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Emergence of Giant Component in G(n,p)

L1(d) = # vertices in the largest component with d = p · (n − 1)

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp L1(d) = O(log n)

If d = 1, whp L1(d) = Θ(n2/3)

If d > 1, whp L1(d) = Θ(n)

O(log n) 2/3nO(      ) nO(   )
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Critical Phenomenon in G(n,p)

Let d = p · (n − 1) = 1 + ε for ε = o(1).

Theorem [ BOLLOBÁS 84; ŁUCZAK 90; ALDOUS 97]

If ε 3 n→ −∞, whp L1(d) ∼ 2ε−2 log ε3n � n2/3

If ε 3 n→ λ ∈ (−∞,∞), whp L1(d) = Θ(n2/3)

If ε 3 n→ +∞, whp L1(d) ∼ 2 ε n � n2/3

2/3<< n 2/3nO(      ) 2/3
>> 2/3<<n n
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Asymptotic Normality of Giant Component

Assume d = p · (n − 1) > 1 and 0 < ρ < 1 satisfies 1− ρ = e−d·ρ.

Let µ := ρ · n and σ2 := ρ(1−ρ)
(1−d(1−ρ))2 · n

Central limit theorem

Let N(0, 1) denote the standard normal distribution. Then

L1(d)− µ
σ

d→ N(0, 1)

for d constant [ STEPANOV 70; BEHRISCH–COJA-OGHLAN–K. 09]

for (d − 1)3 n → ∞ [ PITTEL–WORMALD 05; BOLLOBÁS–RIORDAN 12 ]

Proof techniques

Counting connected graphs inside-out [ PW 05 ]

Stein’s method [ BC-OK 09 ]

Random walk [ BR 12 ]
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Local Limit Theorem for Giant Component

Assume d = p · (n − 1) > 1 and 0 < ρ < 1 satisfies 1− ρ = e−d·ρ.

Let µ := ρ · n and σ2 := ρ(1−ρ)
(1−d(1−ρ))2 · n

Theorem [ STEPANOV 70; PITTEL–WORMALD 05; BEHRISCH–COJA-OGHLAN–K. 09 ]

Let d > 1 be constant and I ⊂ R compact. For any k ∈ N with σ−1(k − µ) ∈ I

P[ L1(d) = k ] ∼ 1
σ
√

2π
exp

(
− (k − µ)2

2σ2

)

LLT for joint distribution of # vertices and # edges

Recurrence formulas for # connected graphs [ S 70 ]

Counting connected graphs inside-out [ PW 05 ]

Two round exposure and smoothing (for L1(d)) [ BC-OK 09 ]

Fourier analysis (for joint distribution) [ BC-OK 14 ]
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Part II

Random k -uniform Hypergraph Hk(n,p), k ≥ 2



Standard Notion of Components

Vertex connectivity

A vertex v is said to be reachable from a vertex w

if there is a sequence E1, . . . ,E` of hyperedges such that

v ∈ E1, w ∈ E` and |Ei ∩ Ei+1| ≥ 1 for each i = 1, . . . , `− 1.

E1

v
w

E2 E l

The reachability is an equivalence relation, and

the equivalence classes are called components



Phase Transition in Hk(n,p)

L1(d) = # vertices in the largest component, where d = p · (k − 1) ·
(n−1

k−1

)
Emergence of giant component [ SCHMIDT-PRUZAN–SHAMIR 85 ]

If d < 1, whp L1(d) = O(log n)

If d > 1, whp L1(d) = Θ(n)

Local limit theorem for (# vertices, # edges) in the giant component

(d − 1)3 n→∞, (d − 1)3 n = o( log n
log log n ) [ KAROŃSKI–ŁUCZAK 02 ]

d > 1 constant [ BEHRISCH–COJA-OGHLAN–K. 14 ]

(d − 1)3 n → ∞, d − 1→ 0 [ BOLLOBÁS–RIORDAN 14+ ]
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Counting Connected k -uniform Hypergraphs

... with n vertices and m edges

m − n
k−1 �

log n
log log n [ KAROŃSKI–ŁUCZAK 02 ]

m − n
k−1 = Θ(n) [ BEHRISCH–COJA-OGHLAN–K. 14 ]

m − n
k−1 = o(n) [ BOLLOBÁS–RIORDAN 14+ ]

n1/3log2 n � m − n
2 � n for k = 3 [ SATO–WORMALD 14+ ]

Proof techniques

Combinatorial enumeration [ KŁ02 ]

Local limit theorem for the giant in Hk (n, p) [ BC-OK 14; BR 14+ ]

Counting connected graphs inside-out (cores and kernels) [ SW 14+ ]



Higher Order Connectivity

[ BOLLOBÁS–RIORDAN 12 ]

Let 1 ≤ j ≤ k − 1.

A j-element subset J1 is said to be reachable from another j-set J2

if there is a sequence E1, . . . ,E` of hyperedges such that

J1 ⊆ E1, J2 ⊆ E` and |Ei ∩ Ei+1| ≥ j for each i = 1, . . . , `− 1.

J1

2

E lE1

J

E i E i+1

2

E l

J1

E1

J

E i E i+1

e.g. k = 3, j = 2

The reachability is an equivalence relation on j-sets, and

the equivalence classes are called j-connected component.
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Emergence of Giant j-Component

L j (d) = # j-sets in the largest j-component, where d = p ·
((k

j

)
− 1
)
·
(n−j

k−j

)
Theorem [ COOLEY–PERSON–K. 13+ ]

If d < 1, whp Lj (d) = O(log n)

If d > 1, whp Lj (d) = Θ(n j )

Remarks

Short alternative proof of [ Schmidt-Pruzan–Shamir 85 ]

Extension of Depth-First Search approach of [ Krivelevich–Sudakov 13 ]

When d = 1 + ε for ε ∈ (0, 1),

whp ∃ a loose path of length Ω(ε2n)
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Critical Phase in Hk(n,p)

L j (d) = # j-sets in the largest j-component

where d = p ·
((k

j

)
− 1
)
·
(n−j

k−j

)
and d = 1 + ε for ε = o(1)

Theorem [ COOLEY–K.–KOCH 14+ ]

If ε3 n→ −∞, whp L j (d) = O(ε−2 log n)

If ε3 n→ +∞, whp L j (d) ∼ 2 ε 1
(k

j )−1

(n
j

)

Proof techniques

Extension of Breadth-First Search, Galton-Watson branching process

and second moment approach of [ Bollobás–Riordan 12+ ]

Smooth boundary lemma
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Part III

Proof Ideas for Supercritical Regime in Hk(n,p)

k ≥ 2, j ≥ 1



Heuristic for Threshold

Breadth-First Search process & Galton-Watson branching process

– Begin with a j-set J

– Discover all edges that contain the j-set J

∃
(n−j

k−j

)
k -sets containing J, each of which is an edge with prob. p

– For each edge E , discover
(k

j

)
− 1 new j-sets contained in E

(It could be fewer if some of these j-sets were discovered earlier)

So, E(# j -sets discovered from J in one generation) = p ·
((k

j

)
−1
)
·
(n−j

k−j

)
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Proof Sketch

(1) Breadth-First Search

JJ

J’

CJ
TJ

Given j-set J

construct spanning tree TJ

of j-component CJ

consisting of j-sets as vertices

(2) Coupling TJ from above with Galton-Watson branching process

with offspring distribution (
(k

j

)
− 1)Bi(

(n−j
k−j

)
, p)

J

% := P (process survives)

1− % =
∑
` P (Bi(

(n−j
k−j

)
, p) = `) · (1− %)

`((k
j )−1)

−→ % ∼ 2ε
(k

j )−1
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Proof Sketch – cont.

(3) First moment argument

Let N := # j-sets in ’large’ j-components with ≥ L := ε n j many j-sets

Using upper and lower couplings with Galton-Watson branching
process,

E(N) ∼ 2ε(k
j

)
− 1

(
n
j

)

(4) Second moment argument

1 IF we could show
E(N2) ∼ (E(N))2,

1 THEN
N ∼ 2ε(k

j

)
− 1

(
n
j

)

(5) Two round exposure

1 Almost all j-sets in ’large’ j-components are in a single j-component
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More on Second Moment Argument

Need to consider # pairs of j-sets in ’large’ j-components

J2

J ’

J

J1

J2

J ’

J

J1

J2

J ’

J

J1

J2

J ’

J

J1

J2

J

J ’

J1

• Fix j-set J1 and grow its j-component C

′

1

C

′

1 until hit stopping conditions

S1 = { |C′1| ≥ L or |∂C′1| ≥ ε L }

Then P (S1) . 2ε
(k

j )−1

∂C′1

• Delete all the vertices in C′1

& fix a j-set J2, grow component C′2

C′2

Need to show P ( e(∂C′1, C′2) ≥ 1) is small

However,

p · |∂C′1| · |C′2|

is not the right thing to do
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More on Second Moment Argument – cont.

Instead we need

for k = 3, j = 2,

P ( e(∂C′1, C′2) ≥ 1)

≤ E (# 3-sets containing

a pair of 2-sets intersecting at a vertex)

for k ≥ 3, j ≥ 2,

’JJ

L

P ( e(∂C′1, C′2) ≥ 1)

≤ E (# k -sets containing

a pair of j-sets, J, J ′, intersecting at an `-set L

for some 0 ≤ ` ≤ j − 1)
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’Reasonably Large’

Boundary Is Smooth place

Key lemma [ COOLEY–K.–KOCH 14+ ]

Let ∂C′1(t) denote the collection of j-sets in ∂C ′1 after t generations of BFS.

With probability at least 1− exp(−Θ(n1/11)) the following is true.

For every 0 ≤ ` ≤ j − 1, every `-set L,

and every s` ≤ t ≤ s` + O(log n),

# j-sets in ∂C ′1

(t)

containing L ∼ |∂C′
1|

(t)|

(n
j )

(n−`
j−`

)

where s` := min{ d : |∂C′1(t)| ≥ n`+1/10}.
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Open Problems

(1) What about the number of j-set in the largest j-component

at the criticality, i.e. when d = 1?

(2) Is the width of critical window, (d − 1)3n = O(1), best possible?

Perhaps (d − 1)jn = O(1)?

(3) What about the number of j-set in the 2nd largest j-component

in the supercritical regime?

(4) What is the actual distribution of # j-sets in the largest j-component?

Central limit theorem? Local limit theorem?


