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The Beginning

Erdés (1913 — 1996)

On random graphs I
Dedicated to O. Varga, ot the occasion of his §0" birthdoy.
By P. ERDOS and A, RENY! (Budapest).

Let us consider a “random graph” I,y having n possible (labelled)
vertices and N edges; in other words, let us choose at random (with equal

n
probabilties) one of the ([2]) possible graphs which can be formed from
N

the n (labelled) vertices P, P,..., P, by selecting N edges from the (g]
possible edges AP, (1 =i<j=n). Thus the effective number of vertices of
[,y may be less than n, as some points P may be not connecied in I, x
with any oter point #; we shall call such points P; isolated points. We
consider the isolated points also as belonging to I, x. I,y is called com-
pletely connected if it effectively contains all points Py, P, ..., Pu (i, e. if it
has no isolated points) and is connected in the ordinary sense. In the present
paper we consider asymplofic statistical properties of random graphs for
11—+ 0. We shall deal with the following questions:

1. What is the probability of I\, v being completely connected?

2. What is the probability that the greatest connected component (sub-
graphi) of I, y should have effectively n—F points? (k=0,1,.

3. What is the probability that I x should consist of exaclly K+ 1
connected components? (k==0,1,...).

4. If the edges of a graph with n vertices are chosen successively so
that after each step every edge which has not yet been chosen has the same
probability to be chosen as the next, and if we continue this process until
the graph becomes completely connected, what is the probability that the
number of necessary steps » will be equal to a given number /?

Rényi (1921 — 1970)

ON THE EVOLUTION OF RANDOM GRAPHS

by
P. ERDO8 and A, RENYI

Dedicaied to Professor P. Turdn at
his 50th birihday.

§ 9. On the growth of the greatest component
We prove in this § (sce Theorem 9b) that the size of the greatest com-
ponent of Iy ey 18 for N(r) ~en with o > 3y with probability tending to 1
approximately Glojn whero
©.1) e =1— i“_)
and #(c) is defined by (6.4). (The curve y = (,(c) is shown on Fig. 2b).
u Theorom 6 for N(n) ~ on with ¢ > 1/, almost all points of
Ty e (i e. all but o(n) points) helong either to some small component which
is a tree (of size at most 1/e. (logn — —;-loglnmr) + O(1) where .= 20 —1 —log 2
by Theorem 7a) or to the single “giant” component of the size ~G(c)n.
Thus the situation can be summarized as follows: the largest component
N("l N (ﬂ)

Of Ty I8 of order logn for ") o <, of order n% for ="~ — and
of order n for ™ ~q > ¥, This doubly “jump” of the sizs of the largert
M»D

component when —— passes the value Y/, is one of the most striking facts

concerning random guphn. We prove first the following



Main topics of the minicourse

What is the probability of a random graph being completely connected?

Emergence of the giant component

Double jump vs smooth phase transition

On random graphs I
Dedicated to O. Varga, ot the occasion of his 50" birthdoy.
By P. ERDOS and A, RENY! (Budapest).

Let us consider a “random graph” I’ having n possible (labelled)

vertices and N edges; in other words, let us choose at random (with equal

n
probabilities) one of the ([2}) possible graphs which can be formed from
N

the n (labelled) vertices Py, Py,...,

P, by selecting N edges from the (5]

possible edges PP (1= i<j=n). Thus the effective number of vertices of
I,y may be less than n, as some points P may be not connected in I, x
with any ofier point 2;; we shall call such points P isolated points. We

consider the isolated points also as belonging to I,
pletely connected if it effectively contains all points P, Py, .

y. [, 5 is called com-
L P, Gy e if it

has no isolated points) and is connected in the ordinary sense. In the present
paper we consider asymptotic statistical properties of random graphs for

=40,

graph) of I’ x should have effectively n—F points? (k=0, 1,

We shall deal with the following questions:
1. What is the probability of I' v being completely connected?
2. What is the probability that the greatest connected component (sub-

3. What is the probability that I,y should consist of exaclly k41

connected components? (k==0,1,...).

4. )f the edges of a graph with n vertices are chosen successively so

that after each step every edge which has not yet been chosen has the same
probability to be chosen as the next, and if we continue this process until
the graph becomes completely connected, what is the probability that the
number of necessary steps v will be equal to a given number (7
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by
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Phase transition

The phase transition deals with a sudden change in the properties of
a large structure, caused by altering a critical parameter.
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Percolation in physics, materials science, . ..




Mathematical models of percolation

@ Bond percolation: each bond (or edge) is either open with prob. p
or closed with prob. 1 — p, independently

@ Site percolation: each site (or vertex) is either occupied with prob. p
or empty with prob. 1 — p, independently

P < pec
I_I__.._I_I

L 11

_|—|_
T

Bond percolation on square lattice Site percolation on hexagonal lattice




Erdos-Rényi random graphs

Let G(n,p) denote a binomial random graph:

a graph on vertex set [n], in which each pair of vertices is

joined by an edge with probability p = p(n), independently

*x Bond percolation on the complete graph K,



Erdos-Rényi random graphs — cont’d

Let G(n, m) denote a uniform random graph:

a graph taken uniformly at random from the set G(n, m) of all

graphs on vertex set [n] := {1,...,n} with m = m(n) edges

n

* G(n,p) and G(n,m) are 'essentially equivalent' when m ~ (}) p

and they are called Erd6és-Rényi random graphs



Phase transitions in G(n, p)

Let p = p(n) € [0,1]

—_ 1 complete
—+ logn/n isolated vertex / connected
1 1n cycles / giant component

p=0 empty



Part Il.

Basic probabilistic tools

o

o

Q

First moment method
Second moment method
Chernoff bounds
Sprinkling argument

Galton-Watson branching process



First moment method

Markov’s inequality

Let X be a non-negative integer-valued random variable. Then for every a > 0

E[X]

E[x]

P[X > 4

IA

In particular, P[X > 1]

IA



First moment method

Markov’s inequality

Let X be a non-negative integer-valued random variable. Then for every a > 0

E[X]

E[x]

P[X > 4

IA

In particular, P[X > 1]

IA

For example, letX, = # isolated vertices in G(n,p) forp = ...
|F ]E I:Xn:l n— 00 07
THEN

PP[G(n, p) contains an isolated vertex]

= Px,>1] < E[Xx] == o0



Second moment method
Chebyshev’s inequality

Let X be a random variable with E[X]| > 0. Then
Px=0 < P[[x-E[x]|>E[] <

Let X = X, + X> + ... be a sum of indicator random variables with E[X] > 0.

Then Var[X] - 1 +Zi#COV[X,'.,X,-]

)

where Cov[X;, X;] = E[X.X;] — E[X:]|E[X]].



Second moment method
Chebyshev’s inequality

Let X be a random variable with E[X]| > 0. Then
Px=0 < P[[x-E[x]|>E[] <

Let X = X, + X> + ... be a sum of indicator random variables with E[X] > 0.

Then Var [X] - 1 +Z,-¢,~C0V[Xi~,xi]

where Cov[X;, X;] = E[X.X;] — E[X:]|E[X]].

For example, let X, = # isolated vertices in G(n,p) forp = ....

Zi;&j Cov [Xn,ia Xfw} n— oo
E[x,])’

THEN P[G(n,p) contains no isolated vertex] = P[X, =0/ —= 0

IF E[Xx,] “—= oo and




Method of moments

Let (X,).>1 be a sequence of sums of indicator random variables.
Suppose 3 A > 0 such that V k € N, the k-th binomial moment satisfies

: X, N
E‘Sﬁ(k) TR

Then b
X, —— Po(}))

i.e., X, converges in distribution to a Poisson random variable with mean A.

In particular, lim P[X, = 0] = ¢

n—oo



Method of moments

Let (X,).>1 be a sequence of sums of indicator random variables.
Suppose 3 A > 0 such that V k € N, the k-th binomial moment satisfies

: X, N
E‘Sﬁ(k) TR

X, —2— Po()

Then

i.e., X, converges in distribution to a Poisson random variable with mean A.

In particular, lim ]p[xn = ()] =g 2

n—oo

For example, letX, = # isolated vertices in G(n,p) forp = ....

IF —e\k
Xn n— 0o (() ) 2
E(k) — T Vk € N,

THEN

P[G(n, p) contains no isolated vertex] = P[X, = 0] —— ¢ °



Chernoff bounds
LetN € N, letp € [0, 1], and let X ~ Bi(N, p).

@ Foreverya >0,

PIX = al < o (i)

2
a

< — < P
P[X < Np—a] < exp( 2Np>

@ Forevery0<a<



Sprinkling argument

@ Two round exposure:
e letp, pi, p» € (0, 1) satisfy
(I=p) =1 =p)(1—p2)

e generate G(n,p), G(n,p1), and G(n, p>) independently

Then G(n,p) and G(n,p1) U G(n, p>) have the same distribution



Sprinkling argument

@ Two round exposure:
e letp, pi, p» € (0, 1) satisfy
(I=p) =1 =p)(1—p2)

e generate G(n,p), G(n,p1), and G(n, p>) independently
Then G(n,p) and G(n,p1) U G(n, p>) have the same distribution

@ Multi-round exposure:

e letp, pi, ..., pr€(0,1) satisfy
(t-p)=]]_(-p)

e generate G(n,p), G(n,p1), ..., G(n,p,) independently

Then G(n,p) and |J;_, G(n, p;) have the same distribution



Galton-Watson branching process

GW(Z) = Galton-Watson tree with offspring distribution Z

= arandom tree constructed by the Galton-Watson process
with offspring distribution Z

e start with a single root vertex
e each vertex has a random number of children with distribution Z
e 7 children are independent of each other and of the history



Galton-Watson branching process

GW(Z) = Galton-Watson tree with offspring distribution Z

= arandom tree constructed by the Galton-Watson process
with offspring distribution Z

e start with a single root vertex
e each vertex has a random number of children with distribution Z
e 7 children are independent of each other and of the history

fz = probability generating function of Z

Theorem

Q@ IfE(Z) > 1, the GW process survives (i.e., GW(Z) is infinite)
with probability p € (0, 1) satisfying 1 — p = f2(1 — p)

@ IfE(Z) < 1, the survival probability of the GW process is zero



Poisson branching process

GW(Z) = Galton-Watson tree with offspring distribution Z
fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z

Assume Z ~ Po(d)

fz(x) = > P[vertex v generates / children | x*

€20
= Y P[Po(d) = £]x ,
£>0
dl
= Z exp(—d) i xf
>0 ’
¢
= exp(—d) » (dzc') ¢ subtrees

>0

= exp(—d(l —)c))



Binomial branching process

GW(Z) = Galton-Watson tree with offspring distribution Z
fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z

Assume Z ~ Bi(n,p)

fz(x) = > P[vertex v generates / children | x*
>0

= Y _ P[Bi(n,p) = £]x*
=0
= Z <Z> pr(—p) X

(1 pl—x)

¢ subtrees



Extinction probability of branching processes

GW(Z) = Galton-Watson tree with offspring distribution Z

fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z

n = 1 — p = extinction probability of GW(Z)



Extinction probability of branching processes

GW(Z) = Galton-Watson tree with offspring distribution Z
fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z
n = 1 — p = extinction probability of GW(Z) v

We have
n = PP [v generates ¢ children | n° = fz(n)
Zezo ¢ subtrees

In other words,
L —p=f(1 - p)



Extinction probability of branching processes

GW(Z) = Galton-Watson tree with offspring distribution Z
fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z
n = 1 — p = extinction probability of GW(Z) v

We have

n = PP [v generates ¢ children | n° = fz(n
Zezo [ } () ¢ subtrees

In other words,
L —p=f(1 - p)

Assume that d := np > 1

o IfZ ~ Po(d),then 1—p = exp(—dp)

e IfZ ~ Bi(n,p),then 1—p = (1 —pp)" ~ exp(—dp)



Extinction probability of branching processes

GW(Z) = Galton-Watson tree with offspring distribution Z
fz = probability generating function of Z
p = survival probability of GW process with offspring distribution Z
n = 1 — p = extinction probability of GW(Z) v

We have

n = PP [v generates ¢ children | n° = fz(n
Zezo [ } () ¢ subtrees

In other words,
L —p=f(1 - p)

Assume that d := np > 1

o IfZ ~ Po(d),then 1—p = exp(—dp)

e IfZ ~ Bi(n,p),then 1—p = (1 —pp)" ~ exp(—dp)

Thus,if ¢ := d—1 =2 0 with e >0 then p ~ 2&



Part Ill.

Erdos-Rényi random graphs

o

o

Q

Thresholds

Connectedness threshold

Percolation threshold

Coupling with Galton-Watson branching trees

More about the giant component



Thresholds and sharp thresholds
Let .A be a monotone increasing property.

Threshold

A function p* = p*(n) is called a threshold for A if

0 if p<p”

P[ G(n,p) satisfies A ] == .
[G(n,p) ] {1 >

Sharp threshold
A function p* = p*(n) is called a sharp threshold for A if Ve > 0,

0 if p
1 if p

(1-¢)p”

P[ G(n,p) satisfies 4] ==
[ G(n,p) ] { (4 e)p"

INIA

*  Every monotone property has a threshold [ BOLLOBAS—THOMASON 87 ]



Sharp thresholds — two toy examples

@ Containment of isolated vertices in G(n, p)

@ Connectedness in G(n,p)



Sharp threshold for isolated vertices

A sharp threshold for the property that G(n, p) contains no isolated vertex is

« _ logn
T oon



Sharp threshold for isolated vertices

A sharp threshold for the property that G(n, p) contains no isolated vertex is

« _ logn
T oon

Theorem

logn + c¢(n
p = o8 ! (n)

Let

where |c(n)] — oo arbitrarily slowly as n — co. Then

P[ G(n,p) contains no isolated vertex | —=

oo {0 if ¢(n) > —o0

1 if c(n) — oo



Proof sketch

To prove the statement, we may assume without loss of generality that
le(n)] < logn.
«  The function ¢ : [0, 1] — [0, 1] defined by

¢(p) := P[ G(n, p) contains NO isolated vertex |

is monotone increasing in p.

*  The function ¢ : [0, 1] — [0, 1] defined by
&(p) := P[ G(n, p) contains at least one isolated vertex |

is monotone decreasing in p.



Proof sketch - cont’d
Foreach v € [n], let

¥ 1 if v is isolated in G(n, p)
o otherwise. .

ThenE[X,] = (1 —p)"".




Proof sketch - cont’d
Foreach v € [n], let

¥ 1 if v is isolated in G(n, p)
" |0 otherwise. .

ThenE[X,] = (1 —p)"".

SetX = Z‘,e[n] X,. By linearity expectation we have

E[X] = Z[] E[x,]



Proof sketch - cont’d
Foreach v € [n], let

¥ 1 if v is isolated in G(n, p)
" |0 otherwise. .

ThenE[X,] = (1 —p)"".

SetX = Z‘,e[n] X,. By linearity expectation we have

Elx] =) E[x)]

veE([n]



Proof sketch - cont’d
Foreach v € [n], let

¥ 1 if v is isolated in G(n, p)
" |0 otherwise. .

ThenE[X,] = (1 —p)"".

SetX = Z‘,e[n] X,. By linearity expectation we have

E[X] = Z[] E[x,]

=n(l-p)
= exp (logn —pn+p+ O(pzn))7

using 1—x=-exp(l —x+0@u?)) for x=o(l).



Proof sketch - cont’d
Foreach v € [n], let

¥ 1 if v is isolated in G(n, p)
"7 10  otherwise.

ThenE[X,] = (1 —p)"".

SetX = Z‘,e[n] X,. By linearity expectation we have

E[X] = Z[] E[x,]

=n(l-p)
= exp (logn —pn+p+ O(pzn))7

using 1—x=-exp(l —x+0@u?)) for x=o(l).

Taking p = %824 with |¢(n)] < logn, we have

E[X] =(1+o0(1)) exp (—c(n)).




Proof sketch - cont’d
Note X := > _ . X, is equal to the number of isolated vertices in G(n, p) and

we have

ve(n]

E[X] = (14 0(1)) exp ( —c(n)).



Proof sketch - cont’d
Note X := 3" ., X is equal to the number of isolated vertices in G(n, p) and

we have

E[X] =(1+o0(1)) exp (—c(n)).

Case (1): assume that p = 524 with ¢(n) — oo.

Using the first moment method, we have

PX>1] < E[X] = (1+0(1)) exp(—c(n)) — 0,
and

P[G(n, p) contains an isolated vertex] = P[X > 1] — 0.



Proof sketch - cont’d
Note X := 3" ., X is equal to the number of isolated vertices in G(n, p) and

we have
E[X] =(1+o0(1)) exp (—c(n)).
Case (1): assume that p = 524 with ¢(n) — oo.

Using the first moment method, we have

PX>1] < E[X] = (1+0(1)) exp(—c(n)) — 0,
and

P[G(n, p) contains an isolated vertex] = P[X > 1] — 0.

Summing up, if p = 82 with ¢(n) — oo, then

PP[G(n, p) contains no isolated vertex] = P[X =0] — 1.



Proof sketch - cont’d
Case (2): assume that p = 227 with ¢(n) — —oc.

We have E[X] = (1+0(1)) exp(—c(n)) — oo



Proof sketch - cont'd
Case (2): assume that p = 227 with ¢(n) — —oc.
We have E[X] = (1+0(1)) exp(—c(n)) — oo

Forv # w,
Cov[X,, X,] = E[X.X,] — E[X,]E[X,]

(1—p)" = (1=p)"? = p1—p™?°

and therefore

g COVXL X n(n— 1p(1=p) > p

= ~ — 0
E[x]? n*(1—p)y»=2 I=p




Proof sketch - cont’d
Case (2): assume that p = 270 with ¢(n) — —cc.
We have E[X] = (1+0(1)) exp(—c(n)) — oo

Forv # w,
Cov[X,, X,] = E[X.X,] — E[X,]E[X,]
(1=p)* 7 =1 =p™?* = p(1-p)

2n—3

and therefore

> v CoV (X, X n(n—1)p(1 — p) L,
E[x]* - w(l-p? L—p

Using the second moment method, we have

- >z Cov [X, X, ]
E[X] E[X]’

P[X=0] <



Proof sketch - cont'd
Case (2): assume that p = 270 with ¢(n) — —cc.
We have E[X] = (1+0(1)) exp(—c(n)) — oo

Forv # w,
Cov[X,, X,] = E[X.X,] — E[X,]E[X,]
(1=p)" 7 =1 =p*7? = p(1—p)*~°

and therefore

Zv;ﬁw Cov [XV,XW] _ n(n _ l)p(l _p)2n—3 N p
E[x]? n*(1—p)»=? I—p

— 0

Using the second moment method, we have

1 > Cov (X, X]

=0 B T ey

Summing up, if p = 82 with ¢(n) — —oo, then

P[G(n, p) contains no isolated vertex] = P[X =0] — 0.



Sharp threshold for isolated vertices

Theorem

logn + c(n
p = o8 ! (n)

Let

where |c(n)] — oo arbitrarily slowly as n — co. Then

P[ G(n,p) contains no isolated vertex | —
1 if c(n) — oo

oo {0 if ¢(n) - —o0

x What happens when ¢(n) — ¢ € R?



Isolated vertices in critical window

Theorem

Let i )
ogn + c(n
Pzig

, Where c¢(n) - c€R.
n

Let X = X(n) be # isolated vertices in G(n,p). Then

X —2 5 Po(e ).

It means, forevery £ =0,1,2,...

e\t
lim P[X = /] = exp (—¢ ™) ()

n— 0o yal

In particular,

P[G(n, p) contains no isolated vertex | == exp (—e¢ )



Proof sketch

For eachv € [n], let

¥ - 1 if v is isolated in G(n, p)
" 10  otherwise.

ThenX =} ., X, denotes the number of isolated vertices.

Assume p = 52X with ¢(n) — c. Then

]E[X} - (1 -+ 0(1)) exp ( — (,(n)) i) (),(.



Proof sketch
For eachv € [n], let

¥ - 1 if v is isolated in G(n, p)
"7 10  otherwise.

ThenX =} ., X, denotes the number of isolated vertices.

Assume p = 52X with ¢(n) — c. Then

]E[X] = (1+o0(1)) exp(fc(n)) 170 o

Foreach k > 2,

X
E
1< <ip<...<ix<n

> PX, =1X,=1,...,X, =1]
n k ()
! (i _p)k()l*k)%»(z) N

By the method of moments, we have x 2 Po(e )



Phase transition in # isolated vertices in G(n,p)

Theorem

Let . )
ogn + c(n
Pzig n .

Then

P[ G(n, p) contains no isolated vertex |
0 if ¢(n) > —o0
n—o0o

exp (—e™°) if c(n) > ceR

1 if ¢(n) — oo



Sharp threshold for connectedness

A sharp threshold for the property that G(n, p) is connected is

« _ logn
T oon

Theorem [ ERDOS—RENYI 59; STEPANOV 69 ]
Let logn + c(n)

PE T
Then

0 if ¢(n) » —o0

n—oo

P[G(n,p) is connected | —= exp(—e™) ifc(n) > ceR

1 if ¢(n) — oo



Sharp threshold for connectedness

A sharp threshold for the property that G(n, p) is connected is

« _ logn
T oon

Theorem [ ERDOS—RENYI 59; STEPANOV 69 ]
Let logn + c(n)
PE T
Then
0 if ¢(n) » —o0

n—oo

P[G(n,p) is connected | —= exp (—e ) if c(n) - c€eR

1 if ¢(n) — oo

« If G(n, p) contains an isolated vertex, then it is not connected.

But, the converse is not true.



Proof sketch

For k € [n] let Ci denote # components of order k in G(n, p).



Proof sketch
For k € [n] let Ci denote # components of order k in G(n, p).

P[Ci > 1] = P[G(n, p) contains an isolated vertex]
< P[ G(n,p) is not connected |



Proof sketch

For k € [n] let Ci denote # components of order k in G(n, p).

P[Ci > 1] = P[G(n, p) contains an isolated vertex]
< P[ G(n,p) is not connected |
SPlGi>1]+ > PlG>1]

2<k<n/2



Proof sketch

For k € [n] let Ci denote # components of order k in G(n, p).

P[Ci > 1] = P[G(n, p) contains an isolated vertex]
< P[ G(n,p) is not connected |
SPlGi>1]+ > PlG>1]

2<k<n/2

For k > 2, a component of order k contains a tree of order k

P[ci > 1] < E[Gq] < <Z> K2 ph!



Proof sketch
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Proof sketch

For k € [n] let Ci denote # components of order k in G(n, p).

P[Ci > 1] = P[G(n, p) contains an isolated vertex]
< P[ G(n,p) is not connected |
SPlGi>1]+ > PlG>1]

2<k<n/2

For k > 2, a component of order k contains a tree of order k

whose vertices are joined to no vertex outside the tree, and thus
P[Ck >1 ] < E[Ck] < <Z> K2 ph! (1 _p)Wfk)‘

lfp ~ &2 then
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Proof sketch
For k € [n] let Ci denote # components of order k in G(n, p).

P[Ci > 1] = P[G(n, p) contains an isolated vertex]
< P[ G(n,p) is not connected |

<PlGz1]+ > PlG>1]

2<k<n/2

For k > 2, a component of order k contains a tree of order k

whose vertices are joined to no vertex outside the tree, and thus
P[Ck >1 ] < E[Ck] < <Z> K2 ph! (1 _p)Wfk)‘

lfp ~ &2 then

o oPlax1] = > (Z) K2p =t (1 —p)f =0 = = (1)

2<k<n/2 2<k<n/2

we have
P[ G(n,p) is notconnected | = P[C; > 1] + o(1)



Proof sketch — cont’d

Summing up, If p ~ &% then we have
gup, itp p

P[ G(n,p) is not connected | = P[C; > 1] + o(1)
= P[G(n, p) contains an isolated vertex | + o(1)



Proof sketch — cont’d

Summing up, If p ~ &% then we have
gup, itp p

P[ G(n,p) is not connected | = P[C; > 1] + o(1)
= P[G(n, p) contains an isolated vertex | + o(1)
Thus

P[ G(n,p) is connected |
= PP[G(n,p) contains no isolated vertex | + o(1)

0 if ¢(n) - —c0

n— 00

exp (—e ™) if c(n) - ceR

1 if ¢(n) = oo



Proof sketch — cont’d

Summing up, If p ~ 2" then we have

P[ G(n,p) is not connected | = P[C; > 1] + o(1)
= P[G(n, p) contains an isolated vertex | + o(1)
Thus

P[ G(n,p) is connected |
= PP[G(n,p) contains no isolated vertex | + o(1)

0 if ¢(n) - —c0
e exp (—e ™) if c(n) - ceR
1 if ¢(n) — oo
d
x Hitting time result: [ BOLLOBAS—THOMASON 83 ]

the last ‘minimum obstruction’ for connectedness is an isolated vertex



VI.

Outline of the minicourse — Day 2

Prelude

Basic probabilistic tools

Erdés-Rényi random graphs
Higher-dimensional analogues
Random subgraphs of the hypercube

Topological aspects of random graphs



Part Il.
Erdos-Rényi random graphs

v' Thresholds

v~ Connectedness threshold

@ Percolation threshold

@ Coupling with Galton-Watson branching trees

@ More about the giant component



Emergence of giant component

=pn-1)
|Li| = # vertices in the largest component in G(n, p)
Theorem [ ERDOS—RENYI 60 |
@ Ifd <1, whp ILi|] = O(logn)
@ Ifd>1, whp ILi| = O
°
O. '.
° .
[E—
O(log n) o(n)

* whp = with high probability = with prob tending to one as n — oo



Giant component

d=pm-1) and pe (0,1)with1 —p = exp(—dp)

|Li| = # vertices in the i-th largest component in G(n, p)
Theorem
@ Ifd <1, whp |Li| < (d_%)zlogn
@ Ifd > 1, whp ILi| = (p+o(l))n and [L| < ﬁlogn
[Ly]/n




Component exploration process via BFS
[ KARP 1991 ]
@ Given a vertex v,
construct a spanning tree T,
by exploring the component C, that contains v

using Breadth-First Search

Ve
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Component exploration process via BFS

[ KARP 1991 ]
@ Given a vertex v,
construct a spanning tree T,
by exploring the component C, that contains v

using Breadth-First Search

@ # children of v ~ Bi(n —1,p)

@ # children of u ~ Bi(n —5,p)



Coupling with Galton-Watson trees

T(N,p) = Galton-Watson tree with offspring distribution Bi(~, p)

v e start with a single vertex v
e number of children of each vertex
is an i.i.d random variable

with distribution Bi(, p)



Coupling with Galton-Watson trees

T(N,p) = Galton-Watson tree with offspring distribution Bi(~, p)

v e start with a single vertex v

e number of children of each vertex
is an i.i.d random variable

with distribution Bi(, p)

@ Upper coupling:
couple T(n,p) and a spanning tree 7, so that 7, C T'(n,p)

@ Lower coupling:
couple T(n — k,p) and a tree T, such that

!

either min{|T(n —k,p)|, |T)|} >k or T(n—k,p)CT,



Proof sketch — Galton-Watson tree

(Z1,2,,...) = asequence of i.i.d. random variables with

Z: ~ Bi(n—1,p) ~ Po(d) = number of vertices born at time ¢
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T = minimal integers > 1 with Y, =0 = total size of GW tree T'(n,p)



Proof sketch — Galton-Watson tree

(Z1,2,,...) = asequence of i.i.d. random variables with

Z, ~ Bi(n—1,p) ~ Po(d) = number of vertices born at time ¢

Yo =1and Y, .= Y, +7Z — 1 queue size attime r > 1

T = minimal integers > 1 with Y, =0 = total size of GW tree T'(n,p)

Note that forany ¢ > 1
@V, =1-(+Y" 7
@ if [T(n,p)| > ¢, equiv, T >/, then ¥, > 0and so X, := " Z, > ¢ — 1

@ since X, = >.'_, Z ~ Po({d), we have

E(X,) =¢d and (=E(X;) +¢(1—-d)—1



Proof sketch — subcritical regime
Assume d < 1.
By applying Chernoff bounds, we obtain, for any £ > 1

P[X; > (1] = P[X; > EXe) +£(1 —d) — 1] < exp (7(1_2")7)

and  plicl> ] = BT 2 €] < P[IT(np) 2 €] = P[T > 1]

<PX>l—1] < exp (—(]_zd)zz)



Proof sketch — subcritical regime
Assume d < 1.
By applying Chernoff bounds, we obtain, for any £ > 1

P(Xe>0—1] = P[X, >E(Xe) +£(1—d) —1] < exp (7(1—51)2%)

2
and  plicl> ] = BT 2 €] < P[IT(np) 2 €] = P[T > 1]
2
< P[Xe>(—-1] < exp(—%é)
Taking £ = ﬁlogn we have

3 (1 —d)? 3
Pl|C|> 1 < B C ) B -
|Cy| > i—ar ogn} < eXp( 2 i—ar logn> n

—3/2




Proof sketch — subcritical regime
Assume d < 1.
By applying Chernoff bounds, we obtain, for any £ > 1

P[X; > (1] = P[X; > EXe) +£(1 —d) — 1] < exp (Jl_d)ze)

2
and  plic,| > 0] = P[|T]>¢] < P[|T(n,p)| > ¢] = P[T > (]
2
< P[Xe>(—-1] < exp(—(] zd) Z)
Taking £ = (1_73d)210gn we have

3 (1 —d)? 3
| > 1 < B C ) B -
IP[|C\7 i—ar ogn} < eXp( 2 i—ar 10gn> n

and thus

—3/2

v

P |:G(n,p) contains a component of order

< Z [|C\ %‘{)zlogn]

o]

IA

n-n"? = o(1)



Proof sketch — supercritical regime

Assume d > 1.

(1) No middle ground:

whp 3 component of order between k., := (137(107 logn and k* := n?/?

(using lower/upper couplings and Chernoff bounds)
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Assume d > 1.

(1) No middle ground:

whp 3 component of order between k., := (137(107 logn and k* := n?/?

(using lower/upper couplings and Chernoff bounds)

(2) First moment argument

— let L := total number of vertices in ’large’ components,

2/3

each containing > n*/” vertices

— lower/upper couplings: E(L) ~ pn

(3) Second moment argument : Var[L] < (E(L))

By (2) and (3)we have L ~ E(L) ~ pn



Proof sketch — supercritical regime

Assume d > 1.

(1) No middle ground:

whp 3 component of order between k., := (137(107 logn and k* := n?/?

(using lower/upper couplings and Chernoff bounds)

(2) First moment argument

— let L := total number of vertices in 'large’ components,

2/3

each containing > n*/” vertices

— lower/upper couplings: E(L) ~ pn
(3) Second moment argument : Var[L] < (E(L))
By (2) and (3)we have L ~ E(L) ~ pn
(4) Sprinkling argument:

almost all vertices in ’large’ components lie in a single giant component



giant component

d =pm-1) and p=1—exp(—dp)
|L{| = # vertices in the i-th largest component in G(n, p)
Theorem
@ Ifd <1, whp ILi| < = 1)2 logn
@ Ifd > 1, whp ILi|] = (p+o(1))n and |L,| < (d 1)2 logn
[Li]/n




More on the giant component

d =pm-1) and p=1—exp(—dp)
|L{| = # vertices in the i-th largest component in G(n, p)
Theorem
@ Ifd <1, whp ILi| < = 1)2 logn
@ Ifd > 1, whp ILi|] = (p+o(1))n and |L,| < (d 1)2 logn
[Li]/n

How does the component structure look whend — 17 [ BOLLOBAS 84 |



Double jump ?

=pn—1)
|Li| = # vertices in the largest component in G(n, p)
Theorem

Q@ Ifd< 1, whp |ILi|] = O(logn)

@ lfd—1, whp ILi| = ©@"?)

Q@ Ifd>1, whp ILi| = ©()

[ ERDOS—RENYI 60 ]



Smooth transition as the giant emerges

d=ph-1) = 1+¢
e=e(n) with n'? <« |g] <1

|Li] = # vertices in the largest component in G(n, p)

[ BOLLOBAS 84; LuczAK 90; BOLLOBAS—RIORDAN 12 |
2 3
@ |Ife <0, then whp ILi| ~ % log (||’ n)

@ Ife>0,then whp |Li| ~ 2en



Smooth transition as the giant emerges

d=ph-1) = 1+¢
e=e(n) with n'? <« |g] <1

|Li] = # vertices in the largest component in G(n, p)
[ BOLLOBAS 84; LuczAK 90; BOLLOBAS—RIORDAN 12 |
@ |Ife <0, then whp ILi| ~ % log (Il n)

@ Ife>0,then whp |Li| ~ 2en

« In the critical regime when ¢ = O(n_1/3) [ ALDOUS1997 |

|Li| = # vertices in the i-th largest component in G(n, p)

(|Li|n=**).., — (lengths of excursions of reflecting Brownian motion)



Asymptotic normality of the giant component
Assume d = p(n—1) > 1 and 1 — p =exp(—dp)

ILi| = # vertices in the largest component in G(n, p)
N . =)
Letu:=pn and o := /g t5mn

Central limit theorem

Let N(0, 1) denote the standard normal distribution. Then

|Li| — p D

N(O, 1
- 0,1)
for 1< (@d-1)Vn< log)i';n [ KAROKISKI—LUCZAK 02 ]
for constant d [ BEHRISCH—COJA-OGHLAN-K. 09]

for d=d(n)—1and (d—1)7°n > 1 [ BOLLOBAS—RIORDAN 12 ]



Limit theorems for the giant

Assume d = p(n—1) > 1 and 1 — p =exp(—dp)

|Li| = + vertices in the largest component in G(n, p)
— L p(1—p)
Letp:=pn and o =,/ T "
# vertices in L, [ STEPANOV 70; PITTEL—-WORMALD 05; BEHRISCH—COJA-OGHLAN—K. 09]

For any integer k with k = pn + x where x = O(y/n ) = O(0)

1 X
PHLI‘ = k] ~ O_\/EOXP 7T‘_2 °




Limit theorems for the giant

Assume d = p(n—1) > 1 and 1 — p =exp(—dp)

|Li| = + vertices in the largest component in G(n, p)
— L p(1—p)
Letp:=pn and o := 4/ T "
# vertices in L, [ STEPANOV 70; PITTEL—-WORMALD 05; BEHRISCH—COJA-OGHLAN—K. 09]

For any integer k with k = pn + x where x = O(y/n ) = O(0)

1 x’
IP)“LI‘ = k] ~ U\/ﬂexp —20_2 s

# vertices and # edges in L,

Joint distribution for the number of vertices and edges

for constant d [ BEHRISCH—COJA-OGHLAN—K. 14]

for d=d(n)—1and (d—17°n — [ BOLLOBAS—RIORDAN 18 ]



Part IV.

High-dimensional analogues

@ Random k-uniform hypergraphs
e Sharp threshold for high-order connectedness

e High-order giant component

@ Random k-dimensional simplicial complexes

e Sharp threshold for cohomologically connectedness



k-uniform hypergraphs

Given k € N>, a k-uniform hypergraph is a pair H = (V, E) of
e asetV of vertices and
o asetE C (}) of hyperedges,

i.e., each hyperedge is a k-(element sub)set of vertex set vV

« 2-uniform hypergraph is a graph

« the notion of a component in hypergraphs is ambiguous



Classical notion of components

Given a k-uniform hypergraph H,

a vertex v is said to be reachable from another vertex w
if there is a sequence Ei, .. ., E; of hyperedges such that

veEE,weE;and |[EiNEiy| > 1foreachi=1,...,0—1.

SRS

Eq E2 Ej



Classical notion of components

@ Given a k-uniform hypergraph H,

a vertex v is said to be reachable from another vertex w
if there is a sequence Ei, .. ., E; of hyperedges such that

veEE,weE;and |[EiNEiy| > 1foreachi=1,...,0—1.
Eq E> E|

@ The reachability is an equivalence relation on vertices, and

the equivalence classes are called components of H.

@ If H consists of a single component, it is connected.



High-order components

[ BOLLOBAS—RIORDAN 12 ]
@ Given a k-uniform hypergraph Hand 1 <j <k —1,
a j-(element sub)set J; is reachable from another j-set J, if
3 Ei,...,E, of edges such that J; C E,, J, C E;, and

|EiNEiy1| > j, i€[t—1].

Q0 E A

E1 Ei Eiv1 E|



High-order components

[ BOLLOBAS—RIORDAN 12 ]
@ Given a k-uniform hypergraph Hand 1 <j <k —1,
a j-(element sub)set J; is reachable from another j-set J, if
3 Ei,...,E, of edges such that J; C E,, J, C E;, and
|EiNEipi| >, i€[t—1].

eg, k=3,j=2

E1 Ei Eir1 Ej

@ Reachability is an equivalence relation on j-sets, and
equivalence classes are called j-(tuple)component.

@ If H consists of a single j-component, it is j-connected.



Random binomial k-uniform hypergraphs
Hi(n,p) denotes a random binomial k-uniform hypergraph
e onvertex set [n] :=={1,2,...,n},
e in which each k-(element sub)set of vertex set [n] is

an hyperedge with probability p, independently

* note Hy(n,p) = G(n,p)



Number of isolated j-sets in H,(n, p)

1 if J is isol in H,
For each j-set J € m et X, = Jisiso ated in Hy(n, p)
J 0 otherwise.

Then X = ZIG(M) X; counts # isolated j-sets and
J

BiX = 3 E[x] - (J> (1))

jsets .



Number of isolated j-sets in H,(n, p)

1 if J is isol in H,
For each j-set J € m et X, = Jisiso ated in Hy(n, p)
J 0 otherwise.

Then X = ZIG(M) X; counts # isolated j-sets and
J

BiX = 3 E[x] - (J> (1))

jsets

J logn+c(n)

o 00 if c(n) —» —o0

E[X] ~ < exp(—c(n)) — jl!e_” if c(n) > ceR

0 if ¢(n) - o0



Sharp threshold for j-connectedness

Theorem [ COOLEY=K.—KOCH 16 ]

GivenkeNs, and 1<j<k—1,let p = 11ertcl Then

=)
0 if ¢(n) - —o0
P[ Hi(n,p) is j-connected] == exp (,ji' e‘”) if c(n) > ceR
1 if c¢(n) = oo

* j=1
* j=k—1

[ POOLE 15]
[ KAHLE —PITTEL 16 ]

+  Proof methods

e last ‘minimum obstruction’ for j-connectedness is an isolated j-set

o # j-setof degree s when p = [legntsloslosntcln) for ¢ ¢ NU {0}

(=)

e 3Jj-component containing a reasonably large subset which is smooth



Heuristics for percolation threshold

Breadth-First Search & Galton-Watson tree
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Breadth-First Search & Galton-Watson tree
‘@‘ A

@ Begin with a j-set J
@ Discover all edges that contain that j-set J

3 ({~/) such edges containing J, each with prob. p



Heuristics for percolation threshold

Breadth-First Search & Galton-Watson tree
‘(‘2\‘ A

@ Begin with a j-set J

@ Discover all edges that contain that j-set J

3 ({~/) such edges containing J, each with prob. p

@ For each edge E containing J,

discover ((;) — 1) new j-sets in E



Heuristics for percolation threshold

Breadth-First Search & Galton-Watson tree
6% ./N

@ Begin with a j-set J

@ Discover all edges that contain that j-set J

3 ({~/) such edges containing J, each with prob. p

@ For each edge E containing J,
discover ((;) — 1) new j-sets in E

E[ # j-sets discovered from J | = (() —1) (1) p =: d

J



Giant j-component
Givenk e N>, and 1<j<k—1, letd = (() —1)((Z)p

Assumee = d — lsatisfy ¢ — 0, |e’n/ > 1, ...

\LV)| = # j-sets in largest j-component in Hy(n, p)

Theorem [ COOLEY-K.—KOCH 18; COOLEY-FANG—DEL GIUDICE-K. 19]
. (=i H
@ Ife < 0, whp LY  ~ %log (|6\3(1))
j 2e
@ Ife > 0, whp LY~ = ()

The simplest case whenj =1
e forconstant ¢ [ SCHMIDT-PRUZAN-SCHAMIR 85 ]
° fore >0 and 1 <« en < _logn [ KARONSKI-LUCZAK 02 ]

loglogn

e fore>0,¢ —» 0and &n > 1 [ BOLLOBAS—RIORDAN 14 |



Proof sketch when ¢ > 0

(1) Breadth-First Search
Given j-set J

lof T,
@ construct a spanning tree 7,
bo 9’6 (representing j-component C;)

consisting of j-sets as vertices

(2) Couple T; and
Galton-Watson branching tree in which each vertex has

((j‘) —1) - Bi((;~/), p) many children independently

J

p := P [ process survives |

L=p=3, P[BI((D).p) = - (1—p) O

— ~ ’25
O



Proof sketch — cont’d

First moment argument:

L := # j-setsin ‘large’ j-components,

2i/3

each containing > n¥/° many j-sets

using upper and lower couplings with Galton-Watson trees,

w0~ 7 ()

Second moment argument:

IF Var[L] < (E(L)),
THEN

Sprinkling argument:

almost all j-sets in ‘large’ j-components are in a single j-component



More on second moment argument

Need to consider pairs of j-sets in ’large’ j-components
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Need to consider pairs of j-sets in ’large’ j-components

e Fix j-set J; and grow its j-component C;’
until hit stopping conditions

S = {|c’| > n?3  or |oCy’| > enz"/?’}

o Delete all the vertices in C;’

& fix a j-set J,, grow component C,’
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More on second moment argument

Need to consider pairs of j-sets in ’large’ j-components

e Fix j-set J; and grow its j-component C;’
until hit stopping conditions
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o Delete all the vertices in C;’

& fix a j-set J,, grow component C,’
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More on second moment argument

Need to consider pairs of j-sets in ’large’ j-components

e Fix j-set J; and grow its j-component C;’
until hit stopping conditions

S = {|c’| > n?3  or |oCy’| > 6}12f/3}

o Delete all the vertices in C;’

& fix a j-set J,, grow component C,’

e Need to show P(¢(0C/', Go') > 1) is small

Naive approach: P(e(0C/, C')>1) < p-10C/|-|C']  too big !l



More on second moment argument — cont.
Instead we need

° P(e(0C, G') > 1)
< E (# k-sets containing
a pair of j-sets, J,J', intersecting at an /-set L

forsome 0 <¢<j—1)




More on second moment argument — cont.
Instead we need

e P(e(dC/, ') >1)
< E (# k-sets containing
a pair of j-sets, J,J', intersecting at an /-set L

forsome 0 <¢<j—1)

@ smooth boundary lemma: ‘reasonably large’ boundary is smooth



Summary and open problems
GivenkecNs, and 1<j<k—1, letd = ((j‘) —1) (Z:j:)p
Assume e = d — 1 satisfy ¢ — 0, |[e}n/ > 1, ...

ILV)| = # j-sets in largest j-component in Hy(n, p)

Theorem [ COOLEY-K.—KOCH 18; COOLEY-FANG—DEL GIUDICE-K. 19]
: 2( (%=1
@ Ife < 0, whp ILY|  ~ @log (|£\3(;'))
j 2
@ Ife > 0, whp ILD|  ~ (f)—il(;‘)

Q1. Width of critical window
e &= 0@'"? in Gnp)
o & = 0(m?) in Hy(n,p)?

Q2. Asymptotic normality of the giant j-component



Summary and open problems - cont’d

Q3. Structural symmetry

e Fragment R = G(n,p) \ Li
behaves like subcritical G(n',p") withd' =n'p’ < 1



Summary and open problems - cont’d

Q3. Structural symmetry

e Fragment R = G(n,p) \ Li
behaves like subcritical G(n',p") withd' =n'p’ < 1

o Does the fragment R = Hi(n,p) \ LY

behave like subcritical Hi(n',p') with @’ = () = 1) (1) p' < 17?

e What does subcritical Hi(n, p) look like?

What about hypertrees, high-order ‘cycles’, etc



Part IV.

High-dimensional analogues

v" Random k-uniform hypergraphs
v" Sharp threshold for high-order connectedness

V" High-order giant component

@ Random k-dimensional simplicial complexes

e Sharp threshold for cohomologically connectedness



Simplicial complexes
@ GivenasetV,

a family X of subsets of V is called a simplicial complex if

o {x}eXx, VxeV

e X isdownward-closed, i.e., fA€X,0 A#BCA,thenBe X
@ Given a simplicial complex X,

e A€ Xiscalledan ¢-simplexif [A| = ¢+ 1

e X is said to be k-kimensional if it contains no (k 4 1)-simplex

For example, givenV = {xi,x2,x3,x}, let
S0 = {{n} {m) o} () |
st = {{mnh fo,xd, fo0} ) n o om
S = {{xz,X3,X4}}

Then X = Sp U S U S, is a2-dimensional simplex

X3

X4



Random i-dimensional simplicial complexes

They arise from random binomial (k + 1)-uniform hypergraph H, = ([n],E, )
e 0-simplices are singletons of [n]

e k-simplices are the hyperedges of H,



Random i-dimensional simplicial complexes

They arise from random binomial (k + 1)-uniform hypergraph H, = ([n],E, )
e 0-simplices are singletons of [n]

e k-simplices are the hyperedges of H,

(a) the full (k — 1)-skeleton on [n] is included

Ay = o BGho v uE
(b) Ve [k—1],
(-simplices are (¢ + 1)-subsets contained in the hyperedges of H,

G, == ("YU ... UA(BE,) U JE, UE,

N




F,-Cohomologically connectedness

A, = ([’I’]) U ([’;]) U...U ([Z]) U E, is said to be

FF,-cohomologically connected if H* '(A,; F,) =0

Theorem [ LINIAL—MESHULAM 06; MESHULAM—WALLACH 09; KAHLE—PITTEL 16 ]

Let b= klogn + c(n)

n

Then

IF’( A, is F,-cohomologically connected )

0 if ¢(n) - —o0
e exp (=g e ) if c(n) - ceR
1 if ¢(n) — oo

% last ‘minimum obstruction’ is an isolated (k — 1)-simplex

e.g., an isolated 1-simplex ( = an isolated edge) when k = 2



F,-Cohomologically j-connectedness

keNs>, and 1<j<k—1
G, == ("YU ... UA(BE,) U JE, U E, is said to be

F.-cohomologically j-connected if H(G,; F,) =0, Vi€ [/].

Theorem [ COOLEY-DEL GIUDICE-K.—SPRUSSEL 20 ]

Let (j+ 1)logn + loglogn + c(n)

(k 7j + 1) (kij)

p:

Then
]P’( G, is F,-cohomologically j-connected )

0 if ¢(n) - —o0

= exp (—% e_”) if c(n) > ceR

1 if ¢(n) — oo



Minimal obstruction
M; = triple (K, C,J) where K is a k-simplex in G, and
@ C=(j— 1)-simplexin K such that foreachw € K\ C,

j-simplex C U {w} is contained in no other k-simplex of G,

@ J = set of j-simplices such that

@ every (j — 1)-simplex is in even number of j-simplices in J

@ it contains exactly one CU {wo}, wo € K\ C

K




VI.

Outline of the minicourse — Day 3

Prelude

Basic probabilistic tools

Erdés-Rényi random graphs
Higher-dimensional analogues
Random subgraphs of the hypercube

Topological aspects of random graphs



Part V.

Random subgraphs of the hypercube

@ Random subgraphs
@ Emergence of the giant component
@ Expansion properties of the giant component

@ Consequences of expansion properties



The hypercube

Given d € N, the d-dimensional hypercube Q“ is the graph with

@ vertex set

V(Qd) = {0,1}" = {x=(x1,....,x) : x €{0,1}, 1 <i<d}

@ edge setE(Q") o Va=(x,..,xa0), y=(1,-.-,4) € V(Qd),

{x,y} €E (Qd) iff x and y differ in exactly one coordinate

Hasse diagram



The hypercube

Given d € N, the d-dimensional hypercube Q“ is the graph with

@ vertex set
V(Qd) = {0,1} = {x=(x,...,%) : 5 e{0,1}, 1<i<d}
@ edge setE(Q") o Va=(x,..,xa0), y=(1,-.-,4) € V(Qd),

{x,y} €E (Qd) iff x and y differ in exactly one coordinate

Basic facts:
o v()| =2

0’ is d-regular

Qo
@ (¢ is bipartite
Q

diameter of Q¢ is d

Hasse diagram



A random subgraph of the hypercube

Givenp € (0,1)

d
Qp

a graph obtained by retaining each edge of Q¢ independently
with probability p

bond percolation on 0 with edge probability p




Typical properties of ¢ around p = ;

Connectivity [ SAPOZENKO 67; BURTIN 67; ERDOS—SPENCER 79; BOLLOBAS 83 |
p = 1 is a sharp threshold for connectedness: Ve >0

d—c0 {0 if p<

|
™

P [Q;I is connected] S ,
1 if p>

(S



Typical properties of ¢ around p = ;

Connectivity [ SAPOZENKO 67; BURTIN 67; ERDOS—SPENCER 79; BOLLOBAS 83 |
p = 1 is a sharp threshold for connectedness: Ve >0

. o 0 if <
P [Q;I is connected } Ao, S P 2
1 if p> it

|
™

)

(S

Perfect matching [ BOLLOBAS 90 |

p = 1 is a sharp threshold for the existence of a perfect matching

Is p = 1 a sharp threshold for Hamiltonicity? [ BOLLOBAS 80's; FRIEZE 14 ]

Hamiltonicity [ CONDON-ESPUNY-DiAZ-GIRAO-KUHN-OSTHUS 21 ]

p = 1 is a sharp threshold the existence of a Hamiltonian cycle.



Emergence of the giant component in Q;f

[ ERDOS—SPENGER 79 ]

Does the component structure of Q;f undergo a phase transition at p = 5?
Giant component [ AJTAI-KOMLOS- SZEMEREDI 81 ]
p = 1 isasharp threshold: Ve >0
@ whp  all components are of order O(d) it p< =

@ whp 3 aunique largest component of order ©(2¢) if p > E<




Phase transitions in Q¢

More detailed component structure for a wider range of p
[ BOLLOBAS-KOHAYAKAWA-LUCZAK 92 |
[ BORGS—CHAYES—VAN DER HOFSTAD—SLADE—SPENCER 2006 ]
[ HULSHOF-NAGHMIAS 2020 ]

[ MCDIARMID-SCOTT-WITHERS 2021 ]
Correct width of critical window [ VAN DER HOFSTAD—NACHMIAS 2017 |

Diameter of components ? [ BOLLOBAS-KOHAYAKAWA-LUCZAK 92 ]
[ HEYDENREIGH—VAN DER HOFSTAD 2011 ]
[ VAN DER HOFSTAD—NACHMIAS 2014 ]

[ HULSHOF-NACHMIAS 2020 ]



Two open problems on the giant component

L, = largest componentof Qi whenp = %< for >0

Q1. What is the diameter of L; ? [ BOLLOBAS-KOHAYAKAWA-£LUGZAK 92]

Q2. What is the mixing time of the lazy simple random walk on L, ?

[ PETE 08; VAN DER HOFSTAD-NACHMIAS 17 ]



Diameter and mixing time

Ly = largest componentof 0f whenp = 4= for >0

Theorem [ ERDE-K.-KRIVELEVICH 22 ]
whp  the diameter of L; is O (d”)

whp  the mixing time of the lazy simple random walk on L, is O (d'")



Diameter and mixing time
Ly = largest componentof 0f whenp = 4= for >0
Theorem [ ERDE-K.-KRIVELEVICH 22 ]
whp  the diameter of L; is O (d”)

whp  the mixing time of the lazy simple random walk on L, is O (d'")

Theorem [ ERDE-K.-KRIVELEVICH 22 ]
Whp Ly

@ is cd’—expander
@ containsa ¢ d~* (logd)~'—expander on > 0.99 |L,| vertices

@ has Cheeger constant Q (d~°)



Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .

Given a graph G

@ N(S) = external neighbourhood of a subset S C V(G)
= {veV(G)\S: IwesS with {v,w} € E(G)}
@ Gis an a—expander if

IN(S)| > als|,  VSCV(G) with |s| < “’(27‘;)'

N(S)




Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .

Given a graph G
@ N(S) = external neighbourhood of a subset S C V(G)
= {veVvV(G)\S: Iwes with {v,w} € E(G)}
@ Gis an a—expander if

NS 2 als,  vscv@) witn | < V9

N(S)

Properties of an expander
@ small diameter, long paths/cycles, large complete minor, . ..

@ edge-expansion for graphs with bounded max degree



Proof sketch

Theorem

whp Ljis a —expander

poly(d)

We will prove that whp

for an arbitrary subset s of V(L;) with |s] < Y2,

S|

INS) > poly(d)

N(S)



Sprinkling argument
Sprinkling
p = = for £>0

L7}

g="Nandgp =2 st 1-p=(1-q)(1—q)and0< & < &

1 1 i
o ~ 0 U,



Sprinkling argument
Sprinkling
p = = for £>0

%ost. 1-p=(1—g)(l —g)and0 < & < d

g1 =" and g =
1 d 1
Q/() ~ Oy U Qi/z

Largest components before and after sprinkling

Li = largest componentin Q¢  (before sprinkling)
L, = largest componentin Q;,’ (after sprinkling)
~v(x) = survival probability of Po(1 + x) branching process
Lemma [ AJTAI-KOMLOS- SZEMEREDI 81 ]

e whp Li ~ ~(&)2¢



Giant component before and after sprinkling

Li = largest componentin Q‘;] (before sprinkling)
L = largest componentin Q¢  (after sprinkling)
Lemma

e whp V connected component in Q¢ [L; — L] is of order O(d)

e whp V vertex in V(Q?) is within distance two from > ¢ d* vertices in L;

. .\\L,/
- e




Splitting the largest component into pieces

L} = largest component (before sprinkling)

split into a family C of vertex-disjoint connected subgraphs
('pieces’), each of order poly(d)




Splitting the largest component into pieces

L} = largest component (before sprinkling)

split into a family C of vertex-disjoint connected subgraphs
('pieces’), each of order poly(d)
L = largest component (after sprinkling)

Ly



Splitting the largest component into pieces

L} = largest component (before sprinkling)
= split into a family C of vertex-disjoint connected subgraphs
('pieces’), each of order poly(d)
L = largest component (after sprinkling)
S = arbitrary subset of V(L;) with |s| < Yl

Ly




Splitting the largest component into pieces

L} = largest component (before sprinkling)
= split into a family C of vertex-disjoint connected subgraphs
('pieces’), each of order poly(d)
L = largest component (after sprinkling)
S = arbitrary subset of V(L;) with |s| < Yl

®
®
[
Ly
e
[

S, = S—1L

S, = verticesinpieces Ce CwithCNS#PandS—C#0
S; = verticesinpiecesC e CwithC CS



Contribution of S, to N(S)

S, = S—1L
S, = verticesinpiecesCeCwithCNS#PandS—C £
S3 = vertices in pieces C e CwithC C S

With sprinkling, each component in O [L; — L{] which intersects with S,
@ contributes at least one edge to N(S)

@ oris connected to S, U S

Thus  [N(S)| > Bl or e($),5USs) > Ll andthus |, USs| > <L




Contribution of S, to N(S)

Ly = splitinto a family C of pieces, each of order poly(d)
vertices in pieces Ce CwithCnNS#0PandS—C #0
vertices in pieces C e CwithC C S

S>
S3

Each piece Ce CwithCNnS#A0andS—C#0
@ contributes at least one edge to N(S)

and each piece is of order poly(d)

1S
Thus  [N(S)| > o



Contribution of S; to N(S)

Ly = splitinto a family C of pieces, each of order poly(d)
vertices in pieces Cc CwithCNS#PandS—C #0

o)
N
I

vertices in pieces C e CwithC C S

o
b+
Il

Partition the family C of pieces into two disjoint families {.A, B}

A:={CeC:CCS} and B:=C-A

This partitions V(L) into two sets A, B where

A=V(A)=S; and B:=V({( - A



Contribution of S; to N(S) — extending and connecting

(2) Extending the partition V(L;) = A U B to a partition V(Q?) = AUB s.t.
e every vertex in A is within distance 2 of A

e every vertex in B is within distance 2 of B

A B

whp every vertex in V(Q?) is within distance two from > ¢ d? vertices in L]



Contribution of S; to N(S) — extending and connecting

(2) Extending the partition V(L;) = A U B to a partition V(Q?) = AUB s.t.
e every vertex in A is within distance 2 of A

e every vertex in B is within distance 2 of B

1
i~

Edge-isoperimetry in Q¢ [ HARPER 64; LINDSEY 64; BERNSTEIN 67; HART 76]

|E(X,X)| > |X| (d —log, |X]), VX CV(Q') with |x| <2



Contribution of S; to N(S) — extending and connecting

(2) Extending the partition V(L) = A U B to a partition V(Q?) = AUB s.t.
e every vertex in A is within distance 2 of A

e every vertex in B is within distance 2 of B

Bl
&

(3) Sprinkle with ¢, = %

Lemma

_lal

whp 3 at least B

vertex-disjoint A-B-paths of length at most 5 in qu



Contribution of S; to N(S)

L = splitinto a family C of ’pieces’, each of order poly(d)
S, = verticesin pieces Ce CwithCNS#PandS—C#0
S3 = vertices in pieces C € CwithC C S

= A

BN
&I

Each A-B-path in Q¢, contributes at least one edge to N(S),
unless it goes to S,

Thus  [N(S)| > 5L — dls:|




Expansion properties and consequences

Ly = largest componentof 05 whenp = 4= for >0
Theorem [ ERDE-K.-KRIVELEVICH 22 ]
whp L,

@ is cd ’—expander
@ containsa ¢’ d? (logd)~'—expander on > 0.9 |L| vertices
@ has diameter O (d°)

@ has Cheeger constant Q2 (d7°)



Mixing time of lazy random walk on Q¢
In each step,
@ it remains at the current position with prob 1

@ it moves to a uniformly chosen random neighbour with prob 1

%V’
\\ /
s

N\
)




Mixing time of lazy random walk on Q¢
In each step,
@ it remains at the current position with prob 1

@ it moves to a uniformly chosen random neighbour with prob 1

0100

Mixing time: O(dlogd)



Mixing time of lazy random walk on the giant

Ly = giant componentof Qi whenp = 4= for >0




Mixing time of lazy random walk on the giant

Ly = giant componentof Qi whenp = 4= for >0

x whp L, contains bare paths of length Q(d)

— (worst-case) mixing time : Q(d*)



Mixing time of lazy random walk

Given a graph G,
lmix(G)
®(G)
Tmin(G) = min{% : x e V(G)}

(worst-case) mixing time of a lazy random walk on a graph G

Cheeger constant of G ( = bottleneck ratio)

[ LAWLER—SOKAL 88; JERRUM—SINCLAIR 89; LEVIN-PERES—WILMER 07 ]

m(0) < g 1og(,rm:(0))




Mixing time of lazy random walk on the giant

Given a graph G,
lmix(G)
®(G)
Tmin(G) = min{% : x e V(G)}

(worst-case) mixing time of a lazy random walk on a graph G

Cheeger constant of G ( = bottleneck ratio)

[ LAWLER—SOKAL 88; JERRUM—SINCLAIR 89; LEVIN-PERES—WILMER 07 ]

m(0) < g 1og<,rm:(0))

Ly = giant componentof Q¢ whenp = %= for >0
[ ERDE-K.-KRIVELEVICH 22 ]
whp B(Ly) = Q(d_S) and  un(Li) = Q(z—f’)

tmin(L1) = o(d“)



Summary and open problems

L, = largest componentof Q¢ whenp = e for £>0
Theorem [ ERDE-K.-KRIVELEVICH 22 ]
whp L;

@ is cd’—expander
@ containsa ¢ d~* (logd)~'—expander on > 0.99 |L,| vertices

@ has diameter O ()

whp the mixing time of the lazy simple random walk on L, is O (d'!).



Summary and open problems

L, = largest component of Qi whenp = %= for >0
Theorem [ ERDE-K.-KRIVELEVICH 22 ]
whp L;

@ is cd’—expander
@ containsa ¢ d~* (logd)~'—expander on > 0.99 |L,| vertices

@ has diameter O ()

whp the mixing time of the lazy simple random walk on L, is O (d'!).

Q1. What is the correct order of the diameter of L; ?

02.  What is the mixing time of the lazy random walk on L; ?



VL.

Outline of the minicourse — Day 4

Prelude

Basic probabilistic tools

Erdés-Rényi random graphs
Higher-dimensional analogues
Random subgraphs of the hypercube

Topological aspects of random graphs



Part VI.

Topological aspects of random graphs

@ Typical genus of the Erdds-Rényi random graph
@ Random graphs on surfaces with constant genus
@ Benjamini-Schramm local weak limits

@ Random graphs on surfaces with non-constant genus



Guiding questions/themes
(1) What is a typical genus of the Erdés-Rényi random graph?

x genus of a graph G
minimum number of handles that must be attached to sphere

in order to embed G without any crossing edges

x the case when genus is 0 corresponds to planar graphs

Ks genus of K5 =1



Guiding questions/themes

(1) What is a typical genus of the Erdés-Rényi random graph?

(2) How does a topological constraint such as

e Dbeing planar
e being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

e component structures

e local weak limits



A uniform random graph

G(n,m) €r G(n,m)

G(n,m) = setof all vertex-labelled simple graphs
on vertex set [n] := {1,...,n} with m = m(n) edges
G(n,m) = chosen uniformly at random from G(n,m)

* G(n,m) and G(n, p) are 'essentially equivalent' when m ~ (}) p



Planarity of G(n, m)

— 4.
m=d-3

Theorem [ ERDOS-RENYI 1959-60 |
@ Ifd < 1, whp
e each component is either a tree or unicyclic component

o G(n,m) is planar

@ Ifd > 1, whp

e largest component contains > two cycles (‘complex’)

e G(n,m) is not planar



Genus g of G(n,m)
m > n (superlinear)
g = g(G(n,m)) denote the genus of G(n, m)

Theorem [ RODL-THOMAS 1995 ]

@ If i’ < m < 't for jeN, then whp,

g = (+o(1) gt m

@ If m=0(n?), then whp ¢ = (14 0(1)) L m.

g/m \




Genus g of supercritical G(n, m)

d-5ford>1

m =
g(G(n,m)) denote the genus of G(n, m)

g =
Theorem [ DOWDEN—K.—KRIVELEVICH 2019 ]
whp
g = (1+o0(1)) p(d) m

where (d) -+ 0asd — 1 and p(d) — 3 asd — oo

g/m
0 .




3o

Summary — genus g of G(n,m)
0 if m—n/2<n
p(d) it 2m/n— d>1 (limgs p(d) =0, limyeo p(d) = 1)

. 1 1
iy WA <m<n'ti for jeN

! it m =0 (n)




Random graphs on surfaces

g €Ny = {0,1,2,...}

S, = the orientable surface of genus g

Sg(l’l, m) €r Sg(”v m)

Sy(n,m) set of all vertex-labelled simple graphs on [#]

with m = m(n) edges that are embeddable on S,

Se(n,m) = chosen uniformly at random from S,(n,m)



Random graphs on surfaces
g €N = {0,1,2,...}
S, = the orientable surface of genus g
Sg(n,m) €r Sg(nvm)

S,(n,m) = set of all vertex-labelled simple graphs on [n]
with m = m(n) edges that are embeddable on S,

Se(n,m) = chosen uniformly at random from S,(n,m)

Note
@ So(n,m) C...C Sg(n,m) C Seri(n,m) C...C G(n,m)



Random graphs on surfaces

g €Ny = {0,1,2,...}

S, = the orientable surface of genus g

Sg(l’l, m) €r Sg(”v m)

S,(n,m) = set of all vertex-labelled simple graphs on [n]
with m = m(n) edges that are embeddable on S,
Se(n,m) = chosen uniformly at random from S,(n,m)

Note
@ So(n,m) C...C Sg(n,m) C Seri(n,m) C...C G(n,m)

@ If1 <mc< g, then \So(n,m)\ n— 00 1
|G (n, m)]|

@ Ifm > 3n— 6+ 6g, then S;(n,m) = 0



Random graphs on surfaces — vertex model

Sg(n) €r Sg(n)
S,(n) = setof all vertex-labelled simple graphs on [n]

that are embeddable on S,

Se(n) = chosen uniformly at random from S, (n)



Random graphs on surfaces — vertex model

Se(n) €r Se(n)

S,(n) = setof all vertex-labelled simple graphs on [n]
that are embeddable on S,

Se(n) = chosen uniformly at random from S, (n)

Theorem [ MCDIARMID-STEGER-WELSH 05 (g = 0); MCDIARMID 08 ]

whp the order of largest component L, in S,(n) is n — O(1)

Theorem [ GIMENEZ-NOY 09 (g = 0); CHAPUY-FUSY-GIMENEZ-MOHAR-NOY 11 ]
$¢-1 a4
Se(m)]  ~  agn2*72 4" nl

where a, > 0 and v ~ 27.23 is the exponential growth rate of planar graphs



random graphs on surfaces
Se(n) €r Se(n)

Theorem [ GIMENEZ-NOY 09 (g = 0); CHAPUY-FUSY-GIMENEZ-MOHAR-NOY 11 ]

e X, = # edgesin S;(n)
25 N, 1)

where E(X,) ~ 2.21n and ¢*(X,) ~ 0.43n (same as planar case)



‘Dense’ random graphs on surfaces
Se(n) €r Se(n)
Theorem [ GIMENEZ-NOY 09 (g = 0); CHAPUY-FUSY-GIMENEZ-MOHAR-NOY 11 ]

e X, = # edgesin S;(n)
25 N, 1)
where E(X,) ~ 2.21n and ¢*(X,) ~ 0.43n (same as planar case)
e Form = d-§withd € (2,6),
[Se(n,m)|  ~  a(d) n3* 7 y(d)" !

where «,(d) > 0 and ~(d) is same as planar case

x* whp  |Li|] = n—o(l)



‘Sparse’ random graphs on surfaces

L; = largest componentin Sg(n,m) €g Sg(n,m)

m=d-5 fordc (1,2)

Theorem [ K.—tuczak 2012 (g = 0); K.—-MOSSHAMMER—SPRUSSEL 2020]

whp ILi| = (140(1) (d—)n




‘Sparse’ random graphs on surfaces

L; = largest componentin Sg(n,m) €g Sg(n,m)

m=d-5 fordc (1,2)

Theorem [ K.—tuczak 2012 (g = 0); K.-MOSSHAMMER—-SPRUSSEL 2020]
whp IL| = (140(1) (d—1)n
[Li]/n
1
0.5
0 - T
0 1 2 3 d

Q1. What is the limit distribution of |L| ?

Q2. Joint distribution of the number of vertices and edges in L; ?



ER random graph vs random graphs on surfaces

[L1] IL1]

n n

Uniform random graph G(n, m) Random graph on a surface S,(n, m)



ER random graph vs random graphs on surfaces

1L 1Ll
n n
1 -
0.5 4 0.5 4
0 0
0 1 2 3 od=2 0 1 2 3 od=2
Uniform random graph G(n, m) Random graph on a surface S,(n, m)

x fragment R = G(n,m) \ L, is subcritical  (i.e., 2mg/ng < 1)

«  fragment R = S,(n,m) \ L, is critical (i.e., 2mg/ng — 1)



Part VI.

Topological aspects of random graphs

v Typical genus of the Erdés-Rényi random graph
v/ Random graphs on surfaces with constant genus
@ Benjamini-Schramm local weak limits

@ Random graphs on surfaces with non-constant genus



Local structure of Erdos-Rényi random graph

G(n,m) €r G(n,m)

d-5 ford >0



Local structure of Erdos-Rényi random graph

G = G(n,m) €r G(n,m)
m=d-35 ford >0

r €r V(G) = avertex chosen uniformly at random from V(G)

d*(r) ~ Po(d)



Local structure of Erdos-Rényi random graph

G = G(n,m) €r G(n,m)
m=d-35 ford >0

r €r V(G) = avertex chosen uniformly at random from V(G)

d*(r) ~ Po(d)
d"(u) ~ Po(d)

dt(v) ~ Po(d)



Benjamini-Schramm local weak limit
[ BENJAMINI-SCHRAMM 2001; ALDOUS—STEELE 2004]
@ Given arooted graph (H,r)and £ € N:={1,2,...}, let

By (H,r) :== H|{ve V(H) :du(v,r) <}




Benjamini-Schramm local weak limit
[ BENJAMINI-SCHRAMM 2001; ALDOUS—STEELE 2004]
@ Given arooted graph (H,r)and £ € N:={1,2,...}, let

By (H,r) :== H|{ve V(H) :du(v,r) <t}

@ Two rooted graphs (H, r) and (H’, ) are isomorphic,
(H,r) = (H,r)

if 3 isomorphism ¢ from H onto H with ¢(r) = '



Benjamini-Schramm local weak limit — cont’d

Given a sequence ((Gu, ) )n of random connected rooted graphs,

a random connected rooted graph (Go, ro) is the local weak limit of (G, r.)
(Gmrn) L> (G(),V())

if for each fixed rooted graph (H, ry) and ¢ € N,

n—oo

P[Bf (Gu,mn) = (H,rn) E— P[B/' (Go,r0) = (H,ru)




Benjamini-Schramm local weak limit — cont’d

Given a sequence ((Gu, ) )n of random connected rooted graphs,

a random connected rooted graph (Go, ro) is the local weak limit of (G, r.)
(Gmrn) L> (G(),V())

if for each fixed rooted graph (H,ry) and £ € N,

n—oo

BB (Gura) & (Hym)| =25 B[Be(Go,n) = (H,m)

*  For not necessarily connected (G, r), its local weak limit?

—> define it as the local weak limit of the component of G, containing r,



Erdos-Rényi random graph vs GW tree

G = G(n,m) €r G(n,m)
r €r V(G)

2m/n ——— d € [0, 0)

GWT (d) = Galton-Watson tree with offspring distribution Po (d)

Theorem [ DEMBO—MONTANARI 2010; VAN DER HOFSTAD 2022+ ]

G,r) 2 GWT(d)



Local weak limit of a random tree

T = T(n) €r T(n)
= atree chosen uniformly at random from the class of all trees on [1]

r €g V(T)

Theorem [ GRIMMETT 1980/1981 ]

Skeleton tree T

AP

= arooted tree obtained from an infinite path by replacing each vertex
of the path by an independent Galton-Watson tree GWT (1)




Local weak limits

GWT (d) Galton-Watson tree

T~ Skeleton tree

Y



Local weak limit of a random graph on a surface

S = S;(n,m) €r Sg(n,m)

r €g V(S) avertex chosen uniformly at random from V()

n— oo

2m/n ——— d € [1,2]



Local weak limit of a random graph on a surface

S = Sg(n,m) €r Sy(n,m)

r €g V(S) avertex chosen uniformly at random from V()

n— oo

2m/n ——— d € [1,2]

Theorem [ K.=MISSETHAN 2022+ ]

S,r) = 2-d)GWT() + (d—1)T

meaning that for each rooted graph (H, ry) and ¢ € N, we have

n— o0

]P’[Bg (S,r) = (H, rH)] nooe,

(2- d)]P’[B;g (GWT (1)) = (H, r,,)} - 1)]1)[34 (Toe) 2 (H, 1)



Global structure of a random graph on a surface

S = Sy(n,m) €r Se(n,m) and 2m/n — de (1,2)
L largest component of §
R = S\ L fragment of §

"




Global structure of the fragment

S = S;(n,m) €r Sg(n,m) and 2m/n — de (1,2)
largest component of S
R = S\ L fragment of S

The fragment R ‘behaves similarly’ like

a critical ER random graph G(n,m) with 7= (2 —d)n and 2m/n — 1

>
SV
%



Global structure of the fragment

S = S;(n,m) €r Sg(n,m) and 2m/n — de (1,2)

L largest component of §
R = S\ L fragment of S
R €r V(R)

The fragment R ‘behaves similarly’ like

a critical ER random graph G(n,m) with 7= (2 —d)n and 2m/n — 1

9 (R,rr) = GWT(1)



Internal structure of the largest component

S = Sy(n,m) €r Sg(n,m) and 2m/n — de< (1,2)
L, largest component of S,
o 2-core = max subgraph of L; with min deg > two




Internal structure of the largest component

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)
L, largest component of S,
o 2-core = max subgraph of L; with min deg > two

@ |L] = (1+40(1))(d-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree




Internal structure of the largest component

S = Sy(n,m) €r Sg(n,m) and 2m/n — de< (1,2)
L, largest component of S,
o 2-core = max subgraph of L; with min deg > two

@ |L] = (1+40(1))(d-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree




Internal structure of the largest component

S = Sy(n,m) €r Sg(n,m) and 2m/n — de< (1,2)
L, largest component of S,
o 2-core = max subgraph of L; with min deg > two

@ |L] = (1+40(1))(d-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree

.7/'
b




Local weak limit of a random forest

@ F=F(n,t) €r F(n,t) aforeston vertex set [n] with 7 tree components
@ rr €r V(F) avertex chosen uniformly at random from V(F)




Local weak limit of a random forest

@ F=F(n,t) €r F(n,t) aforeston vertex set [n] with 7 tree components
@ rr €r V(F) avertex chosen uniformly at random from V(F)

@ r the root of the tree component 7 in F that contains rr




Local weak limit of a random forest

@ F=F(n,t) €r F(n,t) aforeston vertex set [n] with 7 tree components
Q@ rr € V(F)

Q rr

a vertex chosen uniformly at random from V(F)

the root of the tree component T in F that contains rr

Lemma [ K.=MISSETHAN 2022+ ]

If t = t(n) = o(n), then whp dg(rr,rr) = w(1) and

(F,re) 2 Tw




Internal structure of the largest component

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)
L largest component of §
R = S\ L fragment of S

@ L] = (140())(d—-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree




Internal structure of the largest component

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)

L largest component of §
R = S\ L fragment of S
I‘L] S R V (L] )

@ L] = (140())(d—-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree




Internal structure of the largest component

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)

L largest component of §
R = S\ L fragment of S
I‘L] S R V (L] )

@ L] = (140())(d—-1)n and [C| = o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree




Finer view of local weak limits

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)
L, largest component of § and |Li| ~ (d—1)n

rL, €r V(L])

Theorem [ K.=MISSETHAN 2022+ ]

(Ll, rLI) = Hes




Finer view of local weak limits

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)

L, largest component of § and |Li| ~ (d—1)n
R=S\L ~ criitical ERrandomgraph and |R| ~ (2—d)n
R €r V(R), r, €r V(L)

Theorem [ K.=MISSETHAN 2022+ ]
(R, rr) 2, GWT (1)
(Li,rz,) 2 To

(R, R) 25 GWT (1)




Finer view of local weak limits

S = Se(n,m) €r Sg(n,m) and 2m/n — d € (1,2)

L, largest component of § and |Li| ~ (d—1)n
R=S\L ~ criitical ERrandomgraph and |R| ~ (2—d)n
R €r V(R), r, €r V(L) and s €z V(S)

Theorem [ K.=MISSETHAN 2022+ ]
(R, rz) L2, GWT (1)
(Li,r1,) L2, Too
(S, rs) 2, 2-d)GWT(1) + (d—1)Tw

(R, R) 25 GWT (1)




Part V.
Topological aspects of random graphs
v Typical genus of the Erd6s-Rényi random graph

v" Random graphs on surfaces with constant genus

v' Benjamini-Schramm local weak limits

Random graphs on surfaces with non-constant genus



ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),
THEN Vg > T

S, (n,m)| [Srnm)] oo,
Gonm)| = [G0mm)] ro




ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),
THEN Vg > T
|Se(n, m)| |Sr(n,m)| 1o

Lt Akt RidrA bl Nt RsdA 1

G(n,m)| = |G(n,m)]|

In other words, forvV ¢ > T,
S¢(n, m) is indistinguishable from G(n, m) under viewpoint of whp-properties

If for every property A
whp G(n, m) satisfies A iff whp S,(n, m) satisfies A

then we say G(n,m) and S,(n, m) are contiguous.



Contiguity threshold and more on the giant

d-3forl <d<?2

v(d)-n = contiguity threshold



Contiguity threshold and more on the giant
m=d-3forl <d <2

v(d)-n = contiguity threshold
L; = largest component in S,(n,m) €r S;(n,m)
Theorem [ DOWDEN—K.—MOSSHAMMER—SPRUSSEL 2022+ |

whp
ILi| = (14+0(1))pn if ¢>T

ILi] = (140(1))(d—1)n if ¢<T




Proof sketch — asymptotic enumeration
|Se(n,m)] = 4 graphs on [n] with m edges and genus < g

- Zu <Z> Colk,k+ ) U(n—k,m—k—¥£)

where

Colk,k+£) = # complex part on [k] with k + ¢ edges

Un—k,m—k—1{)

# graphs consisting of
trees or unicyclic components
on [n — k| with m — k — £ edges

v Asymptotic behaviour of U(n — k,m — k — £) is well understood



Proof sketch — core-kernel approach

e Complex part G



Proof sketch — core-kernel approach

e Complex part G

2-Core = max. subgraph of G with min. degree > 2



Proof sketch — core-kernel approach

e Complex part G

2-Core = max. subgraph of G with min. degree > 2



Proof sketch — core-kernel approach

e Complex part G

2-Core = max. subgraph of G with min. degree > 2

Kernel = replace each bare-path in 2-core by an edge



Proof sketch — core-kernel approach

e Complex part G

2-Core = max. subgraph of G with min. degree > 2

Kernel = replace each bare-path in 2-core by an edge



Proof sketch — core-kernel approach

e Complex part G

2-Core = max. subgraph of G with min. degree > 2

Kernel = replace each bare-path in 2-core by an edge

x gisgenusof G iff gisgenus of kernel of G



Proof sketch — construction of complex part

e Construct complex part G

Cy(k,k +¢) = # complex part on [k] with k + ¢ edges



Proof sketch — construction of complex part

e Construct complex part G by

> choosing kernel of G from the set of possible candidates

Cy(k,k +¢) = # complex part on [k] with k + ¢ edges

= Z K (20 —j)



Proof sketch — construction of complex part

e Construct complex part G by
> choosing kernel of G from the set of possible candidates

> putting on its edges vertices of degree 2 to obtain 2-core

Cy(k,k +¢) = # complex part on [k] with k + ¢ edges

_ . (k), i—a(—l
_z; Ke26=0) i <3€j 1)




Proof sketch — construction of complex part

e Construct complex part G by
> choosing kernel of G from the set of possible candidates
> putting on its edges vertices of degree 2 to obtain 2-core

> adding a forest rooted at vertices of 2-core

Cy(k,k +¢) = # complex part on [k] with k + ¢ edges

_ . (k)i i—al—1\ . i
_z; Ke26=0) i <3€j 1) ik




Proof sketch — construction of complex part

e Construct complex part G by
> choosing kernel of G from the set of possible candidates
> putting on its edges vertices of degree 2 to obtain 2-core

> adding a forest rooted at vertices of 2-core

Cy(k,k +¢) = # complex part on [k] with k + ¢ edges

_ . (k), i—a€—l o k—i—1
_; Ke26=0) i <3€j 1) ik

*  Asymptotic behaviour of Cy(k,k + €) ?
= combinatorial variants of Laplace method v



Summary and open problems

Global properties of Sy (n,m) whenm = d - ford > 1

o

o

ol.
02.

contiguity threshold T = v(d) - n

largest component L,

[Ly|/n [L1]/n
1 1 —
05 /__ y
00 1 2 3 d O0 1 2 3 d
ILi| ~pnif g>T ILi|~(d—1)nif g<T

Order of largest component when ¢ = O(T) ?
Length of longest cycle when g < T or g =O(T) ?

x when g > T, it follows from G(n, m) [ AJTAI-KOMLOS-SZEMEREDI 1981 ]



Summary of the minicourse

|. Prelude
[l.  Basic probabilistic tools
[ll.  Erdds-Rényi random graphs
V. Higher-dimensional analogues
V. Random subgraphs of the hypercube

VI.  Topological aspects of random graphs

+ Slides available at

https://www.math.tugraz.at/ = kang/talks/Kang-RandNET2022.pdf



