Phase Transitions in Random Hypergraphs

Mihyun Kang

Joint work with Oliver Cooley and Christoph Koch

 $L_1(d) = \#$ vertices in the largest component with $d = p \cdot (n-1)$

 $L_1(d) = \#$ vertices in the largest component with $d = p \cdot (n-1)$

Theorem

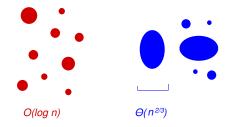
[ERDŐS-RÉNYI 60]

• If d < 1, whp $L_1(d) = O(\log n)$

O(log n)

 $L_1(d) = \#$ vertices in the largest component with $d = p \cdot (n-1)$

Theorem		[ERDŐS-RÉNYI 60]
● If <i>d</i> < 1, whp	$L_1(d) = O(\log n)$	
• If <i>d</i> = 1, whp	$L_1(d) = \Theta(n^{2/3})$	



 $L_1(d) = \#$ vertices in the largest component with $d = p \cdot (n-1)$

Theorem		[ERDŐS-RÉNYI 60]
● If <i>d</i> < 1, whp	$L_1(d) = O(\log n)$	
• If $d = 1$, whp	$L_1(d) = \Theta(n^{2/3})$	
• If <i>d</i> > 1, whp	$L_1(d) = \Theta(n)$	

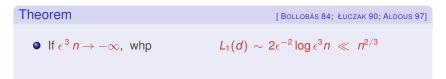
 $\Theta(n)$

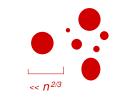
O(log n)

Θ(n²/3)

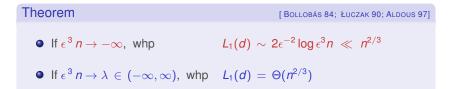
Let $d = p \cdot (n-1) = 1 + \epsilon$ for $\epsilon = o(1)$.

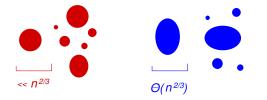
Let
$$d = p \cdot (n-1) = 1 + \epsilon$$
 for $\epsilon = o(1)$.



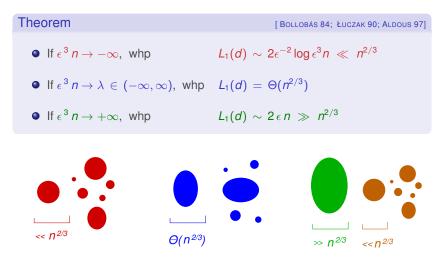


Let
$$d = p \cdot (n-1) = 1 + \epsilon$$
 for $\epsilon = o(1)$.





Let
$$d = p \cdot (n-1) = 1 + \epsilon$$
 for $\epsilon = o(1)$.



Asymptotic Normality of Giant Component

Assume $d = p \cdot (n-1) > 1$ and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$. Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-\sigma(1-\rho))^2} \cdot n$

Asymptotic Normality of Giant Component

Assume $d = p \cdot (n-1) > 1$ and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$. Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-\sigma(1-\rho))^2} \cdot n$

Central limit theorem

Let N(0, 1) denote the standard normal distribution. Then

	$\frac{L_1(d)-\mu}{\sigma}$	$\stackrel{\mathrm{d}}{\rightarrow}$ N(0,1)
for <i>d</i> constant		[STEPANOV 70; BEHRISCH–COJA-OGHLAN–K. 09]
for $(d-1)^3 n \to \infty$		[PITTEL-WORMALD 05; BOLLOBÁS-RIORDAN 12]

Proof techniques

Counting connected graphs inside-out	[PW 05]
Stein's method	[BC-OK 09]
Random walk	[BR 12]

Local Limit Theorem for Giant Component

Assume $d = p \cdot (n-1) > 1$ and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$. Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-d(1-\rho))^2} \cdot n$

Theorem

[STEPANOV 70; PITTEL-WORMALD 05; BEHRISCH-COJA-OGHLAN-K. 09]

Let d > 1 be constant and $I \subset \mathbb{R}$ compact. For any $k \in \mathbb{N}$ with $\sigma^{-1}(k - \mu) \in I$

$$\mathbb{P}[L_1(d) = k] \sim \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(k-\mu)^2}{2\sigma^2}\right)$$

Local Limit Theorem for Giant Component

Assume
$$d = p \cdot (n-1) > 1$$
 and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$.
Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-d(1-\rho))^2} \cdot n$

Theorem

[STEPANOV 70; PITTEL-WORMALD 05; BEHRISCH-COJA-OGHLAN-K. 09]

Let d > 1 be constant and $I \subset \mathbb{R}$ compact. For any $k \in \mathbb{N}$ with $\sigma^{-1}(k - \mu) \in I$

$$\mathbb{P}[L_1(d) = k] \sim \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(k-\mu)^2}{2\sigma^2}\right)$$

LLT for joint distribution of # vertices and # edges

 Recurrence formulas for # connected graphs 	[S 70]
 Counting connected graphs inside-out 	[PW 05]
• Two round exposure and smoothing (for <i>L</i> ₁ (<i>d</i>))	[BC-OK 09]
• Fourier analysis (for joint distribution)	[BC-OK 14]

Part II

Random *k*-uniform Hypergraph $H_k(n, p), k \ge 2$

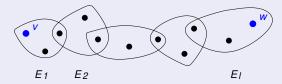
Standard Notion of Components

Vertex connectivity

• A vertex v is said to be reachable from a vertex w

if there is a sequence E_1, \ldots, E_ℓ of hyperedges such that

 $v \in E_1$, $w \in E_\ell$ and $|E_i \cap E_{i+1}| \ge 1$ for each $i = 1, \dots, \ell - 1$.



 The reachability is an equivalence relation, and the equivalence classes are called components

Phase Transition in $H_k(n, p)$

 $L_1(d) = \#$ vertices in the largest component, where $d = p \cdot (k-1) \cdot {\binom{n-1}{k-1}}$

Emergence of giant of	component	[SCHMIDT-PRUZAN-SHAMIR 85]
● If <i>d</i> < 1, whp	$L_1(d) = O(\log n)$	
• If <i>d</i> > 1, whp	$L_1(d) = \Theta(n)$	

Phase Transition in $H_k(n, p)$

 $L_1(d) = \#$ vertices in the largest component, where $d = p \cdot (k-1) \cdot {\binom{n-1}{k-1}}$

Emergence of giant of	component	[SCHMIDT-PRUZAN-SHAMIR 85]
● If <i>d</i> < 1, whp	$L_1(d) = O(\log n)$	
• If <i>d</i> > 1, whp	$L_1(d) = \Theta(n)$	

Local limit theorem for (# vertices, # edges) in the giant component

•
$$(d-1)^3 n \to \infty$$
, $(d-1)^3 n = o(\frac{\log n}{\log \log n})$ [Karoński-Łuczak 02]
• $d > 1$ constant [Behrisch-Coja-Oghlan-K. 14]

•
$$(d-1)^3 n \rightarrow \infty, d-1 \rightarrow 0$$

[BOLLOBÁS-RIORDAN 14+]

Counting Connected *k***-uniform Hypergraphs**

with <i>n</i> vertices and <i>m</i> edges	
• $m - \frac{n}{k-1} \ll \frac{\log n}{\log \log n}$	[Karoński–Łuczak 02]
• $m - \frac{n}{k-1} = \Theta(n)$	[BEHRISCH–COJA-OGHLAN–K. 14]
• $m - \frac{n}{k-1} = o(n)$	[BOLLOBÁS–RIORDAN 14+]
• $n^{1/3}\log^2 n \ll m - \frac{n}{2} \ll n$ for $k = 3$	[SATO–WORMALD 14+]

Proof techniques

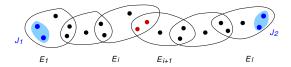
- Combinatorial enumeration
 [KŁ02]
- Local limit theorem for the giant in H_k(n, p) [BC-OK 14; BR 14+]
- Counting connected graphs inside-out (cores and kernels) [SW 14+]

Higher Order Connectivity

[BOLLOBÁS-RIORDAN 12]

Let $1 \le j \le k - 1$.

A *j*-element subset J₁ is said to be reachable from another *j*-set J₂ if there is a sequence E₁,..., E_ℓ of hyperedges such that
 J₁ ⊆ E₁, J₂ ⊆ E_ℓ and |E_i ∩ E_{i+1}| ≥ *j* for each *i* = 1,..., ℓ − 1.



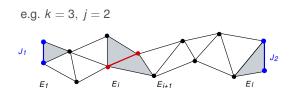
 The reachability is an equivalence relation on *j*-sets, and the equivalence classes are called *j*-connected component.

Higher Order Connectivity

[BOLLOBÁS-RIORDAN 12]

Let $1 \le j \le k - 1$.

A *j*-element subset J₁ is said to be reachable from another *j*-set J₂ if there is a sequence E₁,..., E_ℓ of hyperedges such that
 J₁ ⊆ E₁, J₂ ⊆ E_ℓ and |E_i ∩ E_{i+1}| ≥ *j* for each *i* = 1,..., ℓ − 1.



 The reachability is an equivalence relation on *j*-sets, and the equivalence classes are called *j*-connected component.

Emergence of Giant *j***-Component**

 $L_j(d) = \# j$ -sets in the largest *j*-component, where $d = p \cdot (\binom{k}{j} - 1) \cdot \binom{n-j}{k-j}$

Theorem		[COOLEY-PERSON-K. 13+]
● If <i>d</i> < 1, whp	$L_j(d) = O(\log n)$	
● If <i>d</i> > 1, whp	$L_j(d) = \Theta(n^j)$	

Emergence of Giant *j***-Component**

 $L_j(d) = \# j$ -sets in the largest *j*-component, where $d = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \binom{n-j}{k-j}$

Theorem		[COOLEY-PERSON-K. 13+]
● If <i>d</i> < 1, whp	$L_j(d) = O(\log n)$	
● If <i>d</i> > 1, whp	$L_j(d) = \Theta(n^j)$	

Remarks

- Short alternative proof of [Schmidt-Pruzan–Shamir 85]
- Extension of Depth-First Search approach of [Krivelevich–Sudakov 13]

• When
$$d = 1 + \epsilon$$
 for $\epsilon \in (0, 1)$,

whp \exists a loose path of length $\Omega(\epsilon^2 n)$

Critical Phase in $H_k(n, p)$

 $L_j(d) = \# j$ -sets in the largest *j*-component

where $d = p \cdot (\binom{k}{j} - 1) \cdot \binom{n-j}{k-j}$ and $d = 1 + \epsilon$ for $\epsilon = o(1)$

Theorem	[COOLEY-KKOCH 14+]
• If $\epsilon^3 n \to -\infty$, whp	$L_j(d) = O(\epsilon^{-2} \log n)$
• If $\epsilon^3 n \to +\infty$, whp	$L_j(d) \sim 2 \epsilon \frac{1}{\binom{k}{j}-1} \binom{n}{j}$

Critical Phase in $H_k(n, p)$

 $L_j(d) = \# j$ -sets in the largest *j*-component

where $d = p \cdot (\binom{k}{j} - 1) \cdot \binom{n-j}{k-j}$ and $d = 1 + \epsilon$ for $\epsilon = o(1)$

Theorem	[COOLEY-KKOCH 14+]
• If $\epsilon^3 n \to -\infty$, whp	$L_j(d) = O(\epsilon^{-2} \log n)$
• If $\epsilon^3 n \to +\infty$, whp	$L_j(d) \sim 2\epsilon \frac{1}{\binom{k}{j}-1} \binom{n}{j}$

Proof techniques

- Extension of Breadth-First Search, Galton-Watson branching process and second moment approach of [Bollobás–Riordan 12+]
- Smooth boundary lemma

Part III

Proof Ideas for Supercritical Regime in $H_k(n, p)$

 $k \ge 2, \ j \ge 1$

• Breadth-First Search process & Galton-Watson branching process

Breadth-First Search process & Galton-Watson branching process

0

- Begin with a j-set J

Breadth-First Search process & Galton-Watson branching process

- Begin with a *j*-set J
- Discover all edges that contain the *j*-set J
 - $\exists \binom{n-j}{k-j}$ k-sets containing J, each of which is an edge with prob. p

Breadth-First Search process & Galton-Watson branching process

- Begin with a j-set J
- Discover all edges that contain the *j*-set J
 - $\exists \binom{n-j}{k-j}$ k-sets containing J, each of which is an edge with prob. p
- For each edge E, discover $\binom{k}{i}$ 1 new *j*-sets contained in E

(It could be fewer if some of these *j*-sets were discovered earlier)

Breadth-First Search process & Galton-Watson branching process

- Begin with a j-set J
- Discover all edges that contain the *j*-set J
 - $\exists \binom{n-j}{k-i}$ k-sets containing J, each of which is an edge with prob. p
- For each edge E, discover $\binom{k}{j}$ 1 new j-sets contained in E

(It could be fewer if some of these *j*-sets were discovered earlier)

So, $\mathbb{E}(\# j \text{-sets discovered from } J \text{ in one generation}) = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \binom{n-j}{k-j}$

Breadth-First Search process & Galton-Watson branching process

- Begin with a j-set J
- Discover all edges that contain the *j*-set J

 $\exists \binom{n-j}{k-i}$ k-sets containing J, each of which is an edge with prob. p

- For each edge E, discover $\binom{k}{j}$ - 1 new j-sets contained in E

(It could be fewer if some of these *j*-sets were discovered earlier)

So, $\mathbb{E}(\# j \text{-sets discovered from } J \text{ in one generation}) = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \binom{n-j}{k-j}$

(1) Breadth-First Search

(1) Breadth-First Search



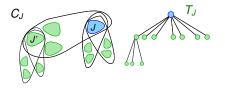
Given j-set J

construct spanning tree T_J

of *j*-component C_J

consisting of *j*-sets as vertices

(1) Breadth-First Search



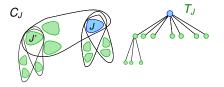
Given j-set J

construct spanning tree T_J

of *j*-component C_J

consisting of *j*-sets as vertices

(1) Breadth-First Search



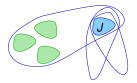
Given j-set J

construct spanning tree T_J

of *j*-component C_J

consisting of *j*-sets as vertices

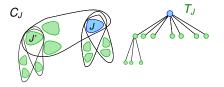
(2) Coupling T_J from above with Galton-Watson branching process with offspring distribution $\binom{k}{j} - 1 Bi\binom{n-j}{k-j}, p$



 $\varrho := \mathbb{P}\left(\textit{process survives}\right)$

$$1 - \varrho = \sum_{\ell} \mathbb{P}\left(Bi\left(\binom{n-j}{k-j}, p\right) = \ell\right) \cdot (1 - \varrho)^{\ell\binom{k}{j}-1}$$

(1) Breadth-First Search



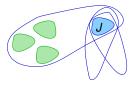
Given j-set J

construct spanning tree T_J

of *j*-component C_J

consisting of *j*-sets as vertices

(2) Coupling T_J from above with Galton-Watson branching process with offspring distribution $\binom{k}{j} - 1 Bi\binom{n-j}{k-j}, p$



$$\varrho := \mathbb{P}(\text{process survives})$$

$$1 - \varrho = \sum_{\ell} \mathbb{P}(Bi(\binom{n-j}{k-j}, p) = \ell) \cdot (1 - \varrho)^{\ell\binom{k}{j} - 1}$$

$$\longrightarrow \varrho \sim \frac{2\epsilon}{\binom{k}{j} - 1}$$

Proof Sketch - cont.

- (3) First moment argument
 - Let N := # j-sets in 'large' j-components with $\geq L := \epsilon n^j$ many j-sets
 - Using upper and lower couplings with Galton-Watson branching process,

$$\mathbb{E}(N) \sim \frac{2\epsilon}{\binom{k}{j}-1} \binom{n}{j}$$

Proof Sketch – cont.

- (3) First moment argument
 - Let N := # j-sets in 'large' *j*-components with $\geq L := \epsilon n^j$ many *j*-sets
 - Using upper and lower couplings with Galton-Watson branching process,

$$\mathbb{E}(N) \sim \frac{2\epsilon}{\binom{k}{j}-1} \binom{n}{j}$$

(4) Second moment argument

IF we could show

THEN

 $\mathbb{E}(N^2) \sim (\mathbb{E}(N))^2,$ $N \sim \frac{2\epsilon}{\binom{k}{j}-1} \binom{n}{j}$

Proof Sketch – cont.

- (3) First moment argument
 - Let N := # j-sets in 'large' *j*-components with $\geq L := \epsilon n^j$ many *j*-sets
 - Using upper and lower couplings with Galton-Watson branching process,

$$\mathbb{E}(N) \sim \frac{2\epsilon}{\binom{k}{j}-1} \binom{n}{j}$$

(4) Second moment argument

IF we could show

THEN

 $\mathbb{E}(N^2) \sim (\mathbb{E}(N))^2,$ $N \sim rac{2\epsilon}{{k \choose j} - 1} {n \choose j}$

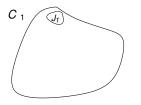
(5) Two round exposure

Almost all j-sets in 'large' j-components are in a single j-component

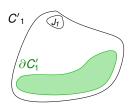
Need to consider # pairs of *j*-sets in 'large' *j*-components

Need to consider # pairs of *j*-sets in 'large' *j*-components

• Fix *j*-set J_1 and grow its *j*-component C_1



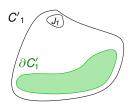
Need to consider # pairs of *j*-sets in 'large' *j*-components



• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

$$S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \}$$

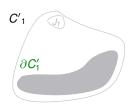
Need to consider # pairs of *j*-sets in 'large' *j*-components



• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

 $\begin{array}{lll} S_1 \ = \ \{ \ |C_1'| \ \ge \ L & or & |\partial C_1'| \ \ge \ \epsilon \ L \ \} \\ \end{array}$ Then $\mathbb{P}(S_1) \ \lesssim \ \frac{2\epsilon}{\binom{k}{j}-1}$

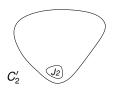
Need to consider # pairs of *j*-sets in 'large' *j*-components



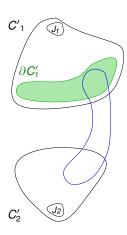
• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

 $\begin{array}{lll} S_1 \ = \ \{ \ |C_1'| \ \ge \ L & or & |\partial C_1'| \ \ge \ \epsilon \ L \ \} \\ \end{array}$ Then $\mathbb{P}(S_1) \ \lesssim \ \frac{2\epsilon}{\binom{k}{j}-1}$

- Delete all the vertices in C'_1
- & fix a *j*-set J_2 , grow component C'_2



Need to consider # pairs of *j*-sets in 'large' *j*-components



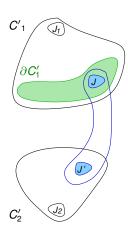
• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

 $\begin{array}{lll} S_1 \ = \ \{ \ |C_1'| \ \ge \ L & or & |\partial C_1'| \ \ge \ \epsilon \ L \ \} \\ \end{array}$ Then $\mathbb{P}(S_1) \ \lesssim \ \frac{2\epsilon}{\binom{k}{j}-1}$

- Delete all the vertices in C₁'
- & fix a *j*-set J_2 , grow component C'_2

Need to show $\mathbb{P}(e(\partial C'_1, C'_2) \ge 1)$ is small

Need to consider # pairs of *j*-sets in 'large' *j*-components

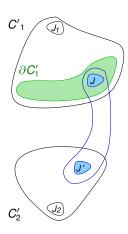


• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

 $\begin{array}{lll} S_1 \ = \ \{ \ |C_1'| \ \ge \ L & or & |\partial C_1'| \ \ge \ \epsilon \ L \ \} \\ \\ \text{Then} & \mathbb{P} \left(S_1 \right) \ \lesssim \ \frac{2\epsilon}{\binom{k}{j} - 1} \end{array}$

- Delete all the vertices in C'₁
- & fix a *j*-set *J*₂, grow component *C*'_2 Need to show $\mathbb{P}(e(\partial C'_1, C'_2) \ge 1)$ is small $\mathbb{P}(e(\partial C'_1, C'_2) \ge 1)$ $\le p \cdot |\partial C'_1| \cdot |C'_2|$

Need to consider # pairs of *j*-sets in 'large' *j*-components



• Fix *j*-set *J*₁ and grow its *j*-component *C*'₁ until hit stopping conditions

 $\begin{array}{lll} S_1 \ = \ \{ \ |C_1'| \ \ge \ L & or & |\partial C_1'| \ \ge \ \epsilon \ L \ \} \\ \end{array}$ Then $\mathbb{P}(S_1) \ \lesssim \ \frac{2\epsilon}{\binom{k}{j}-1}$

- Delete all the vertices in C'₁
- & fix a *j*-set J_2 , grow component C'_2 Need to show $\mathbb{P}(e(\partial C'_1, C'_2) \ge 1)$ is small However,

 $p \cdot |\partial C'_1| \cdot |C'_2|$ is not the right thing to do

More on Second Moment Argument – cont.

Instead we need

• for k = 3, j = 2,

- $\mathbb{P}\left(e(\partial C_1', C_2') \geq 1 \right)$
- $\leq \mathbb{E} \left(\# 3 \text{-sets containing} \right)$

a pair of 2-sets intersecting at a vertex)

More on Second Moment Argument – cont.

Instead we need

• for k = 3, j = 2,

$$\begin{split} \mathbb{P}\left(\begin{array}{l} e(\partial C_{1}', \ C_{2}') \geq 1 \right) \\ \leq & \mathbb{E}\left(\# \ \text{3-sets containing} \\ & \text{a pair of 2-sets intersecting at a vertex} \right) \end{split}$$

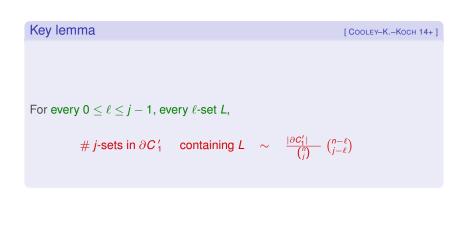
• for $k \geq 3$, $j \geq 2$,

- $\mathbb{P}\left(e(\partial C_1', C_2') \geq 1 \right)$
- $\leq \mathbb{E}(\# k\text{-sets containing})$

a pair of *j*-sets, J, J', intersecting at an ℓ -set L

for some $0 \le \ell \le j - 1$)

Boundary Is Smooth



'Reasonably Large' Boundary Is Smooth

Key lemma

[COOLEY-K.-KOCH 14+]

Let $\partial C'_1(t)$ denote the collection of *j*-sets in $\partial C'_1$ after *t* generations of BFS.

With probability at least $1 - \exp(-\Theta(n^{1/11}))$ the following is true.

For every $0 \le \ell \le j - 1$, every ℓ -set *L*, and every $s_{\ell} \le t \le s_{\ell} + O(\log n)$,

j-sets in $\partial C'_1(t)$ containing $L \sim \frac{|\partial C'_1(t)|}{\binom{n}{\ell}} \binom{n-\ell}{j-\ell}$

where $s_{\ell} := \min\{ d : |\partial C'_1(t)| \ge n^{\ell+1/10} \}.$

Open Problems

- (1) What about the number of *j*-set in the largest *j*-component at the criticality, i.e. when d = 1?
- (2) Is the width of critical window, $(d-1)^3 n = O(1)$, best possible? Perhaps $(d-1)^j n = O(1)$?
- (3) What about the number of *j*-set in the 2nd largest *j*-component in the supercritical regime?
- (4) What is the actual distribution of # j-sets in the largest *j*-component? Central limit theorem? Local limit theorem?