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Part I.

Erdős-Rényi random graph and random subgraphs



Erdős-Rényi random graph

G(n,m) = a graph chosen uniformly at random from the set of all graphs

on vertex set [n] := {1, . . . , n} with m = m(n) edges

Alfréd Rényi (1921 – 1970)Paul Erdős (1913 – 1996)



Random subgraphs

Given p ∈ (0, 1)

G(n, p) = a binomial random graph

= a graph obtained by retaining each edge of complete graph Kn

independently with probability p

= bond percolation on complete graph Kn with edge probability p

Gp = a graph obtained by retaining each edge of a given base graph G

independently with probability p

= bond percolation on G with edge probability p
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The hypercube

Given d ∈ N, the d-dimensional hypercube Qd is the graph with

vertex set

V
(

Qd
)

= {0, 1}d =
{

x = (x1, . . . , xd) : xi ∈ {0, 1}, 1 ≤ i ≤ d
}

edge set E
(
Qd) : ∀v = (v1, . . . , vd),w = (w1, . . . ,wd) ∈ V

(
Qd),

{v,w} ∈ E
(

Qd
)

iff v and w differ in exactly one coordinate

Hasse diagram

Obvious facts:

|V
(
Qd) | = 2d

Qd is d-regular

Qd is bipartite

diameter of Qd is d

. . .



A random subgraph of the hypercube

Given p ∈ (0, 1)

Qd
p = a graph obtained by retaining each edge of Qd independently

with probability p

= bond percolation on Qd with edge probability p



Typical properties of Qd
p around p = 1

2

Connectivity [ SAPOŽENKO 67; BURTIN 67; ERDŐS–SPENCER 79; BOLLOBÁS 83]

p = 1
2 is a sharp threshold for connectedness: ∀ε > 0

P
[
Qd

p is connected
]

d→∞−−−−→

{
0 if p < 1−ε

2

1 if p > 1+ε
2

Perfect matching [ BOLLOBÁS 90]

p = 1
2 is a sharp threshold for the existence of a perfect matching

Is p = 1
2 a sharp threshold for Hamiltonicity? [ BOLLOBÁS 80’S; FRIEZE 14]

Hamiltonicity [ CONDON-ESPUNY-DÍAZ-GIRÃO-KÜHN-OSTHUS 21]

p = 1
2 is a sharp threshold the existence of a Hamiltonian cycle.
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Emergence of the giant component in Qd
p

Does the component structure of Qd
p undergo a phase transition at p = 1

d ?

[ ERDŐS–SPENCER 79 ]

Giant component [ AJTAI-KOMLÓS- SZEMERÉDI 81]

p = 1
d is a sharp threshold: ∀ε > 0

whp all components are of order O(d) if p < 1−ε
d

whp ∃ a unique largest component of order Θ(2d) if p > 1+ε
d

whp = with high probability = with prob tending to one as d →∞



Supercritical regime – open questions

p = 1+ε
d for fixed ε > 0

L1 = the largest component of Qd
p

diameter of L1 ? [ BOLLOBÁS-KOHAYAKAWA-ŁUCZAK 92]

circumference of L1 ( = length of the longest cycles) ?

Hadwiger number of L1 ( = order of the largest complete minor) ?

mixing time of lazy simple random walk on L1 ?

[ PETE 08; VAN DER HOFSTAD-NACHMIAS 17 ]



Part II.

Expansion properties and consequences



Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .]

Given a graph G

N(S) = external neighbourhood of a subset S ⊆ V(G)

= {v ∈ V(G) \ S : ∃ w ∈ S with {v,w} ∈ E(G)}

G is an α−expander if

|N(S)| ≥ α|S|, ∀S ⊆ V(G) with |S| ≤ |V(G)|
2

v
wN(S) S

Properties of an expander

small diameter, long cycles, large complete minor, . . .

edge-expansion for graphs with bounded max degree
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Expansion properties and consequences

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Theorem [ ERDE-K.-KRIVELEVICH 21+]

whp L1

is c d−5−expander

contains a c′ d−2 (log d)−1−expander on ≥ 0.99 |L1| vertices

has diameter O
(
d3)

contains a cycle of length Ω
(
2d d−2 (log d)−1)

contains a complete minor of order Ω
(

2
d
2 d−2 (log d)−1

)
has Cheeger constant Ω

(
d−5)
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Part III.

Proof ideas

Theorem

whp L1 is a 1
poly(d)

−expander

i.e., ∀S ⊆ V(L1) with |S| ≤ |V(L1)|
2 ,

|N(S)| ≥ |S|
poly(d)

N(S) S



Sprinkling argument

Sprinkling

p = 1+ε
d for ε > 0

q1 = 1+δ1
d and q2 = δ2

d s.t. 1− p = (1− q1)(1− q2) and 0 < δ2 � δ1

Qd
p ∼ Qd

q1 ∪ Qd
q2

Largest components before and after sprinkling

L′1 = largest component in Qd
q1 (before sprinkling)

L1 = largest component in Qd
p (after sprinkling)

γ(x) = survival probability of Po(1 + x) branching process

Lemma [ AJTAI-KOMLÓS- SZEMERÉDI 81]

• whp L′1 ∼ γ(δ1) 2d

• whp L1 ∼ γ(ε) 2d
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Giant component before and after sprinkling

L′1 = largest component in Qd
q1 (before sprinkling)

L1 = largest component in Qd
p (after sprinkling)

Lemma

• whp ∀ connected component in Qd
p [L1 − L′1] is of order O(d)

• whp ∀ vertex in V(Qd) is within distance two from ≥ cd2 vertices in L′1

L1 L′1
Qd L′1



Splitting the largest component into pieces

L′1 = largest component (before sprinkling)

= split into a family C of vertex-disjoint connected subgraphs

(’pieces’), each of order poly(d)

L1 = largest component (after sprinkling)

S = arbitrary subset of V(L1) with |S| ≤ |V(L1)|
2

L′1

S1 = S− L′1

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S
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Contribution of S1 to N(S)

S1 = S− L′1

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

With sprinkling, each component in Qd
p [L1 − L′1] which intersects with S1

contributes at least one edge to N(S)

or is connected to S2 ∪ S3

Thus |N(S)| ≥ c|S1|
d or e(S1, S2 ∪ S3) ≥ c|S1|

d and thus |S2 ∪ S3| ≥ c|S1|
d2



Contribution of S2 to N(S)

L′1 = split into a family C of pieces, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

Each piece C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

contributes at least one edge to N(S)

and each piece is of order poly(d)

Thus |N(S)| ≥ |S2|
poly(d)



Contribution of S3 to N(S)

L′1 = split into a family C of pieces, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

(1) Partition the family C of pieces into two disjoint families {A,B}

A := {C ∈ C : C ⊆ S} and B := C − A

This partitions V(L′1) into two sets A,B where

A := V(A) = S3 and B := V(C − A)



Contribution of S3 to N(S) – extending and connecting

(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

whp every vertex in V(Qd) is within distance two from vertices in L′1
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(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

Edge-isoperimetry in Qd
[ HARPER 64; LINDSEY 64; BERNSTEIN 67; HART 76]

|E(X,Xc)| ≥ |X| (d − log2 |X|), ∀X ⊆ V(Qd) with |X| ≤ 2d−1



Contribution of S3 to N(S) – extending and connecting

(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

(3) Sprinkle with q2 = δ2
d

Lemma

whp ∃ at least |A|
poly(d)

vertex-disjoint A-B-paths of length at most 5 in Qd
q2



Contribution of S3 to N(S)

L′1 = split into a family C of ’pieces’, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

= A

A B

B̄Ā

Each A-B-path in Qd
q2 contributes at least one edge to N(S),

unless it goes to S2

Thus |N(S)| ≥ |S3|
poly(d)

− d|S2|



Part IV.

Mixing time of lazy random walk



Mixing time of lazy random walk on Qd

In each step,

it remains at the current position with prob 1
2

it moves to a uniformly chosen random neighbour with prob 1
2

Mixing time: O(d log d)



Mixing time of lazy random walk on giant comp of Qd
p

L1 = giant component of Qd
p when p = 1+ε

d for ε > 0

What is the mixing time of the lazy random walk on L1 ?

[ PETE 08; VAN DER HOFSTAD-NACHMIAS 17 ]

whp L1 contains bare paths of length Ω(d)

=⇒ mixing time: Ω(d2)
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Mixing time of lazy random walk

on giant comp of Qd
p

Given a graph G,

tmix(G) = mixing time of a lazy random walk on a graph G

Φ(G) = Cheeger constant of G ( = bottleneck ratio)

πmin(G) = min{ dG(x)
2|E(G)| : x ∈ V(G)}

[ LAWLER–SOKAL 88; JERRUM–SINCLAIR 89; LEVIN–PERES–WILMER 07 ]

tmix(G) ≤ 2
Φ(G)2 log

(
4

πmin(G)

)

L1 = giant component of Qd
p when p = 1+ε

d for ε > 0

[ ERDE-K.-KRIVELEVICH 21+]

whp Φ(L1) = Ω
(

d−5
)

and πmin(L1) = Ω
(

2−d
)

tmix(L1) = O
(

d11
)
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Summary

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Theorem [ ERDE-K.-KRIVELEVICH 21+]

whp L1

is c d−5−expander

contains a c′ d−2 (log d)−1−expander on ≥ 0.99 |L1| vertices

has diameter O
(
d3)

contains a cycle of length Ω
(
2d d−2 (log d)−1)

contains a complete minor of order Ω
(

2
d
2 d−2 (log d)−1

)
has Cheeger constant Ω

(
d−5)

whp the mixing time of the lazy simple random walk on L1 is O
(
d11).



Open problems

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Correct order of

diameter of L1: Θ(d2) ?

circumference of L1: Ω(2d) ?

Hadwiger number of L1: Ω(2
d
2 ) ?

mixing time of lazy random walk on L1?


