# Benjamini-Schramm local limits of sparse random planar graphs

#### Mihyun Kang

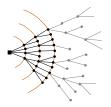
Joint work with Michael Missethan



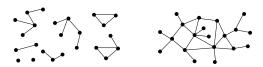
Oxford Discrete Mathematics and Probability Seminar, 18 May 2021

#### Guiding questions/themes

(1) What does a random graph locally look like?



(2) How does a global structure of a random graph affect its local structure?



(3) What about a local structure of a random graph if a global constraint (e.g., planarity) is imposed on a random graph?

#### Part I.

#### Erdős-Rényi random graph

•  $G(n,m) \in_{\mathbb{R}} \mathcal{G}(n,m)$ a graph chosen uniformly at random from the class  $\mathcal{G}(n,m)$  of all vertex-labelled simple graphs on vertex set  $[n] := \{1,\ldots,n\}$ with m = m(n) edges

- all asymptotics are taken as  $n \to \infty$
- whp = with high probability = with probability tending to one as  $n \to \infty$

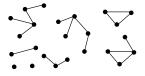
# Phase transition in Erdős-Rényi random graph

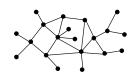
$$G(n,m) \in_{\mathbb{R}} \mathcal{G}(n,m)$$
 and  $2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$ 

#### Theorem

[ ERDŐS-RÉNYI 1959-60 ]

- lacktriangle If c < 1 ('subcritical'), then whp
  - each component in G(n, m) is of order  $O(\log n)$
  - -G(n,m) consists of tree or unicyclic components
- If c > 1 ('supercritical'), then whp
  - -G(n,m) contains a unique largest ('giant') component of order  $\Theta(n)$
  - giant comp contains  $\geq$  two cycles ('complex') and is not planar





# Largest component in Erdős-Rényi random graph

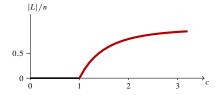
$$G(n,m) \in_{\mathbb{R}} \mathcal{G}(n,m)$$
 and  $2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$ 

- L largest component in G(n, m)
- $\rho$  unique positive solution of  $1 \rho = \exp(-c \rho)$  (= survival prob of Po(c) Galton-Watson branching process\*)

#### Theorem

whp

$$|L| = (1 + o(1)) \rho n$$



coupling a BFS spanning tree of a component with a Galton-Watson tree

#### Part II.

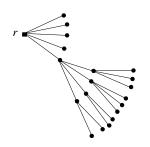
# Local structure of Erdős-Rényi random graph

```
G(n,m)\in_R \mathcal{G}(n,m) and 2m/n \xrightarrow{n\to\infty} c \in [0,\infty) r\in_R V\left(G(n,m)\right) a vertex chosen uniformly at random from V(G(n,m))
```

#### Part II.

## Local structure of Erdős-Rényi random graph

$$G(n,m)\in_{\it R} \mathcal{G}(n,m) \quad {\rm and} \quad 2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$$
 
$$r\in_{\it R} V\left(G(n,m)\right) \quad {\rm a \ vertex \ chosen \ uniformly \ at \ random \ from \ } V(G(n,m))$$

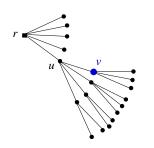


 $d^+(r) \sim \text{Po}(c)$ 

#### Part II.

## Local structure of Erdős-Rényi random graph

 $G(n,m)\in_{\it R} \mathcal{G}(n,m) \quad {\rm and} \quad 2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$   $r\in_{\it R} V\left(G(n,m)\right) \quad {\rm a \ vertex \ chosen \ uniformly \ at \ random \ from \ } V(G(n,m))$ 



$$d^+(r) \sim \text{Po}(c)$$
  
 $d^+(u) \sim \text{Po}(c)$ 

$$d^+(v) \sim \text{Po}(c)$$

#### Benjamini-Schramm local weak limit

[ BENJAMINI-SCHRAMM 2001; ALDOUS-STEELE 2004]

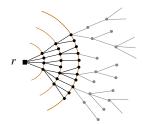
- a rooted graph is a pair (H, r) of a graph H and a vertex  $r \in V(H)$
- two rooted graphs  $(H_1, r_1)$  and  $(H_2, r_2)$  are isomorphic,

$$(H_1,r_1) \cong (H_2,r_2)$$

if  $\exists$  isomorphism  $\phi$  from  $H_1$  onto  $H_2$  with  $\phi(r_1) = r_2$ 

• given a rooted graph (H, r) and  $\ell \in \mathbb{N} := \{1, 2, \ldots\}$ , let

$$B_{\ell}(H,r) := H\left[\left\{v \in V(H) : d_{H}(v,r) \leq \ell\right\}\right]$$



#### Benjamini-Schramm local weak limit — cont'd

#### Definition

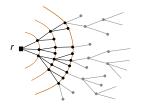
[ BENJAMINI-SCHRAMM 2001; ALDOUS-STEELE 2004]

Given two random rooted graphs  $(G_1, r_1)$  and  $(G_2, r_2)$  with  $G_1 = G_1(n)$ , the local weak limit of  $(G_1, r_1)$  is  $(G_2, r_2)$ , denoted by

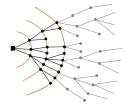
$$(G_1, r_1) \xrightarrow{d} (G_2, r_2)$$

if for each fixed rooted graph  $(H, r_H)$  and  $\ell \in \mathbb{N}$ 

$$\mathbb{P}\Big[B_{\ell}\left(G_{1},r_{1}\right) \;\cong\; \left(H,r_{H}\right)\,\Big] \quad \xrightarrow{n\to\infty} \quad \mathbb{P}\Big[B_{\ell}\left(G_{2},r_{2}\right) \;\cong\; \left(H,r_{H}\right)\,\Big]$$







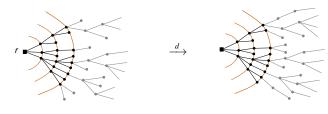
# Erdős-Rényi random graph vs Galton-Watson tree

- $G = G(n,m) \in_{R} \mathcal{G}(n,m)$
- $\bullet$   $r \in_R V(G)$

If 
$$2m/n \xrightarrow{n\to\infty} c \in [0,\infty)$$
, then

$$(G,r)$$
  $\stackrel{d}{\longrightarrow}$  GWT  $(c)$ 

where GWT(c) is the Galton–Watson tree with offspring distribution Po(c)



i.e., 
$$\mathbb{P}\Big[B_{\ell}\left(G,r\right)\cong\left(H,r_{H}\right)\Big]$$

$$\xrightarrow{\to\infty}$$
  $\mathbb{P}\left[B_{\ell}\right]$  (G

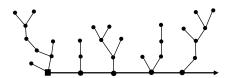
$$\mathbb{P}\Big[B_{\ell}\left(\mathrm{GWT}\left(c\right)\right)\cong\left(H,r_{H}\right)\Big]$$

#### Local weak limit of a random tree

- $T = T(n) \in_{\mathbb{R}} \mathcal{T}(n)$ a tree chosen uniformly at random from the class of all trees (i.e., acyclic connected graphs) on vertex set [n]
- $r \in_R V(T)$

Theorem 
$$\hspace{1cm} [ \hspace{1cm} \texttt{GRIMMETT 1980/1981} \hspace{1cm} ]$$
 
$$(T,r) \hspace{1cm} \stackrel{d}{\longrightarrow} \hspace{1cm} T_{\infty}$$

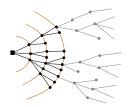
Skeleton tree  $T_{\infty}$ 



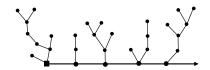
a rooted tree obtained from an infinite path by replacing each vertex of the path by an independent Galton-Watson tree  $\mathrm{GWT}\,(1)$ 

#### Local weak limits

GWT(c) Galton–Watson tree: local weak limit of ER random graph



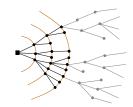
 $T_{\infty}$  Skeleton tree: local weak limit of a uniform random tree



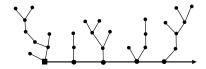
#### Part III.

# Local weak limit of a random planar graph

GWT(c) Galton–Watson tree



 $T_{\infty}$  Skeleton tree



- $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$  a uniform random planar graph
- $r \in_R V(P)$  a vertex chosen uniformly at random from V(P)

- $lackbox{0.5} P = P(n,m) \in_{R} \mathcal{P}(n,m)$  a uniform random planar graph
- lacktriangledown  $r \in_R V(P)$  a vertex chosen uniformly at random from V(P)

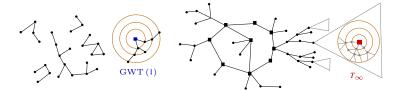
# Theorem $\hbox{[ K.-Missethan 2021+]}$

 $(P,r) \xrightarrow{d} \operatorname{GWT}(c)$ 

- $\bullet$   $r \in_R V(P)$

# Theorem [ K.-Missethan 2021+ ]

$$(P,r) \xrightarrow{d} (2-c) \text{ GWT } (1) + (c-1) T_{\infty}$$

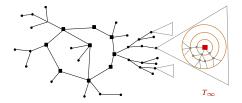


i.e., for each rooted graph  $(H, r_H)$  and  $\ell \in \mathbb{N}$ , we have

$$\mathbb{P}\Big[B_{\ell}\left(P,r\right)\cong\left(H,r_{H}\right)\Big]\xrightarrow{n\to\infty}\left(2-c\right)\mathbb{P}\Big[B_{\ell}\left(\mathrm{GWT}\left(1\right)\right)\cong\left(H,r_{H}\right)\Big]+\left(c-1\right)\mathbb{P}\Big[B_{\ell}\left(T_{\infty}\right)\cong\left(H,r_{H}\right)\Big]$$

- $\bullet$   $r \in_{R} V(P)$

Theorem [ K.-Missethan 2021+ ]  $(P,r) \quad \stackrel{d}{\longrightarrow} \quad T_{\infty}$ 

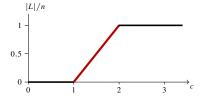


| Part IV | <i>'</i> . |  |  |
|---------|------------|--|--|
| Main p  | roof ideas |  |  |

### Phase transition in a random planar graph

$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
 and  $2m/n \to c \in (1,6]$   
L largest component of  $P$ 

Theorem |L| = (1+o(1)) (c-1) n If  $c \in [2,6]$ , whp |L| = (1+o(1)) n

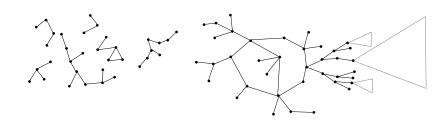


# Global structure of a random planar graph

$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
 and  $2m/n \rightarrow c \in (1,2)$ 

L largest component of P

$$S = P \setminus L$$
 'small' part of  $P$ 



#### Global structure of the small part

$$P=P(n,m)\in_{\mathbb{R}}\mathcal{P}(n,m)$$
 and  $2m/n\to c\in(1,2)$   $L$  largest component of  $P$   $S=P\setminus L$  'small' part of  $P$ 

The small part S 'behaves similarly' like

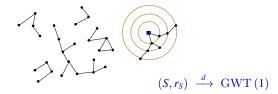
a critical ER random graph  $G(\bar{n}, \bar{m})$  with  $\bar{n} = (2-c)n$  and  $2\bar{m}/\bar{n} \rightarrow 1$ 

#### Global structure of the small part

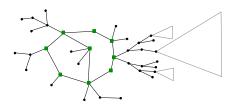
$$P=P(n,m)\in_{\mathbb{R}}\mathcal{P}(n,m)$$
 and  $2m/n\to c\in(1,2)$   $L$  largest component of  $P$   $S=P\setminus L$  'small' part of  $P$   $r_S\in_{\mathbb{R}}V(S)$ 

The small part S 'behaves similarly' like

a critical ER random graph  $G(\bar{n},\bar{m})$  with  $\bar{n}=(2-c)\,n$  and  $2\bar{m}/\bar{n}\to 1$ 



$$P=P(n,m)\in_{\it R}\mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \, o \, c \in (1,2)$$
  $L \quad {\rm largest\ component\ of\ }P$   $C \quad {\rm 2-core\ }= \quad {\rm max\ subgraph\ of\ }L\ {\rm with\ min\ deg} \geq {\rm two}$ 



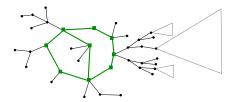
$$P=P(n,m)\in_{\it R}\mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \, 
ightarrow \, c \in (1,2)$$
  $L$  largest component of  $P$   $C$  2-core  $=$  max subgraph of  $L$  with min deg  $\geq$  two

- |L| = (1 + o(1)) (c 1) n and |C| = o(n)
- L = C + each vertex in V(C) replaced by a rooted tree



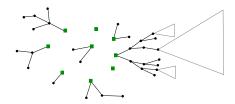
$$P=P(n,m)\in_{\it R}\mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \, o \, c \in (1,2)$$
  $L$  largest component of  $P$   $C$  2-core = max subgraph of  $L$  with min deg  $\geq$  two

- |L| = (1 + o(1)) (c 1) n and |C| = o(n)
- L = C + each vertex in V(C) replaced by a rooted tree



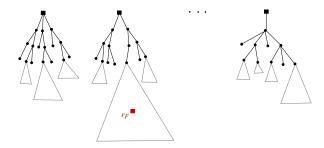
$$P=P(n,m)\in_{\it R} \mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \, o \, c \in (1,2)$$
  $L \quad {\rm largest\ component\ of\ } P$   $C \quad {\rm 2-core\ } = \quad {\rm max\ subgraph\ of\ } L {
m\ with\ min\ deg} \geq {\rm two}$ 

- |L| = (1 + o(1)) (c 1) n and |C| = o(n)
- L = C + each vertex in V(C) replaced by a rooted tree



#### Local weak limit of a random forest

- $F = F(n,t) \in_{\mathbb{R}} \mathcal{F}(n,t)$  a forest on vertex set [n] with t tree components

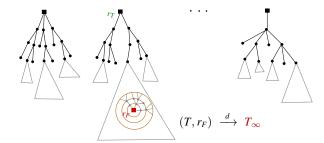


#### Local weak limit of a random forest

- $F = F(n,t) \in_{\mathbb{R}} \mathcal{F}(n,t)$  a forest on vertex set [n] with t tree components
- $\bullet$   $r_F \in_R V(F)$  a vertex chosen uniformly at random from V(F)
- $r_T$  the root of the tree component T in F that contains  $r_F$

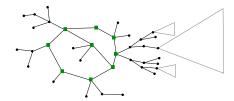
Lemma [ K.-Missethan 2021+ ]

If 
$$t=t(n)=o(n)$$
, then whp  $d_F(r_F,r_T)=\omega(1)$  and 
$$(F,r_F) \quad \stackrel{d}{\longrightarrow} \quad T_{\infty}$$



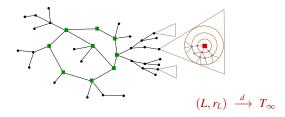
$$P=P(n,m)\in_{\it R} \mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \, 
ightarrow \, c \in (1,2)$$
  $L \quad {\rm largest\ component\ of\ } P$   $C \quad {\rm 2-core\ } = \quad {\rm max\ subgraph\ of\ } L {\rm\ with\ min\ deg\ } \geq {\rm\ two\ }$ 

- |L| = (1 + o(1)) (c 1) n and |C| = o(n)
- L = C + each vertex in V(C) replaced by a rooted tree



$$P=P(n,m)\in_{\it R}\mathcal{P}(n,m) \quad {\rm and} \quad 2m/n \to c \in (1,2)$$
  $L$  largest component of  $P$   $C$  2-core = max subgraph of  $L$  with min deg  $\geq$  two  $r_L \in_{\it R} V(L)$ 

- |L| = (1 + o(1)) (c 1) n and |C| = o(n)
- lacktriangle L = C + each vertex in V(C) replaced by a rooted tree



#### Finer view of local weak limits

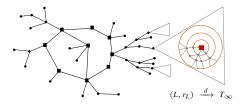
$$P = P(n,m) \in_{R} \mathcal{P}(n,m)$$
 and  $2m/n \rightarrow c \in (1,2)$ 

L largest component of P and  $|L| \sim (c-1)n$ 

$$r_L \in_R V(L)$$

Theorem [ K.-Missethan 2021+]

$$(L, r_L) \xrightarrow{d} T_{\infty}$$



#### Finer view of local weak limits

$$P = P(n,m) \in_{\mathcal{R}} \mathcal{P}(n,m)$$
 and  $2m/n \rightarrow c \in (1,2)$ 

L largest component of P and 
$$|L| \sim (c-1)n$$

$$\mathit{S} = \mathit{P} \setminus \mathit{L} \ \sim \ \operatorname{crtitical} \ \mathsf{ER} \ \mathrm{random} \ \mathrm{graph} \ \ \mathrm{and} \ \ \ |\mathit{S}| \ \sim \ (2-\mathit{c}) \, \mathit{n}$$

 $r_S \in_R V(S), \quad r_L \in_R V(L)$ 

$$(S, r_S)$$
  $\stackrel{d}{\longrightarrow}$   $GWT(1)$   
 $(L, r_L)$   $\stackrel{d}{\longrightarrow}$   $T_{\infty}$ 

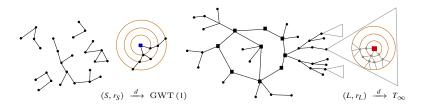
$$(S, r_S) \xrightarrow{d} GWT$$



#### Finer view of local weak limits

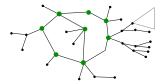
$$P = P(n,m) \in_{R} \mathcal{P}(n,m)$$
 and  $2m/n \to c \in (1,2)$   
 $L$  largest component of  $P$  and  $|L| \sim (c-1)n$   
 $S = P \setminus L \sim \text{crtitical ER random graph}$  and  $|S| \sim (2-c)n$   
 $r_{S} \in_{R} V(S), r_{L} \in_{R} V(L), \text{ and } r_{P} \in_{R} V(P)$ 

Theorem 
$$\begin{array}{ccc} (S,r_S) & \xrightarrow{d} & \mathrm{GWT}\,(1) \\ (L,r_L) & \xrightarrow{d} & T_{\infty} \\ (P,r_P) & \xrightarrow{d} & (2-c)\,\mathrm{GWT}\,(1) \,+\, (c-1)\,T_{\infty} \end{array}$$

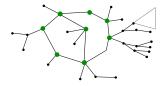


 $P = P(n, m) \in_{\mathbb{R}} \mathcal{P}(n, m)$  and  $2m/n \rightarrow c \in (1, 2)$ 

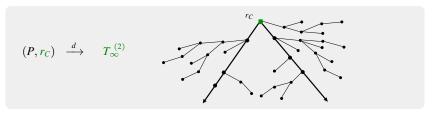
C 2-core = maximal subgraph of largest comp L of P with min deg  $\geq 2$ 



 $\begin{array}{ll} P=P(n,m)\in_{\it R} \mathcal{P}(n,m) & \text{and} & 2m/n \to c \in (1,2) \\ C & \text{2-core} & = & \text{maximal subgraph of largest comp $L$ of $P$ with min deg $\geq 2$} \\ r_C \in_{\it R} V\left(C\right) \end{array}$ 

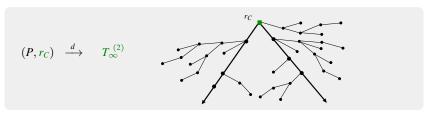


 $\begin{array}{ll} P=P(n,m)\in_{\mathit{R}}\mathcal{P}(n,m) & \text{and} & 2m/n \ \rightarrow \ c\in(1,2) \\ C & \text{2-core} & = \text{ maximal subgraph of largest comp } L \text{ of } P \text{ with min deg} \geq 2 \\ r_C\in_{\mathit{R}}V\left(C\right) \end{array}$ 



 $T_{\infty}^{(\ell)}$  a rooted tree obtained by replacing each vertex of  $\ell$  infinite paths rooted at a common vertex by an independent  $\mathrm{GWT}\,(1)$ 

 $\begin{array}{ll} P=P(n,m)\in_{\mathit{R}}\mathcal{P}(n,m) & \text{and} & 2m/n \ \rightarrow \ c\in(1,2) \\ C & \text{2-core} & = \text{ maximal subgraph of largest comp } L \text{ of } P \text{ with min deg} \geq 2 \\ r_C\in_{\mathit{R}}V\left(C\right) \end{array}$ 



 $T_{\infty}^{(\ell)}$  a rooted tree obtained by replacing each vertex of  $\ell$  infinite paths rooted at a common vertex by an independent GWT (1)

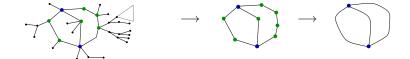
cf. local limit of small part S and largest component L of P

$$\begin{array}{ccc} (S,r_S) & \xrightarrow{d} & \mathrm{GWT}\left(1\right) = & T_{\infty}^{\left(0\right)} \\ (L,r_L) & \xrightarrow{d} & T_{\infty} = & T_{\infty}^{\left(1\right)} \end{array}$$

 $P = P(n, m) \in_{\mathbb{R}} \mathcal{P}(n, m)$  and  $2m/n \to c \in (1, 2)$ 

C 2-core = maximal subgraph of largest comp L of P with min deg  $\geq 2$ 

K kernel = multigraph obtained from C by replacing each bare path (i.e., maximal path with only internal vertices of degree two) by an edge

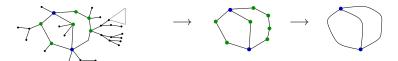


$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
 and  $2m/n \to c \in (1,2)$ 

C 2-core = maximal subgraph of largest comp L of P with min deg  $\geq 2$ 

kernel = multigraph obtained from C by replacing each bare path(i.e., maximal path with only internal vertices of degree two)by an edge

 $r_K \in_R V(K)$ 



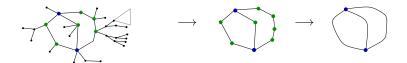


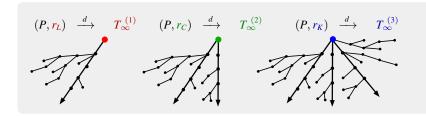
$$P = P(n, m) \in_{\mathbb{R}} \mathcal{P}(n, m)$$
 and  $2m/n \rightarrow c \in (1, 2)$ 

C 2-core = maximal subgraph of largest comp L of P with min deg  $\geq 2$ 

K kernel = multigraph obtained from C by replacing bare path by edge

 $r_{K} \in_{R} V(K)$ ,  $r_{C} \in_{R} V(C)$ ,  $r_{L} \in_{R} V(L)$ 

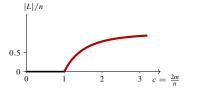




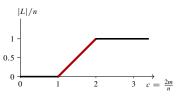
#### **Summary and open problems**

(1) Phase transitions and critical phenomena

Uniform random graph G(n, m)



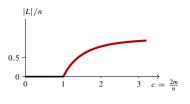
Random planar graph P(n, m)



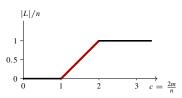
## Summary and open problems

(1) Phase transitions and critical phenomena

Uniform random graph G(n, m)



Random planar graph P(n, m)



 $2m/n \rightarrow c > 1$  (supercritical)

- $S=G(n,m)\setminus L$  'behaves similarly' like a subcritical ER random graph  $G(\bar{n},\bar{m})$  with  $\bar{n}=(1-\rho)\,n$  and  $2\bar{m}/\bar{n}<1$
- $S=P(n,m)\setminus L$  'behaves similarly' like a critical ER random graph  $G(\bar{n},\bar{m})$  with  $\bar{n}=(2-c)\,n$  and  $2\bar{m}/\bar{n}\,\to\,1$

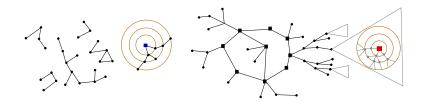
(2) Local weak limit of a random planar graph

If 
$$P=P(n,m)\in_R \mathcal{P}(n,m),\ 2m/n \to c\in (1,2),$$
 and  $r_P\in_R V(P),$  then 
$$(P,r_P) \stackrel{d}{\longrightarrow} (2-c)\operatorname{GWT}(1) + (c-1)T_{\infty}$$



(2) Local weak limit of a random planar graph

If 
$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
,  $2m/n \to c \in (1,2)$ , and  $r_P \in_{\mathbb{R}} V(P)$ , then 
$$(P,r_P) \stackrel{d}{\longrightarrow} (2-c) \operatorname{GWT}(1) + (c-1) T_{\infty}$$

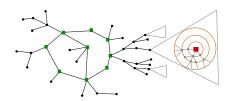


→ extended to a random graph on a surface with constant genus

Let  $P = P(n, m) \in_{R} \mathcal{P}(n, m)$  and  $r_{P} \in_{R} V(P)$ 

(3) In 2nd critical regime when  $2m/n \rightarrow 2$ 

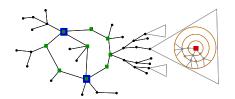
$$|L| \sim n$$
,  $|2\text{-core}| = o(n)$ , and  $(P, r_P) \stackrel{d}{\longrightarrow} T_{\infty} = T_{\infty}^{(1)}$ 



Let 
$$P = P(n, m) \in_{R} \mathcal{P}(n, m)$$
 and  $r_{P} \in_{R} V(P)$ 

(3) In 2nd critical regime when  $2m/n \rightarrow 2$ 

$$|L| \sim n$$
,  $|2\text{-core}| = o(n)$ , and  $(P, r_P) \stackrel{d}{\longrightarrow} T_{\infty} = T_{\infty}^{(1)}$ 



- (4) Conjecture:  $\exists 2 < t_c < 4.42$  and 0 < a,b < 1 s.t.  $2m/n \rightarrow \beta \in (2,t_c)$ ,
  - |2-core| = (a+b+o(1)) n, |kernel| = (b+o(1)) n, and