# Sparse random graphs: Interplay of local and global structrure

Mihyun Kang



Workshop on Graph Limits, Non-Parametric Models, and Estimation

Simons Institute, 26-30 September 2022

### Outline of the talk

I. From local to global structure

II. From global to local structure

Part I.

# From local to global structure

# **Emergence of giant component**

- |L| = # vertices in the largest component in G(n, p)
- $d = p(n-1) \in (0,\infty)$



\* whp = with high probability = with prob tending to one as  $n \to \infty$ 

### Largest component in ER random graph

- |L| = # vertices in the largest component in G(n, p)
- $d = p(n-1) \in (1,\infty)$
- $\rho$  = survival prob of Po(d) Galton-Watson branching process

= unique positive solution of  $1 - \rho = \exp(-d \rho)$ 

Theorem

whp

$$|\boldsymbol{L}| = (1+o(1)) \boldsymbol{\rho} n$$



#### Local structure of ER random graph

• 
$$d = p(n-1) \in (0,\infty)$$

• r = vertex chosen uniformly at random from V(G(n, p))



$$d^+(r) \sim \operatorname{Po}(d)$$

 $d^+(u) \sim \operatorname{Po}(d)$ 

 $d^+(v) \sim \operatorname{Po}(d)$ 

#### Local weak convergence

[BENJAMINI-SCHRAMM 2001], [ALDOUS-STEELE 2004]

• A rooted graph (H, r)

= a connected locally finite graph H with a vertex  $r \in V(H)$  as the root

• Given a rooted graph (H, r) and  $\ell \in \mathbb{N} := \{1, 2, \ldots\}$ , let

 $B_{\ell}(H,r) := H\left[\{v \in V(H) : d_{H}(v,r) \leq \ell\}\right]$ 



#### Local weak convergence

[BENJAMINI-SCHRAMM 2001], [ALDOUS-STEELE 2004]

• A rooted graph (H, r)

= a connected locally finite graph H with a vertex  $r \in V(H)$  as the root

• Given a rooted graph (H, r) and  $\ell \in \mathbb{N} := \{1, 2, \ldots\}$ , let

 $B_{\ell}(H,r) := H\left[\{v \in V(H) : d_{H}(v,r) \leq \ell\}\right]$ 



• Two rooted graphs (H, r) and (H', r') are isomorphic,

$$(H,r) \cong (H',r')$$

if  $\exists$  isomorphism  $\phi$  from H onto H with  $\phi(r) = r'$ 

#### Local weak convergence — cont'd

Given a sequence  $((G_n, r_n))_n$  of random rooted graphs, a random rooted graph  $(G_0, r_0)$  is the local weak limit of  $(G_n, r_n)$ 

 $(G_n, r_n) \xrightarrow{D} (G_0, r_0)$ 

if for each fixed rooted graph  $(H, r_H)$  and  $\ell \in \mathbb{N}$ ,

 $\mathbb{P}\Big[B_{\ell}(G_n, r_n) \cong (H, r_H)\Big] \xrightarrow{n \to \infty} \mathbb{P}\Big[B_{\ell}(G_0, r_0) \cong (H, r_H)\Big]$ 



#### Local weak convergence — cont'd

Given a sequence  $((G_n, r_n))_n$  of random rooted graphs, a random rooted graph  $(G_0, r_0)$  is the local weak limit of  $(G_n, r_n)$ 

 $(G_n, r_n) \xrightarrow{D} (G_0, r_0)$ 

if for each fixed rooted graph  $(H, r_H)$  and  $\ell \in \mathbb{N}$ ,

 $\mathbb{P}\Big[B_{\ell}(G_n, r_n) \cong (H, r_H)\Big] \xrightarrow{n \to \infty} \mathbb{P}\Big[B_{\ell}(G_0, r_0) \cong (H, r_H)\Big]$ 



For not necessarily connected  $(G_n, r_n)$ , its local weak limit?

 $\implies$  define it as the local weak limit of the component of  $G_n$  containing  $r_n$ 

#### ER random graph vs Galton–Watson tree

- G = G(n,p) and  $d = p(n-1) \in (0,\infty)$
- $r \in_R V(G)$  = vertex chosen uniformly at random from V(G)
- $\operatorname{GWT}(d) = \operatorname{Galton-Watson}$  tree with offspring distribution  $\operatorname{Po}(d)$





# Why local structure?

- Percolation threshold
  - Universality principle in percolation theory
- Giant component
  - Coupling component exploration processs via BFS with Galton-Watson branching process
  - High-dimensional analogues
  - Percolated hypercubes
    - . . .
- Message passing algorithms
  - Belief Propagation on random k-SAT
  - Warning Propagation for the *k*-core and rank of parity matrix

. . .

Part II.

# From global to local structure

# Planarity of ER random graph

•  $d = p(n-1) \in (0,\infty)$ 

Theorem

[ ERDŐS-RÉNYI 1959-60 ]

- If d < 1, whp
  - each component is either a tree or unicyclic component
  - G(n,p) is planar
- If d > 1, whp
  - largest component contains  $\geq$  two cycles
  - G(n,p) is not planar

# Random graphs with topological constraints

How does a topological constraint such as

- being planar
- being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

- component structures
- local weak limits?

# **Random graphs on surfaces**

- $g \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$
- $\mathbb{S}_g$  = the orientable surface of genus g (i.e., with g handles)

# **Random graphs on surfaces**

- $g \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$
- $\mathbb{S}_g$  = the orientable surface of genus g (i.e., with g handles)
- S<sub>g</sub>(n,m) = set of all vertex-labelled simple graphs on [n]
   with m = m(n) edges that are embeddable on S<sub>g</sub>

 $S_g(n,m) =$  a graph chosen uniformly at random from  $S_g(n,m)$ 

# **Random graphs on surfaces**

• 
$$g \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$$

•  $\mathbb{S}_g$  = the orientable surface of genus g (i.e., with g handles)

 $S_g(n,m) =$  a graph chosen uniformly at random from  $S_g(n,m)$ 

•  $\mathcal{G}(n,m)$  = set of all vertex-labelled simple graphs on [n] with m = m(n) edges

\*  $\mathcal{S}_0(n,m)$   $\subset \ldots \subset$   $\mathcal{S}_g(n,m)$   $\subset$   $\mathcal{S}_{g+1}(n,m)$   $\subset \ldots \subset$   $\mathcal{G}(n,m)$ 

#### Random graphs on surfaces - cont'd

Note

- \* If  $1 \le m < \frac{n}{2}$ , then  $\frac{|\mathcal{S}_0(n,m)|}{|\mathcal{G}(n,m)|} \xrightarrow{n \to \infty} 1$
- \* If m > 3n 6 + 6g, then

$$\mathcal{S}_g(n,m) = \emptyset$$

• Assume  $2m/n \rightarrow d \in (1, 6]$ 

#### Random graphs on surfaces - cont'd

Note

\* If 
$$1 \le m < \frac{n}{2}$$
, then  
\* If  $m > 3n - 6 + 6g$ , then  
 $\frac{|\mathcal{S}_0(n,m)|}{|\mathcal{G}(n,m)|} \xrightarrow{n \to \infty} 1$ 

• Assume  $2m/n \rightarrow d \in (1, 6]$ 

• 
$$P = P(n,m) \in_R \mathcal{P}(n,m)$$

 $\mathcal{P}(n,m)$  = set of all vertex-labelled simple graphs with vertex set [n] and m = m(n) edges that are embeddable on the sphere  $\mathbb{S}_0$ 

P(n,m) = a graph chosen uniformly at random from  $\mathcal{P}(n,m)$ 

#### Phase transition in a random planar graph

• 
$$P = P(n,m) \in_R \mathcal{P}(n,m)$$

• |L| = # vertices in the largest component of P

| Theorem                   | [KŁuczak 2012], [KMosshammer-Sprüssel 2020] |
|---------------------------|---------------------------------------------|
| If $d \in (1,2]$ , whp    | L  = (1 + o(1)) (d - 1) n                   |
| If If $d \in [2,6]$ , whp | L  = (1 + o(1)) n                           |



### Local weak limit of a random planar graph

#### Theorem

[ K.-MISSETHAN 2022+ ]

Assume  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$  and  $r \in_{\mathbb{R}} V(\mathbb{P})$ . Then

$$(P,r) \xrightarrow{D} (2-d) \operatorname{GWT}(1) + (d-1) T_{\infty}$$

i.e., for each rooted graph  $(H, r_H)$  and  $\ell \in \mathbb{N}$ , we have

$$\mathbb{P}\Big[B_{\ell}\left(P,r\right)\cong\left(H,r_{H}\right)\Big] \xrightarrow{n\to\infty}$$

$$(2-d)\ \mathbb{P}\Big[B_{\ell}\left(\mathrm{GWT}\left(1\right)\right)\cong\left(H,r_{H}\right)\Big] + (d-1)\ \mathbb{P}\Big[B_{\ell}\left(T_{\infty}\right)\cong\left(H,r_{H}\right)\Big]$$

Skeleton tree  $T_{\infty}$ 



= an infinite path whose vertices are replaced by independent GWT (1)

#### From global to local structure

•  $P = P(n,m) \in_R \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

L largest component of P

•  $S = P \setminus L$  'small' part of P

• *S* 'behaves similarly' like a critical ER random graph  $G(\bar{n}, \bar{m})$ with  $\bar{n} = (2 - d) n$  and  $2\bar{m}/\bar{n} \rightarrow 1$ 



#### From global to local structure

•  $P = P(n,m) \in_R \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

L largest component of P

- $S = P \setminus L$  'small' part of P
- $r_S \in_R V(S)$

• *S* 'behaves similarly' like a critical ER random graph  $G(\bar{n}, \bar{m})$ with  $\bar{n} = (2 - d) n$  and  $2\bar{m}/\bar{n} \rightarrow 1$ 



•  $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

- L largest component of P
- C 2-core = max subgraph of L with min deg  $\geq$  two

• 
$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
 and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

- L largest component of P
- C 2-core = max subgraph of L with min deg  $\geq$  two

Theorem

[ K.-MOSSHAMMER-SPRÜSSEL 2020 ]

• 
$$|L| \sim (d-1) n$$

• 
$$|C| \sim o(n)$$



•  $P = P(n,m) \in_R \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

- L largest component of P
- C 2-core = max subgraph of L with min deg  $\geq$  two
- $r_L \in_R V(L)$

Theorem

[ K.-MOSSHAMMER-SPRÜSSEL 2020 ]

• 
$$|L| \sim (d-1) n$$

• 
$$|C| \sim o(n)$$



•  $P = P(n,m) \in_R \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

- L largest component of P
- C 2-core = max subgraph of L with min deg  $\geq$  two
- $r_L \in_R V(L)$

Theorem

[ K.-MOSSHAMMER-SPRÜSSEL 2020 ]

• 
$$|L| \sim (d-1) n$$

• 
$$|C| \sim o(n)$$



•  $P = P(n,m) \in_R \mathcal{P}(n,m)$  and  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

- L largest component of P
- C 2-core = max subgraph of L with min deg  $\geq$  two
- $r_L \in_R V(L)$

Theorem

[ K.-MOSSHAMMER-SPRÜSSEL 2020 ]

• 
$$|L| \sim (d-1) n$$

• 
$$|C| \sim o(n)$$



#### Local weak limit of a random forest

•  $F = F(n,t) \in_{\mathbb{R}} \mathcal{F}(n,t)$  a forest on [n] with t tree components •  $r_F \in_{\mathbb{R}} V(F)$  a vertex chosen uniformly at random from V(F)



### Local weak limit of a random forest

F = F(n,t) ∈<sub>R</sub> F(n,t) a forest on [n] with t tree components
 r<sub>F</sub> ∈<sub>R</sub> V(F) a vertex chosen uniformly at random from V(F)
 r<sub>T</sub> the root of tree component T that contains r<sub>F</sub>



#### Local weak limit of a random forest

•  $F = F(n,t) \in_{\mathbb{R}} \mathcal{F}(n,t)$  a forest on [n] with t tree components

- $r_F \in_R V(F)$  a vertex chosen uniformly at random from V(F)
- *r<sub>T</sub>* the root of tree component *T* that contains *r<sub>F</sub>*

[ K.-MISSETHAN 2022+ ]

If 
$$t = t(n) = o(n)$$
, then whp  $d(r_F, r_T) = \omega(1)$  and  
 $(F, r_F) \xrightarrow{D} T_{\infty}$ 



### Finer view of local weak limits

• 
$$P = P(n,m) \in_{R} \mathcal{P}(n,m),$$
  
•  $L$  largest component of  $P$ ,  
 $r_{L} \in_{R} V(L)$   
Theorem [K.-MISSETHAN 2022+]  
 $(L,r_{L}) \xrightarrow{D} T_{\infty}$ 



#### Finer view of local weak limits

• 
$$P = P(n,m) \in_R \mathcal{P}(n,m),$$

$$2m/n \xrightarrow{n \to \infty} d \in (1,2)$$

- *L* largest component of *P*,
- $S = P \setminus L \sim$  crtitical ER random graph,
- $r_S \in_R V(S), r_L \in_R V(L)$

Theorem

[ K.-MISSETHAN 2022+ ]

$$\begin{array}{ccc} (S, r_S) & \xrightarrow{D} & \operatorname{GWT}(1) \\ (L, r_L) & \xrightarrow{D} & T_{\infty} \end{array}$$



### Finer view of local weak limits

• 
$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m),$$
  
•  $L$  largest component of  $P$ ,  $|L| \sim (d-1)n$   
•  $S = P \setminus L \sim$  critical ER random graph,  $|S| \sim (2-d)n$   
•  $r_{S} \in_{\mathbb{R}} V(S), r_{L} \in_{\mathbb{R}} V(L)$  and  $r_{P} \in_{\mathbb{R}} V(P)$ 

Theorem

[ K.-MISSETHAN 2022+ ]

$$\begin{array}{lll} (S,r_S) & \xrightarrow{D} & \operatorname{GWT}(1) \\ (L,r_L) & \xrightarrow{D} & T_{\infty} \\ (P,r_P) & \xrightarrow{D} & (2-d) \operatorname{GWT}(1) + (d-1) T_{\infty} \end{array}$$



### Summary

(1) Phase transitions and critical phenomena



\*  $S = G(n,m) \setminus L$  'behaves similarly' like a subcritical ER random graph

\*  $S = P(n,m) \setminus L$  'behaves similarly' like a critical ER random graph

#### Summary and an open question

- (2) Local weak limit of a random planar graph
  - $P = P(n,m) \in_R \mathcal{P}(n,m)$

• 
$$r \in_R V(P)$$

•  $2m/n \xrightarrow{n \to \infty} d \in (1,2)$ 

$$(P,r) \xrightarrow{D} (2-d) \operatorname{GWT}(1) + (d-1) T_{\infty}$$



*Q*. Local weak limit of (P, r) when  $d \in (2, 6)$  ?