Topological Aspects of Random Graphs

Mihyun Kang

TU

Grazm

20th Conference on Random Structures & Algorithms
1-5 August 2022



Guiding questions/themes
(1) What is a typical genus of the Erdés-Rényi random graph?

* genus of agraph G

= minimum number of handles that must be attached to sphere

in order to embed G without any crossing edges

* the case when genus is 0 corresponds to planar graphs

Ks genus of K5 =1



Guiding questions/themes

(1) What is a typical genus of the Erdés-Rényi random graph?

(2) How does a topological constraint such as

— being planar
— being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

— component structures

— local weak limits



Part I.

The Erd6s-Rényi random graph



A uniform random graph

G(n,m) €r G(n,m)

G(n,m) = setof all vertex-labelled simple graphs
on vertex set [n] := {1,...,n} with m = m(n) edges
G(n,m) = chosen uniformly at random from G(n,m)
Throughout the talk
@ whp = with high probability

= with probability tending to one as n — o

@ all asymptotics are taken as n — oo



Emergence of the giant component

L = largest componentin G(n,m)
|Li| = # verticesin L,
m=d-3
Theorem
@ If d <1 (subcritical), whp

@ If d > 1 (supercritical), whp

O(log n)

ILi| = O(logn)

[ ERDOS-RENYI 1959 |




Largest component in supercritical G(n,m)
m=d-35 for d>1
p = 1—exp(—dp)
(survival prob. of GW branching process with offspring dist. Po (d))
Theorem

whp
ILil = (1+o(1)) pn

=

0.5




Planarity of G(n, m)
m=4d-3
Theorem [ ERDOS-RENYI 1959-60 |
Q Ifd < 1, whp

— each component is either a tree or unicyclic component

— G(n,m) is planar

@ Ifd > 1, whp
— largest component contains > two cycles

— G(n,m) is not planar



Genus of supercritical G(n, m)
m=d-3ford>1
g = genus of G(n,m)
Theorem [ DOWDEN—K.—KRIVELEVICH 2019 ]

whp g = (I+o(1) u(d)d-

zzzzzzzzzz



Genus of supercritical G(n, m)
m = d-3 ford>1

g = genus of G(n, m)
Theorem [ DOWDEN—K.—KRIVELEVICH 2019 ]

whp g = (L+o(1) pd)d- 3

* whenn < m < (}), £ decreases from j to 1 [ RODL- THOMAS 1995 ]
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Guiding questions/themes

(1) What is a typical genus of the Erd6s-Rényi random graph?

(2) How does a topological constraint such as

— being planar

— being embeddable on the orientable surface with given genus
affect the global and local structure of a random graph, e.g.,

— component structures

— local weak limits



A uniform random graph on a surface

g € No = {0,1,2,...}

Se(n,m) €r Sg(n,m)

Se(n,m)

Se(n,m)

set of all vertex-labelled simple graphs on [n]
with m = m(n) edges that are

embeddable on the orientable surface of genus g

chosen uniformly at random from S, (n, m)



A uniform random graph on a surface
g €Ny ={0,1,2,...}

Se(n,m) €r Sg(n,m)

Se(n,m) = setof all vertex-labelled simple graphs on [n]
with m = m(n) edges that are

embeddable on the orientable surface of genus g

S¢(n,m) = chosen uniformly at random from S,(n,m)

Note

@ So(n,m) C...C Sg(n,m) C Seri(n,m) C...C G(n,m)



A uniform random graph on a surface

g €Ny = {0,1,2,...}

Se(n,m) €r Sg(n,m)

Se(n,m) = setof all vertex-labelled simple graphs on [n]
with m = m(n) edges that are

embeddable on the orientable surface of genus g

S¢(n,m) = chosen uniformly at random from S,(n,m)
Note
@ So(n,m) C...C Sg(n,m) C Seri(n,m) C...C G(n,m)

@ If 1 <m < 3, then |So(n, m)]| 1
|G (n, m)]|

@ Ifm > 3n— 6+ 6g, then S;(n,m) = 0



Part Il.

Random graphs on surfaces with constant genus



g € Ny constant

Two critical phases

Ly = largest componentin Sy(n,m) €r Sy(n,m)
p— n
Theorem [ K.—tuczAk 2012; K.-MOSSHAMMER—SPRUSSEL 2020]

@ Ifd € (1,2), whp

@ Ifd € [2,6], whp

[Ly|/n

|Li]

L1

(1+0(1)) (d = )n

(I+o0(1))n




ER random graph vs random graphs on surfaces

[L1] IL1]

n n

Uniform random graph G(n, m) Random graph on a surface S,(n, m)



ER random graph vs random graphs on surfaces

1L 1Ll
n n
1 -
0.5 4 0.5 4
0 0
0 1 2 3 od=2 0 1 2 3 od=2
Uniform random graph G(n, m) Random graph on a surface S,(n, m)

* fragment R = G(n,m) \ L, is subcritical  (i.e., 2mg/nr < 1)

* fragment R = S,(n,m) \ L, is critical (i.e., 2mg/ng — 1)



ER random graph vs random graphs on surfaces

[L1] IL1]

n n

0 / . . 0 / , .
0 w 2 3 d=2 0 \}j 2 3 d=2

Uniform random graph G(n, m) Random graph on a surface S,(n, m)



Weakly supercritical random graphs

2/3

m = 5+s for s>0 and n”" <s<n

G(n,m) [ BOLLOBAS 84; LUCZAK 90 ]
whp ILi| = (4+o0(1)) s

Sg(n, m) [ K.—tuczak 2012; K.-MOSSHAMMER—SPRUSSEL 2020 ]

whp ILi| = 2+0(1))s



Part Ill.

Local structure of random graphs



Part Ill.

Local structure of random graphs

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect

its local structure?



Local structure of Erdos-Rényi random graph

G(n,m) €r G(n,m)

n
d-t



Local structure of Erdos-Rényi random graph

G = G(n,m) €r G(n,m)
m=d-3

r €r V(G) = avertex chosen uniformly at random from V(G)

d*(r) ~ Po(d)



Local structure of Erdos-Rényi random graph

G = G(n,m) €r G(n,m)
m=d-3

r €r V(G) = avertex chosen uniformly at random from V(G)

d*(r) ~ Po(d)
d"(u) ~ Po(d)

dt(v) ~ Po(d)



Erdos-Rényi random graph vs Galton—-Watson tree

G=G(n,m) €r G(n,m) and r €r V(G)

n—o0o

If 2m/n ——— d € [0,0), then
G,r) 2  GWT(@d)

where GWT (d) is the Galton—Watson tree with offspring distribution Po (d)



Erdos-Rényi random graph vs Galton—-Watson tree

G=G(n,m) €r G(n,m) and r €r V(G)

n— o0

If 2m/n ——— d € [0,0), then
G,r) 2 GWT(d)

where GWT (d) is the Galton—Watson tree with offspring distribution Po (d)

i.e., for each rooted graph (H,rx) and ¢ € N, we have

P[Bg (G,r) = (H, ry) noroo, P[Bg (GWT (d)) = (H, ra)



Local weak limit of a random tree

T = T(n) €r T(n)
= a tree chosen uniformly at random from the class of all trees on [r]

r €g V(T)

Theorem [ GRIMMETT 1980/1981 ]

Y

= arooted tree obtained from an infinite path by replacing each vertex
of the path by an independent Galton-Watson tree GWT (1)

Skeleton tree T




Benjamini-Schramm local weak limits

GWT (d) Galton—Watson tree

T~ Skeleton tree

Y



Local weak limit of a random graph on a surface

S = Sg(n,m) €r Sy(n,m)

r €g V(S) avertex chosen uniformly at random from V()

n—oo

g € Nypconstant and 2m/n —— d € [1,2]



Local weak limit of a random graph on a surface

S = Sg(n,m) €r Sy(n,m)

r €g V(S) avertex chosen uniformly at random from V()

n—oo

g € Nypconstant and 2m/n —— d € [1,2]

Theorem [ K.=MISSETHAN 2022+ ]

S,r) = @2-d)GWT() + (d—1)Tw



Local weak limit of a random graph on a surface

S = Sg(n,m) €r Sy(n,m)

r €g V(S) avertex chosen uniformly at random from V()

n—oo

g € Nypconstant and 2m/n —— d € [1,2]

Theorem [ K.=MISSETHAN 2022+ ]

S,r) = @2-d)GWT() + (d—1)Tw

i.e., for each rooted graph (H,rx) and ¢ € N, we have

P[B, (S, r) = (H,r,,)} 1o,

(Zf(i)TP’{BI (GWT (1)) = (H, r,,)] - I)P[Bg (Too) = (H, i)



Global structure of a random graph on a surface

S = S;(n,m) €r Sg(n,m) and 2m/n — de (1,2)
L, largest component of §
R= S\L fragment of S



Global structure of a random graph on a surface

S = Sy;(n,m) €r Sg(n,m) and 2m/n — de (1,2)

L largest component of §
R= S\L fragment of S
Theorem [ K.—tuczak 2012; K.-MOSSHAMMER—-SPRUSSEL 2020 ]

@ R ‘behaves similarly’ like a critical ER random graph G(ng, mg)
with ng=(2—-d)n and 2mg/ng — 1
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Global structure of a random graph on a surface

S = Sy(n,m) €r Sg(n,m) and 2m/n — de (1,2)

L largest component of §

R= S\L fragment of S

o 2-core = max subgraph of L; with min deg > two
Theorem [ K.—tuczak 2012; K.-MOSSHAMMER—-SPRUSSEL 2020 ]

@ R ‘behaves similarly’ like a critical ER random graph G(ng, mg)
with ng=(2—-d)n and 2mg/ng — 1

@ L, = C + each vertexin V(C) replaced by a rooted tree
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Global structure of a random graph on a surface

S = Sy(n,m) €r Sg(n,m) and 2m/n — de (1,2)

L largest component of §

R= S\L fragment of S

o 2-core = max subgraph of L; with min deg > two
Theorem [ K.—tuczak 2012; K.-MOSSHAMMER—-SPRUSSEL 2020 ]

@ R ‘behaves similarly’ like a critical ER random graph G(ng, mg)
with ng=(2—-d)n and 2mg/ng — 1

@ L, = C + each vertexin V(C) replaced by a rooted tree
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Finer view of local weak limits

S = Se(n,m) €r

Se(n,m) and

2m/n — d € (1,2)

L, largest component of §

R=S\L, ~ critical ER random graph

R €R V(R), rL,
Theorem

(R, rR)

(L17rL1)

er V(L)

D
—

D
—

(R, x) 2 GWT (1)

GWT (1)
s

[ K—MISSETHAN 2021+ ]




Finer view of local weak limits

S = Sy(n,m) €r Sg(n,m) and 2m/n — de (1,2)

Ly largest componentof S and ILi| ~ (d—1)n
R=S\L, ~ critcalERrandomgraph and |R| ~ (2—d)n
rg €r V(R), r,, €r V(L) and s €x V(S)

Theorem [ K.—MISSETHAN 2021+ ]
(R, &) s GWT (1)
(L, rry) 2, Too
(S, rs) 2 2—d)GWT (1) + (d—1)Tw

(R, ) =5 GWT (1)



Part IV.

Random graphs on surfaces with non-constant genus



ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),
THEN Vg > T

S, (n,m)| [Srnm)] oo,
Gonm)| = [G0mm)] ro




ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),
THEN Vg > T
|Se(n, m)| |Sr(n,m)| 1o

Lt Akt RidrA bl Nt RsdA 1

G(n,m)| = |G(n,m)]|

In other words, forvV ¢ > T,
S¢(n, m) is indistinguishable from G(n, m) under viewpoint of whp-properties

If for every property A
whp G(n, m) satisfies A iff whp S,(n, m) satisfies A

then we say G(n,m) and S,(n, m) are contiguous.



Contiguity thresholds

T = contiguity threshold for S,(n,m) and G(n, m)

Theorem [ DOWDEN—K.-KRIVELEVICH 2019 ]
@ Ifm = Z+s for s>0 and n”> < s < n (weakly supercritical),
whp
8s°
T = ﬁ < n
@ Ifm = d-5 for d > 1 (supercritical),
whp

T = v(d)-n



Weakly supercritical regime

m = 5+s fors = s(n) >0 and P« s<n

T = % = contiguity threshold
L, = largest component
G(n,m) [ BOLLOBAS 84; LUCZAK 90 ]
whp L = (4+o(1)s
Sg(n, m) [ DOWDEN-K.—-MOSSHAMMER—SPRUSSEL 2022+ ]
whp
ILi] = (4+o(1))s if g>T

ILi] = 2+o0(1))s if ¢g<T



Supercritical regime

m=d-3forl <d <2
T = v(d)-n = contiguity threshold

L, = largest component

Theorem [ DOWDEN-K.—MOSSHAMMER—SPRUSSEL 2022+ |
whp
ILi] = (1+4o0(1)) pn if ¢>7T
IL| = (1+0(1))(d=1)n if g<T
[Ly]/n [Ly/n




Summary and open problems

Global properties of Sy (n,m) whenm = d - ford > 1

o

o

ol.
02.

contiguity threshold T = v(d) - n

largest component L,

[Ly|/n [L1]/n
1 1 —
05 /__ y
00 1 2 3 d O0 1 2 3 d
ILi| ~pnif g>T ILi|~d—1)nif g<T

Order of largest component when ¢ = O(T) ?
Length of longest cycle when g < T or g =O(T) ?

* when g > T, it follows from G(n, m) [ AJTAI-KOMLOS-SZEMEREDI 1981 ]



