# Random subgraphs of the hypercube

#### Mihyun Kang

Joint work with

Joshua Erde (TU Graz) and Michael Krivelevich (Tel Aviv University)

Confererence celebrating the 100th anniversary of Rényi's birth

# Talk outline

- I. Erdős–Rényi random graph and random subgraphs
- II. Expansion properties and consequences
- III. Proof ideas for an expansion property
- IV. Mixing time of lazy random walk

Part I.

Erdős-Rényi random graph and random subgraphs

# Erdős-Rényi random graph

G(n,m) = a graph chosen uniformly at random from the set of all graphs on vertex set  $[n] := \{1, ..., n\}$  with m = m(n) edges



Paul Erdős (1913 – 1996)



Alfréd Rényi (1921 - 1970)

#### **Random subgraphs**

Given  $p \in (0, 1)$ 

- G(n,p) = a binomial random graph
  - = a graph obtained by retaining each edge of complete graph  $K_n$ independently with probability p
  - = bond percolation on complete graph  $K_n$  with edge probability p

#### **Random subgraphs**

Given  $p \in (0, 1)$ 

- G(n,p) = a binomial random graph
  - = a graph obtained by retaining each edge of complete graph  $K_n$ independently with probability p
  - = bond percolation on complete graph  $K_n$  with edge probability p

- $G_p$  = a graph obtained by retaining each edge of a given base graph Gindependently with probability p
  - = bond percolation on G with edge probability p

## The hypercube

Given  $d \in \mathbb{N}$ , the *d*-dimensional hypercube  $Q^d$  is the graph with

vertex set

$$V\left(\mathcal{Q}^{d}
ight) \;=\; \{0,1\}^{d} \;=\; ig\{x=(x_{1},\ldots,x_{d})\;:\; x_{i}\in\{0,1\},\; 1\leq i\leq dig\}$$

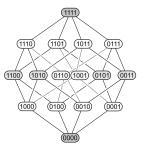
• edge set 
$$E(Q^d)$$
:  $\forall v = (v_1, \dots, v_d), w = (w_1, \dots, w_d) \in V(Q^d),$   
 $\{v, w\} \in E(Q^d)$  iff *v* and *w* differ in exactly one coordinate

Obvious facts:

- $\bullet \quad |V\left(Q^d\right)| \; = \; 2^d$
- $Q^d$  is *d*-regular
- $Q^d$  is bipartite

. . .

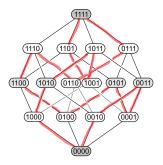
• diameter of  $Q^d$  is d



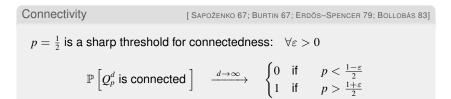
### A random subgraph of the hypercube

#### Given $p \in (0,1)$

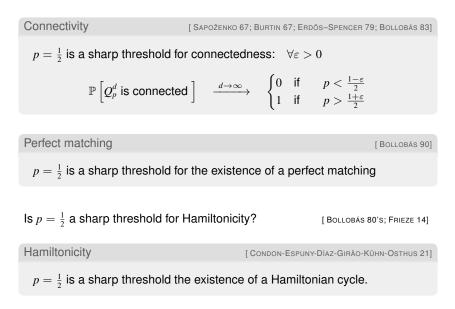
- $Q_p^d$  = a graph obtained by retaining each edge of  $Q^d$  independently with probability p
  - = bond percolation on  $Q^d$  with edge probability p



# Typical properties of $Q_p^d$ around $p = \frac{1}{2}$

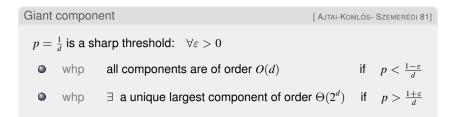


# Typical properties of $Q_p^d$ around $p = \frac{1}{2}$



# Emergence of the giant component in $Q_p^d$

Does the component structure of  $Q_p^d$  undergo a phase transition at  $p=\frac{1}{d}$ ? [ERDŐS-SPENCER 79]



#### whp = with high probability = with prob tending to one as $d \rightarrow \infty$

#### Supercritical regime - open questions

$$p \; = \; \frac{1+\varepsilon}{d} \;$$
 for fixed  $\; \varepsilon > 0 \;$ 

- $L_1$  = the largest component of  $Q_p^d$ 
  - diameter of L1 ?
     [Bollobás-Kohayakawa-Łuczak 92]
  - circumference of  $L_1$  (= length of the longest cycles)?
  - Hadwiger number of L<sub>1</sub> (= order of the largest complete minor) ?
  - mixing time of lazy simple random walk on  $L_1$ ?

[PETE 08; VAN DER HOFSTAD-NACHMIAS 17]

Part II.

Expansion properties and consequences

### Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .]

Given a graph G

- N(S) = external neighbourhood of a subset  $S \subseteq V(G)$ =  $\{v \in V(G) \setminus S : \exists w \in S \text{ with } \{v, w\} \in E(G)\}$
- G is an  $\alpha$ -expander if

 $|N(S)| \ge \alpha |S|, \quad \forall S \subseteq V(G) \text{ with } |S| \le \frac{|V(G)|}{2}$ 



### Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .]

Given a graph G

- N(S) = external neighbourhood of a subset  $S \subseteq V(G)$ = { $v \in V(G) \setminus S$  :  $\exists w \in S$  with {v, w}  $\in E(G)$ }
- G is an  $\alpha$ -expander if

Properties of an expander

- small diameter, long cycles, large complete minor, ...
- edge-expansion for graphs with bounded max degree

#### Expansion properties and consequences

 $L_1 =$  largest component of  $Q_p^d$  when  $p = \frac{1+\varepsilon}{d}$  for  $\varepsilon > 0$ 

Theorem

[ERDE-K.-KRIVELEVICH 21+]

whp  $L_1$ 

• is 
$$c d^{-5}$$
-expander

#### Expansion properties and consequences

 $L_1 =$  largest component of  $Q_p^d$  when  $p = \frac{1+\varepsilon}{d}$  for  $\varepsilon > 0$ 

Theorem

[ERDE-K.-KRIVELEVICH 21+]

whp  $L_1$ 

- is  $c d^{-5}$ -expander
- contains a  $c' d^{-2} (\log d)^{-1}$  -expander on  $\geq 0.99 |L_1|$  vertices

#### Expansion properties and consequences

 $L_1 =$  largest component of  $Q_p^d$  when  $p = \frac{1+\varepsilon}{d}$  for  $\varepsilon > 0$ 

Theorem

[ERDE-K.-KRIVELEVICH 21+]

whp  $L_1$ 

- is  $c d^{-5}$ -expander
- contains a  $c' d^{-2} (\log d)^{-1}$ -expander on  $\geq 0.99 |L_1|$  vertices
- has diameter  $O\left(d^3\right)$
- contains a cycle of length  $\Omega\left(2^d d^{-2} (\log d)^{-1}\right)$
- contains a complete minor of order  $\Omega\left(2^{\frac{d}{2}}d^{-2}\left(\log d\right)^{-1}\right)$
- has Cheeger constant  $\Omega(d^{-5})$

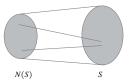
# Part III. Proof ideas

Theorem

whp  $L_1$  is a  $\frac{1}{\operatorname{poly}(d)}$ -expander

i.e., 
$$\forall S \subseteq V(L_1)$$
 with  $|S| \leq \frac{|V(L_1)|}{2}$ ,

$$|N(S)| \geq \frac{|S|}{\mathsf{poly}(d)}$$



# Sprinkling argument

Sprinkling

$$p = \frac{1+\varepsilon}{d} \text{ for } \varepsilon > 0$$

$$q_1 = \frac{1+\delta_1}{d} \text{ and } q_2 = \frac{\delta_2}{d} \text{ s.t. } 1-p = (1-q_1)(1-q_2) \text{ and } 0 < \delta_2 \ll \delta_1$$

$$Q_p^d \sim Q_{q_1}^d \cup Q_{q_2}^d$$

# Sprinkling argument

#### Sprinkling

$$p = \frac{1+\varepsilon}{d} \text{ for } \varepsilon > 0$$

$$q_1 = \frac{1+\delta_1}{d} \text{ and } q_2 = \frac{\delta_2}{d} \text{ s.t. } 1-p = (1-q_1)(1-q_2) \text{ and } 0 < \delta_2 \ll \delta_1$$

$$Q_p^d \sim Q_{q_1}^d \cup Q_{q_2}^d$$

Largest components before and after sprinkling

$$L'_1$$
 = largest component in  $Q^d_{q_1}$  (before sprinkling)

$$L_1 =$$
 largest component in  $Q_p^d$  (after sprinkling)

 $\gamma(x) =$  survival probability of Po(1 + x) branching process

#### Lemma

[AJTAI-KOMLÓS- SZEMERÉDI 81]

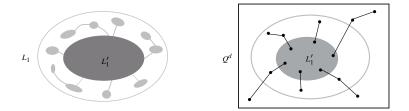
- whp  $L'_1 \sim \gamma(\delta_1) 2^d$  whp  $L_1 \sim \gamma(\epsilon) 2^d$

### Giant component before and after sprinkling

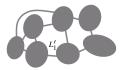
- $L'_1$  = largest component in  $Q^d_{q_1}$  (before sprinkling)
- $L_1$  = largest component in  $Q_p^d$  (after sprinkling)

#### Lemma

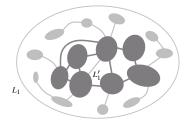
- whp ∀ connected component in Q<sup>d</sup><sub>p</sub> [L<sub>1</sub> − L'<sub>1</sub>] is of order O(d)
- whp  $\forall$  vertex in  $V(Q^d)$  is within distance two from  $\geq cd^2$  vertices in  $L'_1$



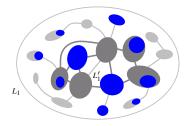
- $L'_1$  = largest component (before sprinkling)
  - split into a family C of vertex-disjoint connected subgraphs
     ('pieces'), each of order poly(d)



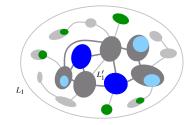
- $L'_1$  = largest component (before sprinkling)
  - split into a family C of vertex-disjoint connected subgraphs
     ('pieces'), each of order poly(d)
- $L_1$  = largest component (after sprinkling)



- $L'_1$  = largest component (before sprinkling)
  - split into a family C of vertex-disjoint connected subgraphs
     ('pieces'), each of order poly(d)
- $L_1$  = largest component (after sprinkling)
- S = arbitrary subset of  $V(L_1)$  with  $|S| \leq \frac{|V(L_1)|}{2}$



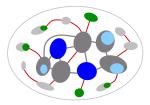
- $L'_1$  = largest component (before sprinkling)
  - split into a family C of vertex-disjoint connected subgraphs
     ('pieces'), each of order poly(d)
- $L_1$  = largest component (after sprinkling)
- S = arbitrary subset of  $V(L_1)$  with  $|S| \leq \frac{|V(L_1)|}{2}$



- $S_1 = S L_1'$
- $S_2 =$  vertices in pieces  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S C \neq \emptyset$
- $S_3 =$  vertices in pieces  $C \in C$  with  $C \subseteq S$

# Contribution of $S_1$ to N(S)

- $S_1 = S L'_1$
- $S_2 =$  vertices in pieces  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S C \neq \emptyset$
- $S_3 =$  vertices in pieces  $C \in C$  with  $C \subseteq S$



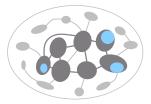
With sprinkling, each component in  $Q_p^d [L_1 - L_1']$  which intersects with  $S_1$ 

- contributes at least one edge to N(S)
- or is connected to  $S_2 \cup S_3$

Thus 
$$|N(S)| \ge \frac{c|S_1|}{d}$$
 or  $e(S_1, S_2 \cup S_3) \ge \frac{c|S_1|}{d}$  and thus  $|S_2 \cup S_3| \ge \frac{c|S_1|}{d^2}$ 

# **Contribution of** $S_2$ to N(S)

- $L'_1$  = split into a family C of pieces, each of order poly(d)
- $S_2 =$  vertices in pieces  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S C \neq \emptyset$
- $S_3 =$  vertices in pieces  $C \in C$  with  $C \subseteq S$



Each piece  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S - C \neq \emptyset$ 

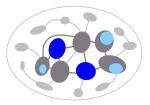
contributes at least one edge to N(S)

and each piece is of order poly(d)

Thus  $|N(S)| \ge \frac{|S_2|}{\mathsf{poly}(d)}$ 

## Contribution of $S_3$ to N(S)

- $L'_1$  = split into a family C of pieces, each of order poly(d)
- $S_2$  = vertices in pieces  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S C \neq \emptyset$
- $S_3 =$  vertices in pieces  $C \in C$  with  $C \subseteq S$



(1) Partition the family C of pieces into two disjoint families  $\{A, B\}$ 

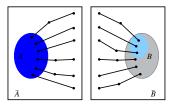
 $\mathcal{A} := \{ C \in \mathcal{C} : C \subseteq S \} \quad \text{and} \quad \mathcal{B} := \mathcal{C} - \mathcal{A}$ 

This partitions  $V(L'_1)$  into two sets A, B where

$$A := V(\mathcal{A}) = S_3$$
 and  $B := V(\mathcal{C} - \mathcal{A})$ 

### Contribution of $S_3$ to N(S) – extending and connecting

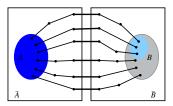
- (2) Extending the partition  $V(L'_1) = A \dot{\cup} B$  to a partition  $V(Q^d) = \bar{A} \dot{\cup} \bar{B}$  s.t.
  - every vertex in  $\overline{A}$  is within distance 2 of A
  - every vertex in  $\overline{B}$  is within distance 2 of B



whp every vertex in  $V(Q^d)$  is within distance two from vertices in  $L'_1$ 

### Contribution of $S_3$ to N(S) – extending and connecting

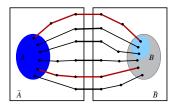
- (2) Extending the partition  $V(L'_1) = A \dot{\cup} B$  to a partition  $V(Q^d) = \bar{A} \dot{\cup} \bar{B}$  s.t.
  - every vertex in  $\overline{A}$  is within distance 2 of A
  - every vertex in  $\overline{B}$  is within distance 2 of B



Edge-isoperimetry in  $Q^d$ [HARPER 64; LINDSEY 64; BERNSTEIN 67; HART 76] $|E(X, X^c)| \ge |X| (d - \log_2 |X|),$  $\forall X \subseteq V(Q^d)$  with  $|X| \le 2^{d-1}$ 

#### Contribution of $S_3$ to N(S) – extending and connecting

- (2) Extending the partition  $V(L'_1) = A \dot{\cup} B$  to a partition  $V(Q^d) = \bar{A} \dot{\cup} \bar{B}$  s.t.
  - every vertex in  $\overline{A}$  is within distance 2 of A
  - every vertex in  $\overline{B}$  is within distance 2 of B



(3) Sprinkle with  $q_2 = \frac{\delta_2}{d}$ 

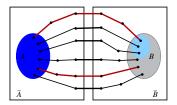
#### Lemma

whp  $\exists$  at least  $\frac{|A|}{\operatorname{poly}(d)}$  vertex-disjoint *A*-*B*-paths of length at most 5 in  $Q_{q_2}^d$ 

# Contribution of $S_3$ to N(S)

- $L'_1$  = split into a family C of 'pieces', each of order poly(d)
- $S_2$  = vertices in pieces  $C \in C$  with  $C \cap S \neq \emptyset$  and  $S C \neq \emptyset$
- $S_3 =$  vertices in pieces  $C \in C$  with  $C \subseteq S$

= A



Each *A*-*B*-path in  $Q_{q_2}^d$  contributes at least one edge to N(S), unless it goes to  $S_2$ 

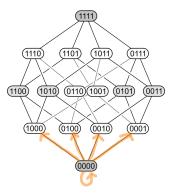
Thus  $|N(S)| \ge \frac{|S_3|}{\mathsf{poly}(d)} - d|S_2|$ 

# Part IV. Mixing time of lazy random walk

# Mixing time of lazy random walk on $Q^d$

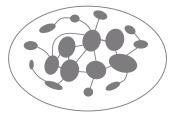
In each step,

- it remains at the current position with prob  $\frac{1}{2}$
- it moves to a uniformly chosen random neighbour with prob  $\frac{1}{2}$



Mixing time:  $O(d \log d)$ 

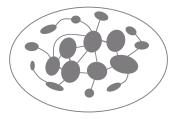
 $L_1 = \text{giant component of } Q_p^d \text{ when } p = \frac{1+\varepsilon}{d} \text{ for } \varepsilon > 0$ 



 $L_1 = \text{giant component of } Q_p^d \text{ when } p = rac{1+arepsilon}{d} ext{ for } arepsilon > 0$ 

What is the mixing time of the lazy random walk on  $L_1$ ?

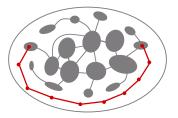
[PETE 08; VAN DER HOFSTAD-NACHMIAS 17]



 $L_1 = \text{giant component of } Q_p^d \text{ when } p = \frac{1+\varepsilon}{d} \text{ for } \varepsilon > 0$ 

What is the mixing time of the lazy random walk on  $L_1$ ?

[PETE 08; VAN DER HOFSTAD-NACHMIAS 17]



whp  $L_1$  contains bare paths of length  $\Omega(d)$ 

 $\implies$  mixing time:  $\Omega(d^2)$ 

#### Mixing time of lazy random walk

#### Given a graph G,

 $t_{\min}(G) = \min$  time of a lazy random walk on a graph G

$$\Phi(G) =$$
 Cheeger constant of G ( = bottleneck ratio)

 $\pi_{\min}(G) = \min\{rac{d_G(x)}{2|E(G)|} : x \in V(G)\}$ 

[LAWLER-SOKAL 88; JERRUM-SINCLAIR 89; LEVIN-PERES-WILMER 07]

$$t_{\min}(G) \leq rac{2}{\Phi(G)^2} \log\left(rac{4}{\pi_{\min}(G)}
ight)$$

#### Given a graph G,

 $t_{\min}(G) = \min$  time of a lazy random walk on a graph G

$$\Phi(G) =$$
 Cheeger constant of G ( = bottleneck ratio)

$$\pi_{\min}(G) = \min\{rac{d_G(x)}{2|E(G)|} : x \in V(G)\}$$

[ LAWLER-SOKAL 88; JERRUM-SINCLAIR 89; LEVIN-PERES-WILMER 07 ]

$$t_{\min}(G) \leq rac{2}{\Phi(G)^2} \log\left(rac{4}{\pi_{\min}(G)}
ight)$$

$$L_1 =$$
 giant component of  $Q_p^d$  when  $p = rac{1+arepsilon}{d}$  for  $arepsilon > 0$ 

[ ERDE-K.-KRIVELEVICH 21+]

whp  $\Phi(L_1) = \Omega\left(d^{-5}\right)$  and  $\pi_{\min}(L_1) = \Omega\left(2^{-d}\right)$  $t_{\min}(L_1) = O\left(d^{11}\right)$ 

# Summary

$$L_1 = \text{largest component of } Q_p^d \text{ when } p = \frac{1+\varepsilon}{d} \text{ for } \varepsilon > 0$$

Theorem

[ERDE-K.-KRIVELEVICH 21+]

whp  $L_1$ 

- is  $c d^{-5}$ -expander
- contains a  $c' d^{-2} (\log d)^{-1}$ -expander on  $\geq 0.99 |L_1|$  vertices
- has diameter  $O\left(d^3\right)$
- contains a cycle of length  $\Omega\left(2^{d} d^{-2} (\log d)^{-1}\right)$
- contains a complete minor of order  $\Omega\left(2^{\frac{d}{2}}d^{-2}(\log d)^{-1}\right)$
- has Cheeger constant  $\Omega(d^{-5})$

whp the mixing time of the lazy simple random walk on  $L_1$  is  $O(d^{11})$ .

#### **Open problems**

 $L_1 = ext{ largest component of } Q_p^d ext{ when } p = frac{1+arepsilon}{d} ext{ for } arepsilon > 0$ 

Correct order of

- diameter of  $L_1$ :  $\Theta(d^2)$  ?
- circumference of  $L_1$ :  $\Omega(2^d)$  ?
- Hadwiger number of  $L_1$ :  $\Omega(2^{\frac{d}{2}})$  ?
- mixing time of lazy random walk on  $L_1$ ?