Topological Aspects of Random Graphs

Mihyun Kang

20th Conference on Random Structures & Algorithms 1-5 August 2022

Guiding questions/themes

- (1) What is a typical genus of the Erdős-Rényi random graph?
 - * genus of a graph G
 - minimum number of handles that must be attached to sphere
 in order to embed *G* without any crossing edges
 - * the case when genus is 0 corresponds to planar graphs

genus of $K_5 = 1$

 K_5

Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

- (2) How does a topological constraint such as
 - being planar
 - being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

- component structures
- local weak limits

Part I.

The Erdős-Rényi random graph

A uniform random graph

 $G(n,m) \in_R \mathcal{G}(n,m)$

 $\mathcal{G}(n,m) =$ set of all vertex-labelled simple graphs on vertex set $[n] := \{1, ..., n\}$ with m = m(n) edges

G(n,m) = chosen uniformly at random from $\mathcal{G}(n,m)$

Throughout the talk

- whp = with high probability
 - = with probability tending to one as $n \to \infty$

Emergence of the giant component

$$L_1$$
 = largest component in $G(n,m)$

 $|L_1| = \#$ vertices in L_1

 $m = d \cdot \frac{n}{2}$

Largest component in supercritical G(n,m)

- $m = d \cdot \frac{n}{2}$ for d > 1
- $\rho~=~1-\exp(-d~\rho)$

(survival prob. of GW branching process with offspring dist. Po(d))

Planarity of G(n,m)

 $m = d \cdot \frac{n}{2}$

Theorem

[ERDŐS-RÉNYI 1959-60]

- If d < 1, whp
 - each component is either a tree or unicyclic component
 - G(n,m) is planar
- If d > 1, whp
 - largest component contains \geq two cycles
 - G(n,m) is not planar

Genus of supercritical G(n, m)

$$m = d \cdot \frac{n}{2}$$
 for $d > 1$

g = genus of G(n,m)

Genus of supercritical G(n, m)

1

\$ 9 10

* when $n \ll m \leq \binom{n}{2}$, $\frac{g}{m}$ decreases from $\frac{1}{2}$ to $\frac{1}{6}$

[RÖDL- THOMAS 1995]

[DOWDEN-K.-KRIVELEVICH 2019]

Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

- (2) How does a topological constraint such as
 - being planar
 - being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

- component structures
- local weak limits

A uniform random graph on a surface

$$g \in \mathbb{N}_0 = \{0, 1, 2, ...\}$$

 $S_g(n, m) \in_R S_g(n, m)$
 $S_g(n, m) = \text{set of all vertex-labelled simple graphs on } [n]$
with $m = m(n)$ edges that are
embeddable on the orientable surface of genus g

 $S_g(n,m)$ = chosen uniformly at random from $S_g(n,m)$

A uniform random graph on a surface

$$g \in \mathbb{N}_0 = \{0, 1, 2, ...\}$$

 $S_g(n, m) \in_R S_g(n, m)$
 $S_g(n, m) = \text{set of all vertex-labelled simple graphs on } [n]$
with $m = m(n)$ edges that are
embeddable on the orientable surface of genus g

 $S_g(n,m) =$ chosen uniformly at random from $S_g(n,m)$

Note

•
$$\mathcal{S}_0(n,m) \subset \ldots \subset \mathcal{S}_g(n,m) \subset \mathcal{S}_{g+1}(n,m) \subset \ldots \subset \mathcal{G}(n,m)$$

A uniform random graph on a surface

$$g \in \mathbb{N}_0 = \{0, 1, 2, ...\}$$

 $S_g(n, m) \in_R S_g(n, m)$
 $S_g(n, m) = \text{set of all vertex-labelled simple graphs on } [n]$
with $m = m(n)$ edges that are
embeddable on the orientable surface of genus g

 $S_g(n,m) =$ chosen uniformly at random from $S_g(n,m)$

Note

•
$$\mathcal{S}_0(n,m) \subset \ldots \subset \mathcal{S}_g(n,m) \subset \mathcal{S}_{g+1}(n,m) \subset \ldots \subset \mathcal{G}(n,m)$$

• If
$$1 \le m < \frac{n}{2}$$
, then $\frac{|S_0(n,m)|}{|\mathcal{G}(n,m)|} \xrightarrow{n \to \infty} 1$

• If m > 3n - 6 + 6g, then $S_g(n,m) = \emptyset$

Part II.

Random graphs on surfaces with constant genus

Two critical phases

 $g \in \mathbb{N}_0$ constant

 $L_1 = \text{largest component in } S_g(n,m) \in_R S_g(n,m)$

 $m = d \cdot \frac{n}{2}$

 Theorem
 [K.-Luczak 2012; K.-Mosshammer-Sprüssel 2020]

 If $d \in (1,2)$, whp
 $|L_1| = (1+o(1)) (d-1)n$

 If $d \in [2,6]$, whp
 $|L_1| = (1+o(1)) n$

Uniform random graph G(n, m)

Random graph on a surface $S_g(n,m)$

Uniform random graph G(n, m)

Random graph on a surface $S_g(n,m)$

- * fragment $R = G(n,m) \setminus L_1$ is subcritical (i.e., $2m_R/n_R < 1$)
- * fragment $R = S_{g}(n,m) \setminus L_{1}$ is critical (i.e., $2m_{R}/n_{R} \rightarrow 1$)

Uniform random graph G(n, m)

Random graph on a surface $S_g(n,m)$

Weakly supercritical random graphs

2/3 .

$$m = \frac{n}{2} + s \text{ for } s > 0 \text{ and } n^{2/3} \ll s \ll n$$

$$G(n,m) \qquad [Bollobäs 84; Luczak 90]$$
whp
$$|L_1| = (4 + o(1)) s$$

$$S_g(n,m) \qquad [K.-Luczak 2012; K.-MOSSHAMMER-SPRÜSSEL 2020]$$
whp
$$|L_1| = (2 + o(1)) s$$

Part III.

Local structure of random graphs

Part III. Local structure of random graphs

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect its local structure?

Local structure of Erdős-Rényi random graph

$$G = G(n,m) \in_R \mathcal{G}(n,m)$$

 $m = d \cdot \frac{n}{2}$

Local structure of Erdős-Rényi random graph

$$G = G(n,m) \in_R \mathcal{G}(n,m)$$

 $m = d \cdot \frac{n}{2}$

 $r \in_R V(G)$ = a vertex chosen uniformly at random from V(G)

$$d^+(r) \sim \operatorname{Po}(d)$$

Local structure of Erdős-Rényi random graph

$$G = G(n,m) \in_R \mathcal{G}(n,m)$$

 $m = d \cdot \frac{n}{2}$

 $r \in_R V(G)$ = a vertex chosen uniformly at random from V(G)

$$d^{+}(r) \sim \operatorname{Po}(d)$$
$$d^{+}(u) \sim \operatorname{Po}(d)$$
$$d^{+}(v) \sim \operatorname{Po}(d)$$

Erdős-Rényi random graph vs Galton–Watson tree

 $G = G(n,m) \in_R \mathcal{G}(n,m)$ and $r \in_R V(G)$

If $2m/n \xrightarrow{n \to \infty} d \in [0, \infty)$, then

 $(G, r) \xrightarrow{D} \operatorname{GWT}(d)$

where GWT(d) is the Galton–Watson tree with offspring distribution Po(d)

Erdős-Rényi random graph vs Galton–Watson tree

 $G = G(n,m) \in_R \mathcal{G}(n,m)$ and $r \in_R V(G)$

If $2m/n \xrightarrow{n \to \infty} d \in [0, \infty)$, then

 $(G, r) \xrightarrow{D} \operatorname{GWT}(d)$

where GWT(d) is the Galton–Watson tree with offspring distribution Po(d)

i.e., for each rooted graph (H, r_H) and $\ell \in \mathbb{N}$, we have

 $\mathbb{P}\Big[B_{\ell}\left(G,r\right)\cong\left(H,r_{H}\right)\Big] \qquad \xrightarrow{n\to\infty} \qquad \mathbb{P}\Big[B_{\ell}\left(\mathrm{GWT}\left(d\right)\right)\cong\left(H,r_{H}\right)\Big]$

Local weak limit of a random tree

 $T = T(n) \in_R \mathcal{T}(n)$

= a tree chosen uniformly at random from the class of all trees on [n]

 $r \in_{R} V(T)$

= a rooted tree obtained from an infinite path by replacing each vertex of the path by an independent Galton-Watson tree GWT(1)

Benjamini-Schramm local weak limits

 T_{∞} Skeleton tree

Local weak limit of a random graph on a surface

$$S = S_g(n,m) \in_R S_g(n,m)$$

 $r \in R V(S)$ a vertex chosen uniformly at random from V(S)

 $g \in \mathbb{N}_0$ constant and $2m/n \xrightarrow{n \to \infty} d \in [1, 2]$

Local weak limit of a random graph on a surface

$$S = S_g(n,m) \in_R S_g(n,m)$$

 $r \in R V(S)$ a vertex chosen uniformly at random from V(S)

 $g \in \mathbb{N}_0$ constant and $2m/n \xrightarrow{n \to \infty} d \in [1, 2]$

Theorem

[K.-MISSETHAN 2022+]

$$(S,r) \xrightarrow{D} (2-d) \operatorname{GWT}(1) + (d-1) T_{\infty}$$

Local weak limit of a random graph on a surface

$$S = S_g(n,m) \in_R S_g(n,m)$$

 $r \in_R V(S)$ a vertex chosen uniformly at random from V(S)

 $g \in \mathbb{N}_0$ constant and $2m/n \xrightarrow{n \to \infty} d \in [1, 2]$

Theorem

[K.-MISSETHAN 2022+]

$$(S,r) \xrightarrow{D} (2-d) \operatorname{GWT}(1) + (d-1) T_{\infty}$$

i.e., for each rooted graph (H, r_H) and $\ell \in \mathbb{N}$, we have

$$\mathbb{P}\Big[B_{\ell}(S,r) \cong (H,r_{H})\Big] \xrightarrow{n \to \infty} (2-d) \mathbb{P}\Big[B_{\ell}(\text{GWT}(1)) \cong (H,r_{H})\Big] + (d-1) \mathbb{P}\Big[B_{\ell}(T_{\infty}) \cong (H,r_{H})\Big]$$

 $S = S_g(n,m) \in_R S_g(n,m)$ and $2m/n \rightarrow d \in (1,2)$

*L*₁ largest component of *S*

 $R = S \setminus L_1$ fragment of S

 $S = S_g(n,m) \in_R S_g(n,m)$ and $2m/n \to d \in (1,2)$

*L*₁ largest component of *S*

 $R = S \setminus L_1$ fragment of S

Theorem

[K.-ŁUCZAK 2012; K.-MOSSHAMMER-SPRÜSSEL 2020]

• *R* 'behaves similarly' like a critical ER random graph $G(n_R, m_R)$ with $n_R = (2 - d) n$ and $2m_R/n_R \rightarrow 1$

Theorem

[K.-ŁUCZAK 2012; K.-MOSSHAMMER-SPRÜSSEL 2020]

• *R* 'behaves similarly' like a critical ER random graph $G(n_R, m_R)$ with $n_R = (2 - d) n$ and $2m_R/n_R \rightarrow 1$

• $L_1 = C + \text{ each vertex in } V(C)$ replaced by a rooted tree

Theorem

[K.-ŁUCZAK 2012; K.-MOSSHAMMER-SPRÜSSEL 2020]

• *R* 'behaves similarly' like a critical ER random graph $G(n_R, m_R)$ with $n_R = (2 - d) n$ and $2m_R/n_R \rightarrow 1$

• $L_1 = C + \text{ each vertex in } V(C)$ replaced by a rooted tree

Theorem

[K.-ŁUCZAK 2012; K.-MOSSHAMMER-SPRÜSSEL 2020]

• *R* 'behaves similarly' like a critical ER random graph $G(n_R, m_R)$ with $n_R = (2 - d) n$ and $2m_R/n_R \rightarrow 1$

• $L_1 = C + \text{ each vertex in } V(C)$ replaced by a rooted tree

Finer view of local weak limits

 $S = S_g(n,m) \in_R S_g(n,m) \text{ and } 2m/n \to d \in (1,2)$ $L_1 \qquad \text{largest component of } S$ $R = S \setminus L_1 \sim \text{ critical ER random graph}$ $r_R \in_R V(R), \ r_{L_1} \in_R V(L_1)$

Theorem [K.-MISSETHAN 2021+] $(R, r_R) \xrightarrow{D}$ GWT(1) \xrightarrow{D} (L_1, r_{L_1}) T_{∞} $(R, r_R) \xrightarrow{D} \text{GWT}(1)$ (L_1, r_{L_1}) $\xrightarrow{D} T_{\infty}$

Finer view of local weak limits

 $S = S_g(n,m) \in_R S_g(n,m) \text{ and } 2m/n \to d \in (1,2)$ $L_1 \qquad \text{largest component of } S \text{ and } |L_1| \sim (d-1)n$ $R = S \setminus L_1 \sim \text{ critical ER random graph} \text{ and } |R| \sim (2-d)n$ $r_R \in_R V(R), r_{L_1} \in_R V(L_1) \text{ and } r_S \in_R V(S)$

Theorem [K.-MISSETHAN 2021+] $(R, r_R) \xrightarrow{D} GWT (1)$ $(L_1, r_{L_1}) \xrightarrow{D} T_{\infty}$ $(S, r_S) \xrightarrow{D} (2-d) GWT (1) + (d-1) T_{\infty}$

Part IV.

Random graphs on surfaces with non-constant genus

 $\begin{array}{lll} \text{IF whp the genus of } G(n,m) \text{ is } T = T(n,m), \\ \\ \text{THEN} & \forall \ g \ \geq \ T \\ & \frac{|\mathcal{S}_g(n,m)|}{|\mathcal{G}(n,m)|} \ \geq \ \frac{|\mathcal{S}_T(n,m)|}{|\mathcal{G}(n,m)|} \xrightarrow{n \to \infty} \ 1. \end{array}$

 $\begin{array}{lll} \text{IF whp the genus of } G(n,m) \text{ is } T = T(n,m), \\ \\ \text{THEN} & \forall \ g \ \geq \ T \\ & \frac{|\mathcal{S}_g(n,m)|}{|\mathcal{G}(n,m)|} & \geq \quad \frac{|\mathcal{S}_T(n,m)|}{|\mathcal{G}(n,m)|} \xrightarrow{n \to \infty} & 1. \end{array}$

In other words, for $\forall g \geq T$,

 $S_g(n,m)$ is indistinguishable from G(n,m) under viewpoint of whp-properties

If for every property \mathcal{A}

```
whp G(n,m) satisfies \mathcal{A} iff whp S_g(n,m) satisfies \mathcal{A}
```

then we say G(n,m) and $S_g(n,m)$ are contiguous.

Contiguity thresholds

 $T = \text{contiguity threshold for } S_g(n,m) \text{ and } G(n,m)$

Theorem [DOWDEN-K.-KRIVELEVICH 2019]
• If
$$m = \frac{n}{2} + s$$
 for $s > 0$ and $n^{2/3} \ll s \ll n$ (weakly supercritical),
whp
 $T = \frac{8s^3}{3n^2} \ll n$
• If $m = d \cdot \frac{n}{2}$ for $d > 1$ (supercritical),
whp
 $T = \nu(d) \cdot n$

Weakly supercritical regime

 $m = \frac{n}{2} + s$ for s = s(n) > 0 and $n^{2/3} \ll s \ll n$

 $T = \frac{8s^3}{3n^2}$ = contiguity threshold

 $L_1 = \text{largest component}$

G(n,m) [BOLLOBÁS 84; ŁUCZAK 90] whp $|L_1| = (4+o(1)) \, s$

$S_g(n,m)$	[[Dowden–K.–Mosshammer–Sprüssel 2022+]
whp	$ L_1 = (4+o(1)) s$	if $g \gg T$
	$ L_1 = (2 + o(1)) s$	if $g \ll T$

Supercritical regime

- $m = d \cdot \frac{n}{2}$ for 1 < d < 2
- $T = \nu(d) \cdot n =$ contiguity threshold
- $L_1 = \text{largest component}$

0.

Theorem
[DOWDEN-K.-MOSSHAMMER-SPRÜSSEL 2022+]
whp

$$|L_1| = (1 + o(1)) \rho n$$
 if $g \gg T$
 $|L_1| = (1 + o(1)) (d - 1) n$ if $g \ll T$
 $\int_{0.5}^{|L_1|/n} \int_{0.5}^{|L_1|/n} \int$

2 3 d

Summary and open problems

Global properties of $S_g(n,m)$ when $m = d \cdot \frac{n}{2}$ for d > 1

- contiguity threshold $T = \nu(d) \cdot n$
- largest component L₁

- *Q*1. Order of largest component when $g = \Theta(T)$?
- *Q*2. Length of longest cycle when $g \ll T$ or $g = \Theta(T)$?
 - * when $g \gg T$, it follows from G(n,m) [Ajtai-Komlós-Szemerédi 1981]