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Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

* genus of a graph G

= minimum number of handles that must be attached to sphere

in order to embed G without any crossing edges

* the case when genus is 0 corresponds to planar graphs

K5 genus of K5 = 1



Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

(2) How does a topological constraint such as

– being planar

– being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

– component structures

– local weak limits



Part I.

The Erdős-Rényi random graph



A uniform random graph
G(n,m) ∈ R G(n,m)

G(n,m) = set of all vertex-labelled simple graphs

on vertex set [ n ] := {1, . . . , n} with m = m(n) edges

G(n,m) = chosen uniformly at random from G(n,m)

Throughout the talk

whp = with high probability

= with probability tending to one as n→∞

all asymptotics are taken as n→∞



Emergence of the giant component

L1 = largest component in G(n,m)

|L1| = # vertices in L1

m = d · n
2

Theorem [ ERDŐS-RÉNYI 1959 ]

If d < 1 (subcritical), whp |L1| = O(log n)

If d > 1 (supercritical), whp |L1| = Θ(n)

O(log n) nO(   )



Largest component in supercritical G(n,m)

m = d · n
2 for d > 1

ρ = 1− exp(−d ρ)

(survival prob. of GW branching process with offspring dist. Po (d))

Theorem

whp
|L1| = (1 + o(1)) ρ n

d

|L1|
n

0 1 2 3
0

0.5



Planarity of G(n,m)

m = d · n
2

Theorem [ ERDŐS-RÉNYI 1959–60 ]

If d < 1, whp

− each component is either a tree or unicyclic component

− G(n,m) is planar

If d > 1, whp

− largest component contains ≥ two cycles

− G(n,m) is not planar



Genus of supercritical G(n,m)

m = d · n
2 for d > 1

g = genus of G(n,m)

Theorem [ DOWDEN–K.–KRIVELEVICH 2019 ]

whp g = (1 + o(1)) µ(d) d · n
2

g
m ∼ µ(d) ↗ 1

2

* when n� m ≤
(n

2

)
, g

m decreases from 1
2 to 1

6 [ RÖDL– THOMAS 1995 ]
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A uniform random graph on a surface

g ∈ N0 = {0, 1, 2, . . .}

Sg(n,m) ∈ R Sg(n,m)

Sg(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges that are

embeddable on the orientable surface of genus g

Sg(n,m) = chosen uniformly at random from Sg(n,m)

Note

S0(n,m) ⊂ . . . ⊂ Sg(n,m) ⊂ Sg+1(n,m) ⊂ . . . ⊂ G(n,m)

If 1 ≤ m < n
2 , then |S0(n,m)|

|G(n,m)|
n→∞−−−−→ 1

If m > 3n− 6 + 6g, then Sg(n,m) = ∅



A uniform random graph on a surface

g ∈ N0 = {0, 1, 2, . . .}

Sg(n,m) ∈ R Sg(n,m)

Sg(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges that are

embeddable on the orientable surface of genus g

Sg(n,m) = chosen uniformly at random from Sg(n,m)

Note

S0(n,m) ⊂ . . . ⊂ Sg(n,m) ⊂ Sg+1(n,m) ⊂ . . . ⊂ G(n,m)

If 1 ≤ m < n
2 , then |S0(n,m)|

|G(n,m)|
n→∞−−−−→ 1

If m > 3n− 6 + 6g, then Sg(n,m) = ∅



A uniform random graph on a surface

g ∈ N0 = {0, 1, 2, . . .}

Sg(n,m) ∈ R Sg(n,m)

Sg(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges that are

embeddable on the orientable surface of genus g

Sg(n,m) = chosen uniformly at random from Sg(n,m)

Note

S0(n,m) ⊂ . . . ⊂ Sg(n,m) ⊂ Sg+1(n,m) ⊂ . . . ⊂ G(n,m)

If 1 ≤ m < n
2 , then |S0(n,m)|

|G(n,m)|
n→∞−−−−→ 1

If m > 3n− 6 + 6g, then Sg(n,m) = ∅



Part II.

Random graphs on surfaces with constant genus



Two critical phases

g ∈ N0 constant

L1 = largest component in Sg(n,m) ∈ R Sg(n,m)

m = d · n
2

Theorem [ K.–ŁUCZAK 2012; K.–MOSSHAMMER–SPRÜSSEL 2020]

If d ∈ (1, 2), whp |L1| = (1 + o(1)) (d − 1)n

If d ∈ [2, 6], whp |L1| = (1 + o(1)) n

d

|L1|/n
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ER random graph vs random graphs on surfaces

d = 2m
n

|L1|
n

Uniform random graph G(n,m)

0 1 2 3
0

0.5

d = 2m
n

|L1|
n

Random graph on a surface Sg(n,m)
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0

0.5

1

* fragment R = G(n,m) \ L1 is subcritical (i.e., 2mR/nR < 1)

* fragment R = Sg(n,m) \ L1 is critical (i.e., 2mR/nR → 1)
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Weakly supercritical random graphs

m = n
2 + s for s > 0 and n2/3 � s� n

G(n,m) [ BOLLOBÁS 84; ŁUCZAK 90 ]

whp |L1| = (4 + o(1)) s

Sg(n,m) [ K.–ŁUCZAK 2012; K.–MOSSHAMMER–SPRÜSSEL 2020 ]

whp |L1| = (2 + o(1)) s



Part III.

Local structure of random graphs

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect

its local structure?
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Local structure of Erdős-Rényi random graph

G = G(n,m) ∈ R G(n,m)

m = d · n
2

r ∈ R V(G) = a vertex chosen uniformly at random from V(G)

r
d+(r) ∼ Po (d)

u
d+(u) ∼ Po (d)

v
d+(v) ∼ Po (d)
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Erdős-Rényi random graph vs Galton–Watson tree

G = G(n,m) ∈ R G(n,m) and r ∈ R V (G)

If 2m/n n→∞−−−−→ d ∈ [0,∞), then

(G, r) D−−→ GWT (d)

where GWT (d) is the Galton–Watson tree with offspring distribution Po (d)

r

D−−→

i.e., for each rooted graph (H, rH) and ` ∈ N, we have

P
[
B` (G, r) ∼= (H, rH)

]
n→∞−−−→ P

[
B` (GWT (d)) ∼= (H, rH)

]
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Local weak limit of a random tree

T = T(n) ∈ R T (n)

= a tree chosen uniformly at random from the class of all trees on [n]

r ∈ R V (T)

Theorem [ GRIMMETT 1980/1981 ]

(T, r) D−−→ T∞

Skeleton tree T∞

= a rooted tree obtained from an infinite path by replacing each vertex
of the path by an independent Galton-Watson tree GWT (1)



Benjamini-Schramm local weak limits

GWT (d) Galton–Watson tree

T∞ Skeleton tree



Local weak limit of a random graph on a surface

S = Sg(n,m) ∈ R Sg(n,m)

r ∈ R V (S) a vertex chosen uniformly at random from V(S)

g ∈ N0 constant and 2m/n n→∞−−−−→ d ∈ [1, 2]

Theorem [ K.–MISSETHAN 2022+ ]

(S, r) D−−→ (2− d) GWT (1) + (d − 1) T∞

i.e., for each rooted graph (H, rH) and ` ∈ N, we have

P
[
B` (S, r) ∼= (H, rH)

]
n→∞−−−→

(2− d)P
[
B` (GWT (1)) ∼= (H, rH)

]
+ (d − 1)P

[
B` (T∞) ∼= (H, rH)

]
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Global structure of a random graph on a surface

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

R = S \ L1 fragment of S
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with nR = (2− d) n and 2mR/nR → 1

L1 = C + each vertex in V(C) replaced by a rooted tree
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Finer view of local weak limits

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

and |L1| ∼ (d − 1) n

R = S \ L1 ∼ critical ER random graph

and |R| ∼ (2− d) n

rR ∈ R V (R), rL1 ∈ R V (L1)

and rS ∈ R V (S)

Theorem [ K.–MISSETHAN 2021+ ]

(R, rR)
D−−→ GWT (1)

(L1, rL1 )
D−−→ T∞

(S, rS)
D−−→ (2− d) GWT (1) + (d − 1) T∞

(L1, rL1 )
D−−→ T∞(R, rR)

D−−→ GWT(1)
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Part IV.

Random graphs on surfaces with non-constant genus



ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),

THEN ∀ g ≥ T

|Sg(n,m)|
|G(n,m)| ≥ |ST(n,m)|

|G(n,m)|
n→∞−−−→ 1.

In other words, for ∀ g ≥ T,

Sg(n,m) is indistinguishable from G(n,m) under viewpoint of whp-properties

If for every property A

whp G(n,m) satisfies A iff whp Sg(n,m) satisfies A

then we say G(n,m) and Sg(n,m) are contiguous.



ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),

THEN ∀ g ≥ T

|Sg(n,m)|
|G(n,m)| ≥ |ST(n,m)|

|G(n,m)|
n→∞−−−→ 1.

In other words, for ∀ g ≥ T,

Sg(n,m) is indistinguishable from G(n,m) under viewpoint of whp-properties

If for every property A

whp G(n,m) satisfies A iff whp Sg(n,m) satisfies A

then we say G(n,m) and Sg(n,m) are contiguous.



Contiguity thresholds

T = contiguity threshold for Sg(n,m) and G(n,m)

Theorem [ DOWDEN–K.–KRIVELEVICH 2019 ]

If m = n
2 + s for s > 0 and n2/3 � s� n (weakly supercritical),

whp

T =
8s3

3n2 � n

If m = d · n
2 for d > 1 (supercritical),

whp

T = ν(d) · n



Weakly supercritical regime

m = n
2 + s for s = s(n) > 0 and n2/3 � s� n

T = 8s3

3n2 = contiguity threshold

L1 = largest component

G(n,m) [ BOLLOBÁS 84; ŁUCZAK 90 ]

whp |L1| = (4 + o(1)) s

Sg(n,m) [ DOWDEN–K.–MOSSHAMMER–SPRÜSSEL 2022+ ]

whp
|L1| = (4 + o(1)) s if g � T

|L1| = (2 + o(1)) s if g � T



Supercritical regime

m = d · n
2 for 1 < d < 2

T = ν(d) · n = contiguity threshold

L1 = largest component

Theorem [ DOWDEN–K.–MOSSHAMMER–SPRÜSSEL 2022+ ]

whp
|L1| = (1 + o(1)) ρ n if g � T

|L1| = (1 + o(1)) (d − 1) n if g � T

d
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Summary and open problems

Global properties of Sg(n,m) when m = d · n
2 for d > 1

contiguity threshold T = ν(d) · n

largest component L1

d

|L1|/n

|L1| ∼ ρ n if g� T
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0.5

1

d

|L1|/n

|L1| ∼ (d − 1) n if g� T

0 1 2 3
0

0.5

1

Q1. Order of largest component when g = Θ(T) ?

Q2. Length of longest cycle when g� T or g = Θ(T) ?

* when g� T, it follows from G(n,m) [ AJTAI-KOMLÓS-SZEMERÉDI 1981 ]


