=A \dot{\cup} B$ to a partition $V\left(Q^{d}\right)=\bar{A} \dot{\cup} \bar{B}$ s.t.

- every vertex in \bar{A} is within distance 2 of A
- every vertex in \bar{B} is within distance 2 of B

whp every vertex in $V\left(Q^{d}\right)$ is within distance two from vertices in L_{1}^{\prime}

Contribution of S_{3} to $N(S)$ - extending and connecting

(2) Extending the partition $V\left(L_{1}^{\prime}\right)=A \dot{\cup} B$ to a partition $V\left(Q^{d}\right)=\bar{A} \dot{\cup} \bar{B}$ s.t.

- every vertex in \bar{A} is within distance 2 of A
- every vertex in \bar{B} is within distance 2 of B

Edge-isoperimetry in Q^{d}

$$
\left|E\left(X, X^{c}\right)\right| \geq|X|\left(d-\log _{2}|X|\right), \quad \forall X \subseteq V\left(Q^{d}\right) \quad \text { with } \quad|X| \leq 2^{d-1}
$$

Contribution of S_{3} to $N(S)$ - extending and connecting

(2) Extending the partition $V\left(L_{1}^{\prime}\right)=A \dot{\cup} B$ to a partition $V\left(Q^{d}\right)=\bar{A} \dot{\cup} \bar{B}$ s.t.

- every vertex in \bar{A} is within distance 2 of A
- every vertex in \bar{B} is within distance 2 of B

(3) Sprinkle with $q_{2}=\frac{\delta_{2}}{d}$

Lemma

whp $\quad \exists$ at least $\frac{|A| \mid}{\text { poly(d) }}$ vertex-disjoint $A-B$-paths of length at most 5 in $Q_{q_{2}}^{d}$

Contribution of S_{3} to $N(S)$

$L_{1}^{\prime}=$ split into a family \mathcal{C} of 'pieces', each of order poly (d)
$S_{2}=$ vertices in pieces $C \in \mathcal{C}$ with $C \cap S \neq \emptyset$ and $S-C \neq \emptyset$
$S_{3}=$ vertices in pieces $C \in \mathcal{C}$ with $C \subseteq S$
$=A$

Each A - B-path in $Q_{q_{2}}^{d}$ contributes at least one edge to $N(S)$, unless it goes to S_{2}

Thus $\quad|N(S)| \geq \frac{\left|S_{3}\right|}{\operatorname{poly}(d)}-d\left|S_{2}\right|$

Part IV.
Mixing time of lazy random walk

Mixing time of lazy random walk on Q^{d}

In each step,

- it remains at the current position with prob $\frac{1}{2}$
- it moves to a uniformly chosen random neighbour with prob $\frac{1}{2}$

Mixing time: $O(d \log d)$

Mixing time of lazy random walk on giant comp of Q_{p}^{d}

$L_{1}=$ giant component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$

Mixing time of lazy random walk on giant comp of Q_{p}^{d}

$L_{1}=$ giant component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$

What is the mixing time of the lazy random walk on L_{1} ?
[Pete 08; Van der Hofstad-Nachmias 17]

Mixing time of lazy random walk on giant comp of Q_{p}^{d}

$L_{1}=$ giant component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$

What is the mixing time of the lazy random walk on L_{1} ?
[Pete 08; Van der Hofstad-Nachmias 17]

whp L_{1} contains bare paths of length $\Omega(d)$
\Longrightarrow mixing time: $\Omega\left(d^{2}\right)$

Mixing time of lazy random walk

Given a graph G,

$$
\begin{aligned}
t_{\operatorname{mix}}(G) & =\text { mixing time of a lazy random walk on a graph } G \\
\Phi(G) & =\text { Cheeger constant of } G(=\text { bottleneck ratio }) \\
\pi_{\min }(G) & =\min \left\{\frac{d_{G}(x)}{2|E(G)|}: x \in V(G)\right\}
\end{aligned}
$$

$$
t_{\operatorname{mix}}(G) \leq \frac{2}{\Phi(G)^{2}} \log \left(\frac{4}{\pi_{\min }(G)}\right)
$$

Mixing time of lazy random walk on giant comp of Q_{p}^{d}

Given a graph G,

$$
\begin{aligned}
t_{\operatorname{mix}}(G) & =\text { mixing time of a lazy random walk on a graph } G \\
\Phi(G) & =\text { Cheeger constant of } G(=\text { bottleneck ratio }) \\
\pi_{\min }(G) & =\min \left\{\frac{d_{G}(x)}{2|E(G)|}: x \in V(G)\right\}
\end{aligned}
$$

[LawLer-Sokal 88; Jerrum-Sinclair 89; Levin-Peres-Wilmer 07]

$$
t_{\operatorname{mix}}(G) \leq \frac{2}{\Phi(G)^{2}} \log \left(\frac{4}{\pi_{\min }(G)}\right)
$$

$L_{1}=$ giant component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$
[ERde-K.-Krivelevich 21+]
whp

$$
\begin{aligned}
& \Phi\left(L_{1}\right)=\Omega\left(d^{-5}\right) \text { and } \pi_{\min }\left(L_{1}\right)=\Omega\left(2^{-d}\right) \\
& t_{\operatorname{mix}}\left(L_{1}\right)=O\left(d^{11}\right)
\end{aligned}
$$

Summary

$L_{1}=$ largest component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$
whp L_{1}

- is $c d^{-5}$-expander
- contains a $c^{\prime} d^{-2}(\log d)^{-1}$-expander on $\geq 0.99\left|L_{1}\right|$ vertices
- has diameter $O\left(d^{3}\right)$
- contains a cycle of length $\Omega\left(2^{d} d^{-2}(\log d)^{-1}\right)$
- contains a complete minor of order $\Omega\left(2^{\frac{d}{2}} d^{-2}(\log d)^{-1}\right)$
- has Cheeger constant $\Omega\left(d^{-5}\right)$
whp the mixing time of the lazy simple random walk on L_{1} is $O\left(d^{11}\right)$.

Open problems

$L_{1}=$ largest component of Q_{p}^{d} when $p=\frac{1+\varepsilon}{d}$ for $\varepsilon>0$

Correct order of

- diameter of $L_{1}: \Theta\left(d^{2}\right)$?
- circumference of $L_{1}: \Omega\left(2^{d}\right)$?
- Hadwiger number of $L_{1}: \Omega\left(2^{\frac{d}{2}}\right)$?
- mixing time of lazy random walk on L_{1} ?

