Topological Aspects of Random Graphs

Mihyun Kang

20th Conference on Random Structures \& Algorithms 1-5 August 2022

Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

* genus of a graph G
$=$ minimum number of handles that must be attached to sphere in order to embed G without any crossing edges
* the case when genus is 0 corresponds to planar graphs

K_{5}

genus of $K_{5}=1$

Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?
(2) How does a topological constraint such as

- being planar
- being embeddable on the orientable surface with given genus
affect the global and local structure of a random graph, e.g.,
- component structures
- local weak limits

Part I.

The Erdős-Rényi random graph

A uniform random graph

$G(n, m) \in_{R} \mathcal{G}(n, m)$
$\mathcal{G}(n, m)=$ set of all vertex-labelled simple graphs
on vertex set $[n]:=\{1, \ldots, n\}$ with $m=m(n)$ edges
$G(n, m)=$ chosen uniformly at random from $\mathcal{G}(n, m)$

Throughout the talk

- whp $=$ with high probability
$=$ with probability tending to one as $n \rightarrow \infty$
- all asymptotics are taken as $n \rightarrow \infty$

Emergence of the giant component

$L_{1}=$ largest component in $G(n, m)$
$\left|L_{1}\right|=\#$ vertices in L_{1}
$m=d \cdot \frac{n}{2}$

Theorem

- If $d<1$ (subcritical), whp $\quad\left|L_{1}\right|=O(\log n)$
- If $d>1$

whp
$\left|L_{1}\right|=\Theta(n)$

Largest component in supercritical $G(n, m)$

$m=d \cdot \frac{n}{2}$ for $d>1$
$\rho=1-\exp (-d \rho)$
(survival prob. of GW branching process with offspring dist. Po (d))

Theorem

whp

$$
\left|L_{1}\right|=(1+o(1)) \rho n
$$

Planarity of $G(n, m)$

$m=d \cdot \frac{n}{2}$
Theorem

- If $d<1$, whp
- each component is either a tree or unicyclic component
- $G(n, m)$ is planar
- If $d>1$, whp
- largest component contains \geq two cycles
- $G(n, m)$ is not planar

Genus of supercritical $G(n, m)$

$$
\begin{aligned}
& m=d \cdot \frac{n}{2} \text { for } d>1 \\
& g=\text { genus of } G(n, m)
\end{aligned}
$$

Theorem
whp

$$
g=(1+o(1)) \mu(d) d \cdot \frac{n}{2}
$$

$$
\frac{g}{m} \sim \mu(d) \nearrow \frac{1}{2}
$$

Genus of supercritical $G(n, m)$

$m=d \cdot \frac{n}{2}$ for $d>1$
$g=$ genus of $G(n, m)$

Theorem
whp

$$
g=(1+o(1)) \mu(d) d \cdot \frac{n}{2}
$$

$$
\frac{g}{m} \sim \mu(d) \nearrow \frac{1}{2}
$$

* when $n \ll m \leq\binom{ n}{2}, \frac{g}{m}$ decreases from $\frac{1}{2}$ to $\frac{1}{6}$

Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?
(2) How does a topological constraint such as

- being planar
- being embeddable on the orientable surface with given genus
affect the global and local structure of a random graph, e.g.,
- component structures
- local weak limits

A uniform random graph on a surface

$$
\begin{aligned}
& g \in \mathbb{N}_{0}=\{0,1,2, \ldots\} \\
& S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m) \\
& \qquad \begin{aligned}
\mathcal{S}_{g}(n, m)= & \text { set of all vertex-labelled simple graphs on }[n] \\
& \text { with } m=m(n) \text { edges that are } \\
& \quad \text { embeddable on the orientable surface of genus } g
\end{aligned} \\
& S_{g}(n, m)= \\
& \text { chosen uniformly at random from } \mathcal{S}_{g}(n, m)
\end{aligned}
$$

A uniform random graph on a surface

$$
\begin{aligned}
& g \in \mathbb{N}_{0}=\{0,1,2, \ldots\} \\
& \begin{array}{l}
S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m)
\end{array} \\
& \qquad \begin{aligned}
\mathcal{S}_{g}(n, m)= & \text { set of all vertex-labelled simple graphs on }[n] \\
& \text { with } m=m(n) \text { edges that are } \\
& \quad \text { embeddable on the orientable surface of genus } g
\end{aligned} \\
& \qquad \begin{aligned}
S_{g}(n, m)= & \text { chosen uniformly at random from } \mathcal{S}_{g}(n, m)
\end{aligned} \\
& \text { Note } \\
& \text { ○ } \mathcal{S}_{0}(n, m) \subset \ldots \subset \mathcal{S}_{g}(n, m) \subset \mathcal{S}_{g+1}(n, m) \subset \ldots \subset \mathcal{G}(n, m)
\end{aligned}
$$

A uniform random graph on a surface

$$
\begin{aligned}
& g \in \mathbb{N}_{0}=\{0,1,2, \ldots\} \\
& S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m) \\
& \mathcal{S}_{g}(n, m)=\text { set of all vertex-labelled simple graphs on }[n] \\
& \text { with } m=m(n) \text { edges that are } \\
& \text { embeddable on the orientable surface of genus } g \\
& S_{g}(n, m)=\text { chosen uniformly at random from } \mathcal{S}_{g}(n, m) \\
& \text { Note } \\
& \text { - } \mathcal{S}_{0}(n, m) \subset \ldots \subset \mathcal{S}_{g}(n, m) \subset \mathcal{S}_{g+1}(n, m) \subset \ldots \subset \mathcal{G}(n, m) \\
& \text { - If } 1 \leq m<\frac{n}{2} \text {, then } \\
& \frac{\left|\mathcal{S}_{0}(n, m)\right|}{|\mathcal{G}(n, m)|} \quad \xrightarrow{n \rightarrow \infty} 1 \\
& \text { - If } m>3 n-6+6 g \text {, then } \\
& \mathcal{S}_{g}(n, m)=\emptyset
\end{aligned}
$$

Part II.

Random graphs on surfaces with constant genus

Two critical phases

$g \in \mathbb{N}_{0} \quad$ constant
$L_{1}=$ largest component in $S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m)$
$m=d \cdot \frac{n}{2}$
Theorem

- If $d \in(1,2)$, whp $\quad\left|L_{1}\right|=(1+o(1))(d-1) n$
- If $d \in[2,6]$, whp
$\left|L_{1}\right|=(1+o(1)) n$

ER random graph vs random graphs on surfaces

Uniform random graph $G(n, m)$

Random graph on a surface $S_{g}(n, m)$

ER random graph vs random graphs on surfaces

Uniform random graph $G(n, m)$

Random graph on a surface $S_{g}(n, m)$

* fragment $R=G(n, m) \backslash L_{1}$ is subcritical (i.e., $2 m_{R} / n_{R}<1$)
* fragment $R=S_{g}(n, m) \backslash L_{1}$ is critical \quad (i.e., $2 m_{R} / n_{R} \rightarrow 1$)

ER random graph vs random graphs on surfaces

Uniform random graph $G(n, m)$
Random graph on a surface $S_{g}(n, m)$

Weakly supercritical random graphs

$$
\begin{aligned}
& m=\frac{n}{2}+s \text { for } s>0 \text { and } n^{2 / 3} \ll s \ll n \\
& G(n, m) \\
& \text { [BOLLOBÁs 84; ŁUCZAK 90] } \\
& \text { Whp }\left|L_{1}\right|=(4+o(1)) s \\
& \begin{array}{l}
S_{g}(n, m) \\
\text { [K.-ŁUCZAK 2012; K.-MOSSHAMMER-SPRÜSSEL 2020] } \\
\text { whp }
\end{array} \\
& \qquad \begin{array}{l}
\left|L_{1}\right|=(2+o(1)) s
\end{array}
\end{aligned}
$$

Part III.

Local structure of random graphs

Part III.

Local structure of random graphs

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect its local structure?

Local structure of Erdős-Rényi random graph

$$
\begin{aligned}
G & =G(n, m) \in_{R} \mathcal{G}(n, m) \\
m & =d \cdot \frac{n}{2}
\end{aligned}
$$

Local structure of Erdős-Rényi random graph

$G=G(n, m) \in_{R} \mathcal{G}(n, m)$
$m=d \cdot \frac{n}{2}$
$r \in_{R} V(G)=$ a vertex chosen uniformly at random from $V(G)$

$$
d^{+}(r) \sim \operatorname{Po}(d)
$$

Local structure of Erdős-Rényi random graph

$G=G(n, m) \in_{R} \mathcal{G}(n, m)$
$m=d \cdot \frac{n}{2}$
$r \in_{R} V(G)=$ a vertex chosen uniformly at random from $V(G)$

$$
\begin{aligned}
d^{+}(r) & \sim \operatorname{Po}(d) \\
d^{+}(u) & \sim \operatorname{Po}(d) \\
d^{+}(v) & \sim \operatorname{Po}(d)
\end{aligned}
$$

Erdős-Rényi random graph vs Galton-Watson tree

$G=G(n, m) \in_{R} \mathcal{G}(n, m) \quad$ and $\quad r \in_{R} V(G)$

If $2 m / n \xrightarrow{n \rightarrow \infty} d \in[0, \infty)$, then

$$
(G, r) \quad \xrightarrow{D} \quad \operatorname{GWT}(d)
$$

where GWT (d) is the Galton-Watson tree with offspring distribution $\operatorname{Po}(d)$

Erdős-Rényi random graph vs Galton-Watson tree
$G=G(n, m) \in_{R} \mathcal{G}(n, m) \quad$ and $\quad r \in_{R} V(G)$

If $2 m / n \xrightarrow{n \rightarrow \infty} d \in[0, \infty)$, then

$$
(G, r) \quad \xrightarrow{D} \quad \operatorname{GWT}(d)
$$

where GWT (d) is the Galton-Watson tree with offspring distribution $\operatorname{Po}(d)$

i.e., for each rooted graph $\left(H, r_{H}\right)$ and $\ell \in \mathbb{N}$, we have

$$
\mathbb{P}\left[B_{\ell}(G, r) \cong\left(H, r_{H}\right)\right] \quad \xrightarrow{n \rightarrow \infty} \quad \mathbb{P}\left[B_{\ell}(\operatorname{GWT}(d)) \cong\left(H, r_{H}\right)\right]
$$

Local weak limit of a random tree

$T=T(n) \in_{R} \mathcal{T}(n)$
$=$ a tree chosen uniformly at random from the class of all trees on $[n]$
$r \in_{R} V(T)$

Theorem
[Grimmett 1980/1981]

$$
(T, r) \quad \xrightarrow{D} \quad T_{\infty}
$$

Skeleton tree T_{∞}

$=$ a rooted tree obtained from an infinite path by replacing each vertex of the path by an independent Galton-Watson tree GWT (1)

Benjamini-Schramm local weak limits

GWT (d) Galton-Watson tree
$T_{\infty} \quad$ Skeleton tree

Local weak limit of a random graph on a surface

$S=S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m)$
$r \in_{R} V(S) \quad$ a vertex chosen uniformly at random from $V(S)$
$g \in \mathbb{N}_{0}$ constant and $2 m / n \xrightarrow{n \rightarrow \infty} d \in[1,2]$

Local weak limit of a random graph on a surface

$S=S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m)$
$r \in_{R} V(S) \quad$ a vertex chosen uniformly at random from $V(S)$
$g \in \mathbb{N}_{0}$ constant and $2 m / n \xrightarrow{n \rightarrow \infty} d \in[1,2]$

Theorem

$$
(S, r) \quad \xrightarrow{D} \quad(2-d) \operatorname{GWT}(1)+(d-1) T_{\infty}
$$

Local weak limit of a random graph on a surface

$S=S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m)$
$r \in_{R} V(S)$ a vertex chosen uniformly at random from $V(S)$
$g \in \mathbb{N}_{0}$ constant and $2 m / n \xrightarrow{n \rightarrow \infty} d \in[1,2]$

Theorem

$$
(S, r) \quad \xrightarrow{D} \quad(2-d) \operatorname{GWT}(1)+(d-1) T_{\infty}
$$

i.e., for each rooted graph $\left(H, r_{H}\right)$ and $\ell \in \mathbb{N}$, we have
$\mathbb{P}\left[B_{\ell}(S, r) \cong\left(H, r_{H}\right)\right] \xrightarrow{n \rightarrow \infty}$

$$
(2-d) \mathbb{P}\left[B_{\ell}(\operatorname{GWT}(1)) \cong\left(H, r_{H}\right)\right]+(d-1) \mathbb{P}\left[B_{\ell}\left(T_{\infty}\right) \cong\left(H, r_{H}\right)\right]
$$

Global structure of a random graph on a surface

$$
\begin{array}{ll}
S=S_{g}(n, m) \in_{R} & \mathcal{S}_{g}(n, m) \quad \text { and } \quad 2 m / n \rightarrow d \in(1,2) \\
L_{1} & \text { largest component of } S \\
R=S \backslash L_{1} \quad & \text { fragment of } S
\end{array}
$$

Global structure of a random graph on a surface

$$
\begin{array}{ll}
S=S_{g}(n, m) \in_{R} & \mathcal{S}_{g}(n, m) \quad \text { and } \quad 2 m / n \rightarrow d \in(1,2) \\
L_{1} & \text { largest component of } S \\
R=S \backslash L_{1} \quad & \text { fragment of } S
\end{array}
$$

- R 'behaves similarly' like a critical ER random graph $G\left(n_{R}, m_{R}\right)$ with $\quad n_{R}=(2-d) n \quad$ and $\quad 2 m_{R} / n_{R} \rightarrow 1$

Global structure of a random graph on a surface

$S=S_{g}(n, m) \in_{R}$	$\mathcal{S}_{g}(n, m) \quad$ and $\quad 2 m / n \rightarrow d \in(1,2)$
L_{1}	\quad largest component of S
$R=S \backslash L_{1} \quad$	fragment of S

C
2 -core $=\max$ subgraph of L_{1} with min deg \geq two

- R 'behaves similarly' like a critical ER random graph $G\left(n_{R}, m_{R}\right)$ with $\quad n_{R}=(2-d) n$ and $2 m_{R} / n_{R} \rightarrow 1$
- $L_{1}=C+$ each vertex in $V(C)$ replaced by a rooted tree

Global structure of a random graph on a surface

$S=S_{g}(n, m) \in_{R}$	$\mathcal{S}_{g}(n, m) \quad$ and $\quad 2 m / n \rightarrow d \in(1,2)$
L_{1}	\quad largest component of S
$R=S \backslash L_{1} \quad$	fragment of S

C
2 -core $=\max$ subgraph of L_{1} with min deg \geq two

- R 'behaves similarly' like a critical ER random graph $G\left(n_{R}, m_{R}\right)$ with $\quad n_{R}=(2-d) n$ and $2 m_{R} / n_{R} \rightarrow 1$
- $L_{1}=C+$ each vertex in $V(C)$ replaced by a rooted tree

Global structure of a random graph on a surface

$S=S_{g}(n, m) \in_{R}$	$\mathcal{S}_{g}(n, m) \quad$ and $\quad 2 m / n \rightarrow d \in(1,2)$
L_{1}	\quad largest component of S
$R=S \backslash L_{1} \quad$	fragment of S

C
2 -core $=\max$ subgraph of L_{1} with min deg \geq two

- R 'behaves similarly' like a critical ER random graph $G\left(n_{R}, m_{R}\right)$ with $\quad n_{R}=(2-d) n$ and $2 m_{R} / n_{R} \rightarrow 1$
- $L_{1}=C+$ each vertex in $V(C)$ replaced by a rooted tree

Finer view of local weak limits

$$
\begin{array}{ll}
S=S_{g}(n, m) \in \in_{R} & \mathcal{S}_{g}(n, m) \quad \text { and } 2 m / n \rightarrow d \in(1,2) \\
L_{1} & \text { largest component of } S \\
R=S \backslash L_{1} \sim & \text { critical ER random graph } \\
r_{R} \in R V(R), \quad r_{L_{1}} \in_{R} V\left(L_{1}\right)
\end{array}
$$

Theorem

$$
\begin{array}{lll}
\left(R, r_{R}\right) & \xrightarrow{D} & \text { GWT (1) } \\
\left(L_{1}, r_{L_{1}}\right) & \xrightarrow{D} & T_{\infty}
\end{array}
$$

$$
\left(R, r_{R}\right) \xrightarrow{D} \text { GWT }(1)
$$

Finer view of local weak limits

$S=S_{g}(n, m) \in_{R} \mathcal{S}_{g}(n, m) \quad$ and $\quad 2 m / n \rightarrow d \in(1,2)$
$L_{1} \quad$ largest component of S and $\quad\left|L_{1}\right| \sim(d-1) n$
$R=S \backslash L_{1} \sim$ critical ER random graph and $\quad|R| \sim(2-d) n$
$r_{R} \in_{R} V(R), \quad r_{L_{1}} \in_{R} V\left(L_{1}\right) \quad$ and $\quad r_{S} \in_{R} V(S)$

Theorem

$$
\begin{array}{lll}
\left(R, r_{R}\right) & \xrightarrow{D} & \text { GWT }(1) \\
\left(L_{1}, r_{L_{1}}\right) & \xrightarrow{D} & T_{\infty} \\
\left(S, r_{S}\right) & \xrightarrow{D} & (2-d) \operatorname{GWT}(1)+(d-1) T_{\infty}
\end{array}
$$

$$
\left(R, r_{R}\right) \xrightarrow{D} \operatorname{GWT}(1)
$$

Part IV.

Random graphs on surfaces with non-constant genus

ER random graph vs random graphs on surfaces

IF whp the genus of $G(n, m)$ is $T=T(n, m)$,
THEN $\quad \forall g \geq T$

$$
\frac{\left|\mathcal{S}_{g}(n, m)\right|}{|\mathcal{G}(n, m)|} \geq \frac{\left|\mathcal{S}_{T}(n, m)\right|}{|\mathcal{G}(n, m)|} \xrightarrow{n \rightarrow \infty} 1 .
$$

ER random graph vs random graphs on surfaces

IF whp the genus of $G(n, m)$ is $T=T(n, m)$,
THEN $\forall g \geq T$

$$
\frac{\left|\mathcal{S}_{\mathcal{B}}(n, m)\right|}{|\mathcal{G}(n, m)|} \geq \frac{\left|\mathcal{S}_{T}(n, m)\right|}{|\mathcal{G}(n, m)|} \xrightarrow{n \rightarrow \infty} 1 .
$$

In other words, for $\forall g \geq T$,
$S_{g}(n, m)$ is indistinguishable from $G(n, m)$ under viewpoint of whp-properties

If for every property \mathcal{A}
whp $G(n, m)$ satisfies \mathcal{A} iff whp $S_{g}(n, m)$ satisfies \mathcal{A}
then we say $G(n, m)$ and $S_{g}(n, m)$ are contiguous.

Contiguity thresholds

$T=$ contiguity threshold for $S_{g}(n, m)$ and $G(n, m)$

Theorem

- If $m=\frac{n}{2}+s$ for $s>0$ and $n^{2 / 3} \ll s \ll n$ (weakly supercritical), whp

$$
T=\frac{8 s^{3}}{3 n^{2}} \ll n
$$

- If $m=d \cdot \frac{n}{2}$ for $d>1 \quad$ (supercritical),
whp

$$
T=\nu(d) \cdot n
$$

Weakly supercritical regime

$$
\begin{aligned}
& m=\frac{n}{2}+s \text { for } s=s(n)>0 \text { and } n^{2 / 3} \ll s \ll n \\
& T=\frac{8 s^{3}}{3 n^{2}}=\text { contiguity threshold } \\
& L_{1}=\text { largest component } \\
& G(n, m) \\
& \left|L_{1}\right|=(4+o(1)) s \\
& S_{g}(n, m) \\
& \text { whp } \\
& \left|L_{1}\right|=(4+o(1)) s \quad \text { if } \quad g \gg T \\
& \left|L_{1}\right|=(2+o(1)) s \quad \text { if } \quad g \ll T
\end{aligned}
$$

Supercritical regime

$m=d \cdot \frac{n}{2}$ for $1<d<2$
$T=\nu(d) \cdot n=$ contiguity threshold
$L_{1}=$ largest component

Theorem

whp

$$
\begin{array}{ll}
\left|L_{1}\right|=(1+o(1)) \rho n & \text { if } \quad g \gg T \\
\left|L_{1}\right|=(1+o(1))(d-1) n & \text { if } \quad g \ll T
\end{array}
$$

Summary and open problems

Global properties of $S_{g}(n, m)$ when $m=d \cdot \frac{n}{2}$ for $d>1$

- contiguity threshold $T=\nu(d) \cdot n$
- largest component L_{1}

Q1. Order of largest component when $g=\Theta(T)$?
Q2. Length of longest cycle when $g \ll T$ or $g=\Theta(T)$?

