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The Beginning

Erdős (1913 – 1996) Rényi (1921 – 1970)



Main topics of the minicourse

• What is the probability of a random graph being completely connected?

• Emergence of the giant component

• Double jump vs smooth phase transition



Phase transition

The phase transition deals with a sudden change in the properties of
a large structure, caused by altering a critical parameter.

low temperature
dense, ordered

mid temperature
short-range order

high temperature
sparse, irregular



Percolation in physics, materials science, . . .



Mathematical models of percolation

Bond percolation: each bond (or edge) is either open with prob. p
or closed with prob. 1− p, independently

Site percolation: each site (or vertex) is either occupied with prob. p
or empty with prob. 1− p, independently

p < pc p > pc

Bond percolation on square lattice Site percolation on hexagonal lattice



Erdős-Rényi random graphs

Let G(n, p) denote a binomial random graph:

a graph on vertex set [ n ], in which each pair of vertices is

joined by an edge with probability p = p(n), independently

∗ Bond percolation on the complete graph Kn



Erdős-Rényi random graphs – cont’d

Let G(n,m) denote a uniform random graph:

a graph taken uniformly at random from the set G(n,m) of all

graphs on vertex set [ n ] := {1, . . . , n} with m = m(n) edges

∗ G(n, p) and G(n,m) are ’essentially equivalent’ when m ∼
(n

2

)
p

and they are called Erdős-Rényi random graphs



Phase transitions in G(n, p)

Let p = p(n) ∈ [0, 1]

1

p=0

1/n

log n / n

complete

empty

isolated vertex / connected

cycles / giant component



Part II.

Basic probabilistic tools

First moment method

Second moment method

Chernoff bounds

Sprinkling argument

Galton-Watson branching process



First moment method

Markov’s inequality

Let X be a non-negative integer-valued random variable. Then for every a > 0

P
[
X ≥ a

]
≤

E
[
X
]

a

In particular, P
[
X ≥ 1

]
≤ E

[
X
]

For example, let Xn = # isolated vertices in G(n, p) for p = ...

IF E
[
Xn
] n→∞−−−→ 0,

THEN P
[
G(n, p) contains an isolated vertex

]
= P

[
Xn ≥ 1

]
≤ E

[
Xn
] n→∞−−−→ 0



First moment method

Markov’s inequality

Let X be a non-negative integer-valued random variable. Then for every a > 0

P
[
X ≥ a

]
≤

E
[
X
]

a

In particular, P
[
X ≥ 1

]
≤ E

[
X
]

For example, let Xn = # isolated vertices in G(n, p) for p = ...

IF E
[
Xn
] n→∞−−−→ 0,

THEN P
[
G(n, p) contains an isolated vertex

]
= P

[
Xn ≥ 1

]
≤ E

[
Xn
] n→∞−−−→ 0



Second moment method

Chebyshev’s inequality

Let X be a random variable with E
[
X
]
> 0. Then

P
[
X = 0

]
≤ P

[ ∣∣X − E
[
X
]∣∣ ≥ E

[
X
] ]
≤

Var
[
X
]

E
[
X
]2

Let X = X1 + X2 + . . . be a sum of indicator random variables with E[X] > 0.

Then
P
[
X = 0

]
≤

Var
[
X
]

E
[
X
]2 ≤ 1

E
[
X
] +

∑
i 6=j Cov

[
Xi,Xj

]
E
[
X
]2 ,

where Cov
[
Xi,Xj

]
= E

[
XiXj

]
− E

[
Xi
]
E
[
Xj
]
.

For example, let Xn = # isolated vertices in G(n, p) for p = ... .

IF E
[
Xn
] n→∞−−−→ ∞ and

∑
i 6=j Cov

[
Xn,i,Xn,j

]
E
[
Xn
]2

n→∞−−−→ 0,

THEN P
[
G(n, p) contains no isolated vertex

]
= P

[
Xn = 0

] n→∞−−−→ 0
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Method of moments

Let (Xn)n≥1 be a sequence of sums of indicator random variables.

Suppose ∃ λ > 0 such that ∀ k ∈ N, the k-th binomial moment satisfies

lim
n→∞

E

(
Xn

k

)
=

λk

k!
.

Then
Xn

D−−−−→ Po(λ)

i.e., Xn converges in distribution to a Poisson random variable with mean λ.

In particular, lim
n→∞

P
[
Xn = 0

]
= e−λ

For example, let Xn = # isolated vertices in G(n, p) for p = ....

IF
E

(
Xn

k

)
n→∞−−−→

(
e−c)k

k!
, ∀k ∈ N,

THEN
P
[
G(n, p) contains no isolated vertex

]
= P

[
Xn = 0

]

n→∞−−−→ e−e−c
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Chernoff bounds

Let N ∈ N, let p ∈ [0, 1], and let X ∼ Bi(N, p).

For every a > 0,

P [ X ≥ Np + a ] ≤ exp

(
− a2

2(Np + a/3)

)
P [ X ≤ Np− a ] ≤ exp

(
− a2

2Np

)
For every 0 < a ≤ Np

2 ,

P [ |X − Np| ≥ a ] ≤ 2 exp

(
− a2

4Np

)



Sprinkling argument

Two round exposure:

• let p, p1, p2 ∈ (0, 1) satisfy

(1− p) = (1− p1)(1− p2)

• generate G(n, p), G(n, p1), and G(n, p2) independently

Then G(n, p) and G(n, p1) ∪ G(n, p2) have the same distribution

Multi-round exposure:

• let p, p1, . . . , pr ∈ (0, 1) satisfy

(1− p) =
∏r

i=1
(1− pi)

• generate G(n, p), G(n, p1), . . . , G(n, pr) independently

Then G(n, p) and
⋃r

i=1 G(n, pi) have the same distribution
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Galton-Watson branching process

GW(Z) = Galton-Watson tree with offspring distribution Z

= a random tree constructed by the Galton-Watson process

with offspring distribution Z

• start with a single root vertex

• each vertex has a random number of children with distribution Z

• # children are independent of each other and of the history

fZ = probability generating function of Z

Theorem

If E(Z) > 1, the GW process survives (i.e., GW(Z) is infinite)

with probability ρ ∈ (0, 1) satisfying 1− ρ = fZ(1− ρ)

If E(Z) < 1, the survival probability of the GW process is zero
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Poisson branching process

GW(Z) = Galton-Watson tree with offspring distribution Z

fZ = probability generating function of Z

ρ = survival probability of GW process with offspring distribution Z

Assume Z ∼ Po(d)

fZ(x) =
∑
`≥0

P [ vertex v generates ` children ] x`

=
∑
`≥0

P [ Po(d) = ` ] x`

=
∑
`≥0

exp(−d)
d`

`!
x`

= exp(−d)
∑
`≥0

(dx)`

`!

= exp
(
− d(1− x)

)

v

` subtrees



Binomial branching process

GW(Z) = Galton-Watson tree with offspring distribution Z

fZ = probability generating function of Z

ρ = survival probability of GW process with offspring distribution Z

Assume Z ∼ Bi(n, p)

fZ(x) =
∑
`≥0

P [ vertex v generates ` children ] x`

=
n∑
`=0

P [ Bi(n, p) = ` ] x`

=

n∑
`=0

(
n
`

)
p` (1− p)n−` x`

=
(

px + (1− p)
)n

=
(

1− p(1− x)
)n

v

` subtrees



Extinction probability of branching processes

GW(Z) = Galton-Watson tree with offspring distribution Z

fZ = probability generating function of Z

ρ = survival probability of GW process with offspring distribution Z

η = 1 − ρ = extinction probability of GW(Z)

We have

η =
∑

`≥0
P [ v generates ` children ] η` = fZ(η)

In other words,
1 − ρ = fZ(1 − ρ)

Assume that d := np > 1

• If Z ∼ Po(d), then 1− ρ = exp (−d ρ)

• If Z ∼ Bi(n, p), then 1− ρ = (1− p ρ)n ∼ exp (−d ρ)

Thus, if ε := d − 1 n→∞−−−→ 0 with ε > 0 then ρ ∼ 2ε

v

` subtrees
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Part III.

Erdős-Rényi random graphs

Thresholds

Connectedness threshold

Percolation threshold

Coupling with Galton-Watson branching trees

More about the giant component



Thresholds and sharp thresholds

Let A be a monotone increasing property.

Threshold

A function p∗ = p∗(n) is called a threshold for A if

P
[

G(n, p) satisfiesA
] n→∞−−−→

{
0 if p � p∗

1 if p � p∗

Sharp threshold

A function p∗ = p∗(n) is called a sharp threshold for A if ∀ε > 0,

P
[

G(n, p) satisfiesA
] n→∞−−−→

{
0 if p ≤ (1− ε) p∗

1 if p ≤ (1 + ε) p∗

∗ Every monotone property has a threshold [ BOLLOBÁS–THOMASON 87 ]



Sharp thresholds – two toy examples

Containment of isolated vertices in G(n, p)

Connectedness in G(n, p)



Sharp threshold for isolated vertices

A sharp threshold for the property that G(n, p) contains no isolated vertex is

p∗ =
log n

n

Theorem

Let p =
log n + c(n)

n

where |c(n)| → ∞ arbitrarily slowly as n→∞. Then

P
[

G(n, p) contains no isolated vertex
] n→∞−−−→

0 if c(n) → −∞

1 if c(n) → ∞
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Proof sketch

To prove the statement, we may assume without loss of generality that

|c(n)| � log n.

∗ The function φ : [0, 1]→ [0, 1] defined by

φ(p) := P[ G(n, p) contains NO isolated vertex ]

is monotone increasing in p.

∗ The function ξ : [0, 1]→ [0, 1] defined by

ξ(p) := P[ G(n, p) contains at least one isolated vertex ]

is monotone decreasing in p.



Proof sketch - cont’d
For each v ∈ [n], let

Xv =

{
1 if v is isolated in G(n, p)

0 otherwise.

Then E
[
Xv
]

= (1− p)n−1.

Set X :=
∑

v∈[n] Xv. By linearity expectation we have

E
[
X
]

=
∑
v∈[n]

E
[
Xv
]

= n (1− p)n−1

= exp
(

log n− pn + p + O(p2n)
)
,

using 1− x = exp(1− x + O(x2)) for x = o(1).

v

Taking p = log n + c(n)
n with |c(n)| � log n, we have

E
[
X
]

= (1 + o(1)) exp
(
− c(n)

)
.
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Proof sketch - cont’d
Note X :=

∑
v∈[n] Xv is equal to the number of isolated vertices in G(n, p) and

we have

E
[
X
]

= (1 + o(1)) exp
(
− c(n)

)
.

Case (1): assume that p = log n + c(n)
n with c(n)→∞.

Using the first moment method, we have

P
[
X ≥ 1

]
≤ E

[
X
]

= (1 + o(1)) exp
(
− c(n)

)
→ 0,

and

P
[
G(n, p) contains an isolated vertex

]
= P

[
X ≥ 1

]
→ 0.

Summing up, if p = log n + c(n)
n with c(n)→∞, then

P
[
G(n, p) contains no isolated vertex

]
= P

[
X = 0

]
→ 1.
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Proof sketch - cont’d

Case (2): assume that p = log n + c(n)
n with c(n)→ −∞.

We have E
[
X
]

= (1 + o(1)) exp
(
− c(n)

)
→ ∞

For v 6= w,

Cov
[
Xv,Xw

]
= E

[
XvXw

]
− E

[
Xv
]
E
[
Xw
]

= (1− p)2n−3 − (1− p)2n−2 = p(1− p)2n−3

and therefore∑
v6=w Cov

[
Xv,Xw

]
E
[
X
]2 =

n(n− 1)p(1− p)2n−3

n2(1− p)2n−2 ∼ p
1− p

→ 0

Using the second moment method, we have

P
[
X = 0

]
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E
[
X
] +

∑
v6=w Cov
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Xv,Xw

]
E
[
X
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]
− E

[
Xv
]
E
[
Xw
]

= (1− p)2n−3 − (1− p)2n−2 = p(1− p)2n−3

and therefore∑
v6=w Cov

[
Xv,Xw

]
E
[
X
]2 =

n(n− 1)p(1− p)2n−3

n2(1− p)2n−2 ∼ p
1− p

→ 0

Using the second moment method, we have

P
[
X = 0

]
≤ 1

E
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X
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Xv,Xw
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X
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Sharp threshold for isolated vertices

Theorem

Let p =
log n + c(n)

n

where |c(n)| → ∞ arbitrarily slowly as n→∞. Then

P
[

G(n, p) contains no isolated vertex
] n→∞−−−→

0 if c(n) → −∞

1 if c(n) → ∞

∗ What happens when c(n) → c ∈ R?



Isolated vertices in critical window

Theorem

Let
p =

log n + c(n)

n
, where c(n) → c ∈ R.

Let X = X(n) be # isolated vertices in G(n, p). Then

X D−−−−→ Po(e−c).

It means, for every ` = 0, 1, 2, . . .

lim
n→∞

P[X = `] = exp
(
−e−c) (e−c)`

`!

In particular,

P
[
G(n, p) contains no isolated vertex

] n→∞−−−→ exp
(
−e−c)



Proof sketch
For each v ∈ [n], let

Xv =

{
1 if v is isolated in G(n, p)

0 otherwise.

Then X =
∑

v∈[n] Xv denotes the number of isolated vertices.

Assume p = log n + c(n)
n with c(n) → c. Then

E
[
X
]

= (1 + o(1)) exp
(
− c(n)

) n→∞−−−→ e−c

For each k ≥ 2,

E

(
X
k

)
=

∑
1≤i1<i2<...<ik≤n

P
[
Xi1 = 1,Xi2 = 1, . . . ,Xik = 1

]
=

(
n
k

)
(1− p)k(n−k)+(k

2) = . . .
n→∞−−−→

(
e−c)k

k!

By the method of moments, we have X D−−−−→ Po(e−c)
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Phase transition in # isolated vertices in G(n, p)

Theorem

Let
p =

log n + c(n)

n
.

Then

P
[

G(n, p) contains no isolated vertex
]

n→∞−−−→


0 if c(n) → −∞

exp
(
−e−c) if c(n) → c ∈ R

1 if c(n) → ∞



Sharp threshold for connectedness

A sharp threshold for the property that G(n, p) is connected is

p∗ =
log n

n

Theorem [ ERDŐS–RÉNYI 59; STEPANOV 69 ]

Let
p =

log n + c(n)

n
.

Then

P
[

G(n, p) is connected
] n→∞−−−→


0 if c(n) → −∞

exp
(
−e−c) if c(n) → c ∈ R

1 if c(n) → ∞

∗ If G(n, p) contains an isolated vertex, then it is not connected.

But, the converse is not true.
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Proof sketch
For k ∈ [n] let Ck denote # components of order k in G(n, p).

P
[
C1 ≥ 1

]
= P

[
G(n, p) contains an isolated vertex

]
≤ P

[
G(n, p) is not connected

]

≤ P
[
C1 ≥ 1

]
+

∑
2≤k≤n/2

P
[
Ck ≥ 1

]
For k ≥ 2, a component of order k contains a tree of order k

whose vertices are joined to no vertex outside the tree, and thus

P
[
Ck ≥ 1

]
≤ E

[
Ck
]

≤

(
n
k

)
kk−2 pk−1

(1− p)k(n−k).

If p ∼ log n
n , then∑

2≤k≤n/2

P
[
Ck ≥ 1

]
=

∑
2≤k≤n/2

(
n
k

)
kk−2 pk−1 (1− p)k(n−k) = . . . = o(1)

we have
P
[

G(n, p) is not connected
]

= P
[
C1 ≥ 1

]
+ o(1)
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Proof sketch – cont’d

Summing up, If p ∼ log n
n , then we have

P
[

G(n, p) is not connected
]

= P
[
C1 ≥ 1

]
+ o(1)

= P
[
G(n, p) contains an isolated vertex

]
+ o(1)

Thus

P
[

G(n, p) is connected
]

= P
[
G(n, p) contains no isolated vertex

]
+ o(1)

n→∞−−−→


0 if c(n) → −∞

exp
(
−e−c) if c(n) → c ∈ R

1 if c(n) → ∞
�

∗ Hitting time result: [ BOLLOBÁS–THOMASON 83 ]

the last ‘minimum obstruction’ for connectedness is an isolated vertex
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Outline of the minicourse – Day 2

I. Prelude

II. Basic probabilistic tools

III. Erdős-Rényi random graphs

IV. Higher-dimensional analogues

V. Random subgraphs of the hypercube

VI. Topological aspects of random graphs



Part II.

Erdős-Rényi random graphs

X Thresholds

X Connectedness threshold

Percolation threshold

Coupling with Galton-Watson branching trees

More about the giant component



Emergence of giant component

d = p (n− 1)

|L1| = # vertices in the largest component in G(n, p)

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp |L1| = O(log n)

If d > 1, whp |L1| = Θ(n)

O(log n) nO(   )

∗ whp = with high probability = with prob tending to one as n→∞



Giant component

d = p (n− 1) and ρ ∈ (0, 1) with 1− ρ = exp(−d ρ)

|Li| = # vertices in the i-th largest component in G(n, p)

Theorem

If d < 1, whp |L1| ≤ 3
(d−1)2 log n

If d > 1, whp |L1| = (ρ+ o(1)) n and |L2| ≤ 20
(d−1)2 log n

d

|L1|/n

0 1 2 3
0

0.5



Component exploration process via BFS

[ KARP 1991 ]

Given a vertex v,

construct a spanning tree Tv

by exploring the component Cv that contains v

using Breadth-First Search

v

v

u

# children of v ∼ Bi(n− 1, p)

# children of u ∼ Bi(n− 5, p)
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Coupling with Galton-Watson trees

T(N, p) = Galton-Watson tree with offspring distribution Bi(N, p)

v • start with a single vertex v

• number of children of each vertex

is an i.i.d random variable

with distribution Bi(N, p)

Upper coupling:

couple T(n, p) and a spanning tree Tv so that Tv ⊂ T(n, p)

Lower coupling:

couple T(n− k, p) and a tree T ′v such that

either min{|T(n− k, p)|, |T ′v|} ≥ k or T(n− k, p) ⊂ T ′v
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Proof sketch – Galton-Watson tree

(Z1, Z2, . . .) = a sequence of i.i.d. random variables with

Zt ∼ Bi(n− 1, p) ∼ Po(d) = number of vertices born at time t

Y0 = 1 and Yt := Yt−1 + Zt − 1 = queue size at time t ≥ 1

T = minimal integer t ≥ 1 with Yt = 0 = total size of GW tree T(n, p)

Note that for any ` ≥ 1

Y` = 1− `+
∑`

t=1 Zt

if |T(n, p)| > `, equiv, T > `, then Y` > 0 and so X` :=
∑`

t=1 Zt ≥ `− 1

since X` =
∑`

t=1 Zt ∼ Po(` d), we have

E(X`) = ` d and ` = E(X`) + `(1− d)− 1
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Proof sketch – subcritical regime
Assume d < 1.

By applying Chernoff bounds, we obtain, for any ` ≥ 1

P [ X` ≥ `− 1 ] = P [ X` ≥ E(X`) + `(1− d)− 1 ] ≤ exp

(
− (1− d)2

2
`

)
and P [ |Cv| ≥ ` ] = P [ |Tv| ≥ ` ] ≤ P [ |T(n, p)| ≥ ` ] = P [ T ≥ ` ]

≤ P [ X` ≥ `− 1 ] ≤ exp

(
− (1− d)2

2
`

)

Taking ` = 3
(1−d)2 log n we have

P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ exp

(
− (1− d)2

2
· 3

(1− d)2 log n
)

= n−3/2

and thus

P
[

G(n, p) contains a component of order ≥ 3
(1− d)2 log n

]
≤
∑
v∈[n]

·P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ n · n−3/2 = o(1)



Proof sketch – subcritical regime
Assume d < 1.

By applying Chernoff bounds, we obtain, for any ` ≥ 1

P [ X` ≥ `− 1 ] = P [ X` ≥ E(X`) + `(1− d)− 1 ] ≤ exp

(
− (1− d)2

2
`

)
and P [ |Cv| ≥ ` ] = P [ |Tv| ≥ ` ] ≤ P [ |T(n, p)| ≥ ` ] = P [ T ≥ ` ]

≤ P [ X` ≥ `− 1 ] ≤ exp

(
− (1− d)2

2
`

)
Taking ` = 3

(1−d)2 log n we have

P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ exp

(
− (1− d)2

2
· 3

(1− d)2 log n
)

= n−3/2

and thus

P
[

G(n, p) contains a component of order ≥ 3
(1− d)2 log n

]
≤
∑
v∈[n]

·P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ n · n−3/2 = o(1)



Proof sketch – subcritical regime
Assume d < 1.

By applying Chernoff bounds, we obtain, for any ` ≥ 1

P [ X` ≥ `− 1 ] = P [ X` ≥ E(X`) + `(1− d)− 1 ] ≤ exp

(
− (1− d)2

2
`

)
and P [ |Cv| ≥ ` ] = P [ |Tv| ≥ ` ] ≤ P [ |T(n, p)| ≥ ` ] = P [ T ≥ ` ]

≤ P [ X` ≥ `− 1 ] ≤ exp

(
− (1− d)2

2
`

)
Taking ` = 3

(1−d)2 log n we have

P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ exp

(
− (1− d)2

2
· 3

(1− d)2 log n
)

= n−3/2

and thus

P
[

G(n, p) contains a component of order ≥ 3
(1− d)2 log n

]
≤
∑
v∈[n]

·P
[
|Cv| ≥

3
(1− d)2 log n

]
≤ n · n−3/2 = o(1)



Proof sketch – supercritical regime
Assume d > 1.

(1) No middle ground:

whp @ component of order between k∗ := 20
(1−d)2 log n and k∗ := n2/3

(using lower/upper couplings and Chernoff bounds)

(2) First moment argument

– let L := total number of vertices in ’large’ components,

each containing ≥ n2/3 vertices

– lower/upper couplings: E(L) ∼ ρ n

(3) Second moment argument : Var
[
L
]
� (E(L))2

By (2) and (3) we have L ∼ E(L) ∼ ρ n

(4) Sprinkling argument:

1 almost all vertices in ’large’ components lie in a single giant component
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More on the

giant component

d = p (n− 1) and ρ = 1− exp(−d ρ)

|Li| = # vertices in the i-th largest component in G(n, p)

Theorem

If d < 1, whp |L1| ≤ 3
(d−1)2 log n

If d > 1, whp |L1| = (ρ+ o(1)) n and |L2| ≤ 20
(d−1)2 log n

d

|L1|/n

0 1 2 3
0

0.5

How does the component structure look when d → 1 ? [ BOLLOBÁS 84 ]
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Double jump ?

d = p (n− 1)

|L1| = # vertices in the largest component in G(n, p)

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp |L1| = O(log n)

If d → 1, whp |L1| = Θ(n2/3)

If d > 1, whp |L1| = Θ(n)



Smooth transition as the giant emerges

d = p (n− 1) = 1 + ε

ε = ε(n) with n−1/3 � |ε| � 1

|L1| = # vertices in the largest component in G(n, p)

[ BOLLOBÁS 84; ŁUCZAK 90; BOLLOBÁS–RIORDAN 12 ]

If ε < 0, then whp |L1| ∼ 2
ε2 log

(
|ε|3 n

)
If ε > 0, then whp |L1| ∼ 2ε n

∗ In the critical regime when ε = O(n−1/3) [ ALDOUS1997 ]

|Li| = # vertices in the i-th largest component in G(n, p)

(
|Li|n−2/3 )

i≥1
→ (lengths of excursions of reflecting Brownian motion)
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Asymptotic normality of the giant component

Assume d = p (n− 1) > 1 and 1− ρ = exp(−d ρ)

|L1| = # vertices in the largest component in G(n, p)

Let µ := ρ n and σ :=
√

ρ(1−ρ)
(1−d(1−ρ))2 n

Central limit theorem

Let N(0, 1) denote the standard normal distribution. Then

|L1| − µ
σ

D−−−−→ N(0, 1)

for 1 � (d − 1)3 n � log n
log log n [ KAROŃSKI–ŁUCZAK 02 ]

for constant d [ BEHRISCH–COJA-OGHLAN–K. 09]

for d = d(n)→ 1 and (d − 1)3 n � 1 [ BOLLOBÁS–RIORDAN 12 ]



Limit theorems for the giant

Assume d = p (n− 1) > 1 and 1− ρ = exp(−d ρ)

|L1| = # vertices in the largest component in G(n, p)

Let µ := ρ n and σ :=
√

ρ(1−ρ)
(1−d(1−ρ))2 n

# vertices in L1 [ STEPANOV 70; PITTEL–WORMALD 05; BEHRISCH–COJA-OGHLAN–K. 09]

For any integer k with k = ρn + x where x = O(
√

n ) = O(σ)

P
[
|L1| = k

]
∼ 1

σ
√

2π
exp

(
− x2

2σ2

)
.

# vertices and # edges in L1

Joint distribution for the number of vertices and edges

for constant d [ BEHRISCH–COJA-OGHLAN–K. 14]

for d = d(n)→ 1 and (d − 1)3 n → ∞ [ BOLLOBÁS–RIORDAN 18 ]
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Part IV.

High-dimensional analogues

Random k-uniform hypergraphs

• Sharp threshold for high-order connectedness

• High-order giant component

Random k-dimensional simplicial complexes

• Sharp threshold for cohomologically connectedness



k-uniform hypergraphs

Given k ∈ N≥2, a k-uniform hypergraph is a pair H = (V,E) of

• a set V of vertices and

• a set E ⊂
(V

k

)
of hyperedges,

i.e., each hyperedge is a k-(element sub)set of vertex set V

∗ 2-uniform hypergraph is a graph

∗ the notion of a component in hypergraphs is ambiguous



Classical notion of components

Given a k-uniform hypergraph H,

a vertex v is said to be reachable from another vertex w

if there is a sequence E1, . . . ,E` of hyperedges such that

v ∈ E1, w ∈ E` and |Ei ∩ Ei+1| ≥ 1 for each i = 1, . . . , `− 1.

E1

v
w

E2 E l

The reachability is an equivalence relation on vertices, and

the equivalence classes are called components of H.

If H consists of a single component, it is connected.
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High-order components
[ BOLLOBÁS–RIORDAN 12 ]

Given a k-uniform hypergraph H and 1 ≤ j ≤ k − 1,

a j-(element sub)set J1 is reachable from another j-set J2 if

∃ E1, . . . ,E` of edges such that J1 ⊆ E1, J2 ⊆ E` and

|Ei ∩ Ei+1| ≥ j, i ∈ [`− 1].

J1

2

E lE1

J

E i E i+1

2

E l

J1

E1

J

E i E i+1

e.g., k = 3, j = 2

Reachability is an equivalence relation on j-sets, and

equivalence classes are called j-(tuple)component.

If H consists of a single j-component, it is j-connected.
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Random binomial k-uniform hypergraphs

Hk(n, p) denotes a random binomial k-uniform hypergraph

• on vertex set [n] := {1, 2, . . . , n},

• in which each k-(element sub)set of vertex set [n] is

an hyperedge with probability p, independently

∗ note H2(n, p) = G(n, p)



Number of isolated j-sets in Hk(n, p)

For each j-set J ∈

(
[n]

j

)
, let XJ =

{
1 if J is isolated in Hk(n, p)

0 otherwise.

Then X =
∑

J∈([n]j ) XJ counts # isolated j-sets and

E
[
X
]

=
∑

J∈([n]j )

E
[
XJ
]

=

(
n
j

)
(1− p)(

n−j
k−j)

∼ 1
j!

exp

(
j log n− p

(
n− j
k − j

))

If p = j log n + c(n)

(n−j
k−j)

, then

E
[
X
]
∼ 1

j!
exp

(
−c(n)

)
→


∞ if c(n) → −∞
1
j! e−c if c(n) → c ∈ R

0 if c(n) → ∞

j-set J
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Sharp threshold for j-connectedness

Theorem [ COOLEY–K.–KOCH 16 ]

Given k ∈ N≥2 and 1 ≤ j ≤ k − 1, let p = j log n + c(n)

(n−j
k−j)

. Then

P
[

Hk(n, p) is j-connected
] n→∞−−−→


0 if c(n) → −∞

exp
(
− 1

j! e−c
)

if c(n) → c ∈ R

1 if c(n) → ∞

∗ j = 1 [ POOLE 15 ]

∗ j = k − 1 [ KAHLE –PITTEL 16 ]

∗ Proof methods

• last ‘minimum obstruction’ for j-connectedness is an isolated j-set

• # j-set of degree s when p = j log n + s log log n + c(n)

(n−j
k−j)

for s ∈ N ∪ {0}

• ∃ j-component containing a reasonably large subset which is smooth



Heuristics for percolation threshold

Breadth-First Search & Galton-Watson tree

Begin with a j-set J

Discover all edges that contain that j-set J

∃
(n−j

k−j

)
such edges containing J, each with prob. p

For each edge E containing J,

discover (
(k

j

)
− 1) new j-sets in E

E
[

# j-sets discovered from J
]

=
((k

j

)
− 1
) (n−j

k−j

)
p =: d
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Giant j-component
Given k ∈ N≥2 and 1 ≤ j ≤ k − 1, let d =

((k
j

)
− 1
) (n−j

k−j

)
p

Assume ε = d − 1 satisfy ε→ 0, |ε|3 n j � 1, . . .

|L (j)| = # j-sets in largest j-component in Hk(n, p)

Theorem [ COOLEY–K.–KOCH 18; COOLEY–FANG–DEL GIUDICE–K. 19 ]

If ε < 0, whp |L (j)| ∼
2
(
(k

j)−1
)

ε2 log
(
|ε|3
(n

j

))
If ε > 0, whp |L (j)| ∼ 2ε

(k
j)−1

(n
j

)

The simplest case when j = 1

• for constant ε [ SCHMIDT-PRUZAN–SCHAMIR 85 ]

• for ε > 0 and 1 � ε3 n � log n
log log n [ KAROŃSKI–ŁUCZAK 02 ]

• for ε > 0, ε → 0 and ε3 n � 1 [ BOLLOBÁS–RIORDAN 14 ]



Proof sketch when ε > 0
(1) Breadth-First Search

J

J’

CJ
TJ

Given j-set J

construct a spanning tree TJ

(representing j-component CJ)

consisting of j-sets as vertices

(2) Couple TJ and

Galton-Watson branching tree in which each vertex has((k
j

)
− 1
)
· Bi(

(n−j
k−j

)
, p) many children independently

ρ := P
[

process survives
]

1− ρ =
∑
` P

[
Bi(
(n−j

k−j

)
, p) = `

]
· (1− ρ)

` ((k
j)−1)

−→ ρ ∼ 2ε

(k
j)−1



Proof sketch – cont’d

(3) First moment argument:

L := # j-sets in ‘large’ j-components,

each containing ≥ n2j/3 many j-sets

using upper and lower couplings with Galton-Watson trees,

E
[
L
]
∼ 2ε(k

j

)
− 1

(
n
j

)
(4) Second moment argument:

1 IF Var
[
L
]
� (E(L))2,

1 THEN
L ∼ E

[
L
]
∼ 2ε(k

j

)
− 1

(
n
j

)

(5) Sprinkling argument:

1 almost all j-sets in ‘large’ j-components are in a single j-component



More on second moment argument

Need to consider pairs of j-sets in ’large’ j-components

J2

J ’

J

J1

J2

J ’

J

J1

J2

J

J ’

J1

• Fix j-set J1 and grow its j-component C1

′

C1

′

until hit stopping conditions

S1 = { |C1

′

| ≥ n2j/3 or |∂C1

′

| ≥ ε n2j/3 }
∂C1

′

• Delete all the vertices in C1

′

& fix a j-set J2, grow component C2

′

C2

′

• Need to show P ( e(∂C1

′

, C2

′

) ≥ 1) is small

Naive approach: P ( e(∂C1
′, C2

′) ≥ 1) ≤ p · |∂C1
′| · |C2

′|

too big !!
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More on second moment argument – cont.

Instead we need

P ( e(∂C1
′, C2

′) ≥ 1)

≤ E (# k-sets containing

a pair of j-sets, J, J′, intersecting at an `-set L

for some 0 ≤ ` ≤ j− 1)

’JJ

L

smooth boundary lemma: ‘reasonably large’ boundary is smooth
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Summary and open problems
Given k ∈ N≥2 and 1 ≤ j ≤ k − 1, let d =

((k
j

)
− 1
) (n−j

k−j

)
p

Assume ε = d − 1 satisfy ε→ 0, |ε|3 n j � 1, . . .

|L (j)| = # j-sets in largest j-component in Hk(n, p)

Theorem [ COOLEY–K.–KOCH 18; COOLEY–FANG–DEL GIUDICE–K. 19 ]

If ε < 0, whp |L (j)| ∼
2
(
(k

j)−1
)

ε2 log
(
|ε|3
(n

j

))
If ε > 0, whp |L (j)| ∼ 2ε

(k
j)−1

(n
j

)

Q1. Width of critical window

• ε = O(n−1/3) in G(n, p)

• ε = O(n−j/3) in Hk(n, p) ?

Q2. Asymptotic normality of the giant j-component



Summary and open problems – cont’d

Q3. Structural symmetry

• Fragment R = G(n, p) \ L1

behaves like subcritical G(n′, p′) with d′ = n′p′ < 1

• Does the fragment R = Hk(n, p) \ L (j)

behave like subcritical Hk(n′, p′) with d′ =
((k

j

)
− 1
) (n′−j

k−j

)
p′ < 1 ?

• What does subcritical Hk(n, p) look like?

What about hypertrees, high-order ‘cycles’, etc
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Part IV.

High-dimensional analogues

X Random k-uniform hypergraphs

X Sharp threshold for high-order connectedness

X High-order giant component

Random k-dimensional simplicial complexes

• Sharp threshold for cohomologically connectedness



Simplicial complexes
Given a set V,

a family X of subsets of V is called a simplicial complex if

• {x} ∈ X, ∀x ∈ V

• X is downward-closed, i.e., if A ∈ X, ∅ 6= B ⊂ A, then B ∈ X

Given a simplicial complex X,

• A ∈ X is called an `-simplex if |A| = `+ 1

• X is said to be k-kimensional if it contains no (k + 1)-simplex

For example, given V = {x1, x2, x3, x4}, let

S0 =
{
{x1}, {x2}, {x3}, {x4}

}
S1 =

{
{x2, x3}, {x2, x4}, {x3, x4}

}
S2 =

{
{x2, x3, x4}

}
Then X = S0 ∪ S1 ∪ S2 is a 2-dimensional simplex

x1 x2

x3

x4



Random k-dimensional simplicial complexes

They arise from random binomial (k + 1)-uniform hypergraph Hp = ( [ n ],Ep )

• 0-simplices are singletons of [ n ]

• k-simplices are the hyperedges of Hp

(a) the full (k − 1)-skeleton on [ n ] is included

∆p :=
(
[ n ]

1

)
∪

(
[ n ]

2

)
∪ . . . ∪

(
[ n ]

k

)
∪ Ep

(b) ∀` ∈ [ k − 1 ],

`-simplices are (`+ 1)-subsets contained in the hyperedges of Hp

Gp :=
(
[ n ]

1

)
∪ . . . ∪ ∂(∂Ep) ∪ ∂Ep ∪ Ep
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F2-Cohomologically j-connectedness

∆p :=
(
[ n ]

1

)
∪

(
[ n ]

2

)
∪ . . . ∪

(
[ n ]

k

)
∪ Ep is said to be

F2-cohomologically j-connected if H k−1(∆p; F2) = 0

Theorem [ LINIAL–MESHULAM 06; MESHULAM–WALLACH 09; KAHLE–PITTEL 16 ]

Let
p =

k log n + c(n)

n
.

Then

P
(

∆p is F2-cohomologically connected
)

n→∞−−−→


0 if c(n) → −∞
exp

(
− 1

k! e−c) if c(n) → c ∈ R
1 if c(n) → ∞

∗ last ‘minimum obstruction’ is an isolated (k − 1)-simplex

e.g., an isolated 1-simplex ( = an isolated edge) when k = 2



F2-Cohomologically j-connectedness

k ∈ N≥2 and 1 ≤ j ≤ k − 1

Gp :=
(
[ n ]

1

)
∪ . . . ∪ ∂(∂Ep) ∪ ∂Ep ∪ Ep is said to be

F2-cohomologically j-connected if H i(Gp; F2) = 0, ∀ i ∈ [ j ].

Theorem [ COOLEY–DEL GIUDICE–K.–SPRÜSSEL 20 ]

Let
p =

(j + 1) log n + log log n + c(n)

(k − j + 1)
( n

k−j

) .

Then

P
(
Gp is F2-cohomologically j-connected

)
n→∞−−−→


0 if c(n) → −∞
exp

(
− (j+1)

(k−j+1)2 j! e−c
)

if c(n) → c ∈ R

1 if c(n) → ∞



Minimal obstruction

M j = triple (K,C, J) where K is a k-simplex in Gp and

C = (j− 1)-simplex in K such that for each w ∈ K \ C,

j-simplex C ∪ {w} is contained in no other k-simplex of Gp

J = set of j-simplices such that

every (j− 1)-simplex is in even number of j-simplices in J

it contains exactly one C ∪ {w0}, w0 ∈ K \ C

c1

c2

w0

w1

w2

w3

c1

c2

w0

j1
j2

J

K

k = 5, j = 2



Outline of the minicourse – Day 3

I. Prelude

II. Basic probabilistic tools

III. Erdős-Rényi random graphs

IV. Higher-dimensional analogues

V. Random subgraphs of the hypercube

VI. Topological aspects of random graphs



Part V.

Random subgraphs of the hypercube

Random subgraphs

Emergence of the giant component

Expansion properties of the giant component

Consequences of expansion properties



The hypercube

Given d ∈ N, the d-dimensional hypercube Qd is the graph with

vertex set

V
(

Qd
)

= {0, 1}d =
{

x = (x1, . . . , xd) : xi ∈ {0, 1}, 1 ≤ i ≤ d
}

edge set E
(
Qd) : ∀ x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ V

(
Qd),

{x, y} ∈ E
(

Qd
)

iff x and y differ in exactly one coordinate

Hasse diagram

Basic facts:

|V
(
Qd) | = 2d

Qd is d-regular

Qd is bipartite

diameter of Qd is d

. . .
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|V
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A random subgraph of the hypercube

Given p ∈ (0, 1)

Qd
p = a graph obtained by retaining each edge of Qd independently

with probability p

= bond percolation on Qd with edge probability p



Typical properties of Qd
p around p = 1

2

Connectivity [ SAPOŽENKO 67; BURTIN 67; ERDŐS–SPENCER 79; BOLLOBÁS 83 ]

p = 1
2 is a sharp threshold for connectedness: ∀ε > 0

P
[
Qd

p is connected
]

d→∞−−−−→

{
0 if p < 1−ε

2

1 if p > 1+ε
2

Perfect matching [ BOLLOBÁS 90 ]

p = 1
2 is a sharp threshold for the existence of a perfect matching

Is p = 1
2 a sharp threshold for Hamiltonicity? [ BOLLOBÁS 80’S; FRIEZE 14 ]

Hamiltonicity [ CONDON-ESPUNY-DÍAZ-GIRÃO-KÜHN-OSTHUS 21 ]

p = 1
2 is a sharp threshold the existence of a Hamiltonian cycle.
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Emergence of the giant component in Qd
p

[ ERDŐS–SPENCER 79 ]

Does the component structure of Qd
p undergo a phase transition at p = 1

d ?

Giant component [ AJTAI-KOMLÓS- SZEMERÉDI 81 ]

p = 1
d is a sharp threshold: ∀ε > 0

whp all components are of order O(d) if p < 1−ε
d

whp ∃ a unique largest component of order Θ(2d) if p > 1+ε
d



Phase transitions in Qd
p

More detailed component structure for a wider range of p

[ BOLLOBÁS-KOHAYAKAWA-ŁUCZAK 92 ]

[ BORGS–CHAYES–VAN DER HOFSTAD–SLADE–SPENCER 2006 ]

[ HULSHOF–NACHMIAS 2020 ]

[ MCDIARMID–SCOTT–WITHERS 2021 ]

Correct width of critical window [ VAN DER HOFSTAD–NACHMIAS 2017 ]

Diameter of components ? [ BOLLOBÁS-KOHAYAKAWA-ŁUCZAK 92 ]

[ HEYDENREICH–VAN DER HOFSTAD 2011 ]

[ VAN DER HOFSTAD–NACHMIAS 2014 ]

[ HULSHOF–NACHMIAS 2020 ]



Two open problems on the giant component

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Q1. What is the diameter of L1 ? [ BOLLOBÁS-KOHAYAKAWA-ŁUCZAK 92]

Q2. What is the mixing time of the lazy simple random walk on L1 ?

[ PETE 08; VAN DER HOFSTAD-NACHMIAS 17 ]



Diameter and mixing time

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Theorem [ ERDE-K.-KRIVELEVICH 22 ]

whp the diameter of L1 is O
(
d3)

whp the mixing time of the lazy simple random walk on L1 is O
(
d11)

Theorem [ ERDE-K.-KRIVELEVICH 22 ]

whp L1

is c d−5−expander

contains a c′ d−2 (log d)−1−expander on ≥ 0.99 |L1| vertices

has Cheeger constant Ω
(
d−5)
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Expanders

[ ALON 86; HOORY-LINIAL-WIGDERSON 06; KRIVELEVICH 19; KRIVELEVICH-SUDAKOV 09; SARNAK 04; . . .]

Given a graph G

N(S) = external neighbourhood of a subset S ⊆ V(G)

= {v ∈ V(G) \ S : ∃ w ∈ S with {v,w} ∈ E(G)}

G is an α−expander if

|N(S)| ≥ α|S|, ∀ S ⊆ V(G) with |S| ≤ |V(G)|
2

v
wN(S) S

Properties of an expander

small diameter, long paths/cycles, large complete minor, . . .

edge-expansion for graphs with bounded max degree
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Proof sketch

Theorem

whp L1 is a 1
poly(d)

−expander

We will prove that whp

for an arbitrary subset S of V(L1) with |S| ≤ |V(L1)|
2 ,

|N(S)| ≥ |S|
poly(d)

N(S) S



Sprinkling argument

Sprinkling

p = 1+ε
d for ε > 0

q1 = 1+δ1
d and q2 = δ2

d s.t. 1− p = (1− q1)(1− q2) and 0 < δ2 � δ1

Qd
p ∼ Qd

q1 ∪ Qd
q2

Largest components before and after sprinkling

L′1 = largest component in Qd
q1 (before sprinkling)

L1 = largest component in Qd
p (after sprinkling)

γ(x) = survival probability of Po(1 + x) branching process

Lemma [ AJTAI-KOMLÓS- SZEMERÉDI 81 ]

• whp L′1 ∼ γ(δ1) 2d

• whp L1 ∼ γ(ε) 2d
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d s.t. 1− p = (1− q1)(1− q2) and 0 < δ2 � δ1

Qd
p ∼ Qd

q1 ∪ Qd
q2

Largest components before and after sprinkling

L′1 = largest component in Qd
q1 (before sprinkling)
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Giant component before and after sprinkling

L′1 = largest component in Qd
q1 (before sprinkling)

L1 = largest component in Qd
p (after sprinkling)

Lemma

• whp ∀ connected component in Qd
p [L1 − L′1] is of order O(d)

• whp ∀ vertex in V(Qd) is within distance two from ≥ c d2 vertices in L′1

L1 L′1
Qd L′1



Splitting the largest component into pieces

L′1 = largest component (before sprinkling)

= split into a family C of vertex-disjoint connected subgraphs

(’pieces’), each of order poly(d)

L1 = largest component (after sprinkling)

S = arbitrary subset of V(L1) with |S| ≤ |V(L1)|
2

L′1

S1 = S− L′1

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S
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Splitting the largest component into pieces

L′1 = largest component (before sprinkling)

= split into a family C of vertex-disjoint connected subgraphs

(’pieces’), each of order poly(d)

L1 = largest component (after sprinkling)

S = arbitrary subset of V(L1) with |S| ≤ |V(L1)|
2

L1

L′1

S1 = S− L′1

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S



Contribution of S1 to N(S)

S1 = S− L′1

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

With sprinkling, each component in Qd
p [L1 − L′1] which intersects with S1

contributes at least one edge to N(S)

or is connected to S2 ∪ S3

Thus |N(S)| ≥ c|S1|
d or e(S1, S2 ∪ S3) ≥ c|S1|

d and thus |S2 ∪ S3| ≥ c|S1|
d2



Contribution of S2 to N(S)

L′1 = split into a family C of pieces, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

Each piece C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

contributes at least one edge to N(S)

and each piece is of order poly(d)

Thus |N(S)| ≥ |S2|
poly(d)



Contribution of S3 to N(S)

L′1 = split into a family C of pieces, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

(1) Partition the family C of pieces into two disjoint families {A,B}

A := {C ∈ C : C ⊆ S} and B := C − A

This partitions V(L′1) into two sets A,B where

A := V(A) = S3 and B := V(C − A)



Contribution of S3 to N(S) – extending and connecting

(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

whp every vertex in V(Qd) is within distance two from ≥ c d2 vertices in L′1



Contribution of S3 to N(S) – extending and connecting

(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

Edge-isoperimetry in Qd
[ HARPER 64; LINDSEY 64; BERNSTEIN 67; HART 76]

|E(X,Xc)| ≥ |X| (d − log2 |X|), ∀X ⊆ V(Qd) with |X| ≤ 2d−1



Contribution of S3 to N(S) – extending and connecting

(2) Extending the partition V(L′1) = A ∪̇ B to a partition V(Qd) = Ā ∪̇ B̄ s.t.

• every vertex in Ā is within distance 2 of A

• every vertex in B̄ is within distance 2 of B

A B

B̄Ā

(3) Sprinkle with q2 = δ2
d

Lemma

whp ∃ at least |A|
poly(d)

vertex-disjoint A-B-paths of length at most 5 in Qd
q2



Contribution of S3 to N(S)

L′1 = split into a family C of ’pieces’, each of order poly(d)

S2 = vertices in pieces C ∈ C with C ∩ S 6= ∅ and S− C 6= ∅

S3 = vertices in pieces C ∈ C with C ⊆ S

= A

A B

B̄Ā

Each A-B-path in Qd
q2 contributes at least one edge to N(S),

unless it goes to S2

Thus |N(S)| ≥ |S3|
poly(d)

− d|S2|



Expansion properties and consequences

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Theorem [ ERDE-K.-KRIVELEVICH 22 ]

whp L1

is c d−5−expander

contains a c′ d−2 (log d)−1−expander on ≥ 0.99 |L1| vertices

has diameter O
(
d3)

has Cheeger constant Ω
(
d−5)



Mixing time of lazy random walk on Qd

In each step,

it remains at the current position with prob 1
2

it moves to a uniformly chosen random neighbour with prob 1
2

Mixing time: O(d log d)



Mixing time of lazy random walk on Qd

In each step,

it remains at the current position with prob 1
2

it moves to a uniformly chosen random neighbour with prob 1
2

Mixing time: O(d log d)



Mixing time of lazy random walk on the giant

L1 = giant component of Qd
p when p = 1+ε

d for ε > 0

whp L1 contains bare paths of length Ω(d)

=⇒ mixing time: Ω(d2)



Mixing time of lazy random walk on the giant

L1 = giant component of Qd
p when p = 1+ε

d for ε > 0

∗ whp L1 contains bare paths of length Ω(d)

=⇒ (worst-case) mixing time : Ω(d2)



Mixing time of lazy random walk

on the giant

Given a graph G,

tmix(G) = (worst-case) mixing time of a lazy random walk on a graph G

Φ(G) = Cheeger constant of G ( = bottleneck ratio)

πmin(G) = min{ dG(x)
2|E(G)| : x ∈ V(G)}

[ LAWLER–SOKAL 88; JERRUM–SINCLAIR 89; LEVIN–PERES–WILMER 07 ]

tmix(G) ≤ 2
Φ(G)2 log

(
4

πmin(G)

)

L1 = giant component of Qd
p when p = 1+ε

d for ε > 0

[ ERDE-K.-KRIVELEVICH 22 ]

whp Φ(L1) = Ω
(

d−5
)

and πmin(L1) = Ω
(

2−d
)

tmix(L1) = O
(

d11
)
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Summary and open problems

L1 = largest component of Qd
p when p = 1+ε

d for ε > 0

Theorem [ ERDE-K.-KRIVELEVICH 22 ]

whp L1

is c d−5−expander

contains a c′ d−2 (log d)−1−expander on ≥ 0.99 |L1| vertices

has diameter O
(
d3)

whp the mixing time of the lazy simple random walk on L1 is O
(
d11).

Q1. What is the correct order of the diameter of L1 ?

Q2. What is the mixing time of the lazy random walk on L1 ?
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IV. Higher-dimensional analogues

V. Random subgraphs of the hypercube

VI. Topological aspects of random graphs



Part VI.

Topological aspects of random graphs

Typical genus of the Erdős-Rényi random graph

Random graphs on surfaces with constant genus

Benjamini-Schramm local weak limits

Random graphs on surfaces with non-constant genus



Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

∗ genus of a graph G

= minimum number of handles that must be attached to sphere

in order to embed G without any crossing edges

∗ the case when genus is 0 corresponds to planar graphs

K5 genus of K5 = 1



Guiding questions/themes

(1) What is a typical genus of the Erdős-Rényi random graph?

(2) How does a topological constraint such as

• being planar

• being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

• component structures

• local weak limits



A uniform random graph

G(n,m) ∈ R G(n,m)

G(n,m) = set of all vertex-labelled simple graphs

on vertex set [ n ] := {1, . . . , n} with m = m(n) edges

G(n,m) = chosen uniformly at random from G(n,m)

∗ G(n,m) and G(n, p) are ’essentially equivalent’ when m ∼
(n

2

)
p



Planarity of G(n,m)

m = d · n
2

Theorem [ ERDŐS-RÉNYI 1959–60 ]

If d < 1, whp

• each component is either a tree or unicyclic component

• G(n,m) is planar

If d > 1, whp

• largest component contains ≥ two cycles (‘complex’)

• G(n,m) is not planar



Genus g of G(n,m)

m � n (superlinear)

g = g(G(n,m)) denote the genus of G(n,m)

Theorem [ RÖDL-THOMAS 1995 ]

If n1+ 1
j+1 � m� n1+ 1

j for j ∈ N, then whp,

g = (1 + o(1))
j

2(j + 2)
m

If m = Θ(n2), then whp g = (1 + o(1)) 1
6 m.

g/m



Genus g of supercritical G(n,m)

m = d · n
2 for d > 1

g = g(G(n,m)) denote the genus of G(n,m)

Theorem [ DOWDEN–K.–KRIVELEVICH 2019 ]

whp
g = (1 + o(1)) µ(d) m

where µ(d)→ 0 as d → 1 and µ(d)→ 1
2 as d →∞

g/m



Summary – genus g of G(n,m)

g
m
∼



0 if m− n/2� n

µ(d) if 2m/n→ d > 1 (limd→1 µ(d) = 0, limd→∞ µ(d) = 1
2 )

j
2(j+2) if n1+ 1

j+1 � m� n1+ 1
j for j ∈ N

1
6 if m = Θ

(
n2)



Random graphs on surfaces

g ∈ N0 = {0, 1, 2, . . .}

Sg = the orientable surface of genus g

Sg(n,m) ∈ R Sg(n,m)

Sg(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges that are embeddable on Sg

Sg(n,m) = chosen uniformly at random from Sg(n,m)

Note

S0(n,m) ⊂ . . . ⊂ Sg(n,m) ⊂ Sg+1(n,m) ⊂ . . . ⊂ G(n,m)

If 1 ≤ m < n
2 , then |S0(n,m)|

|G(n,m)|
n→∞−−−−→ 1

If m > 3n− 6 + 6g, then Sg(n,m) = ∅
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Random graphs on surfaces – vertex model

Sg(n) ∈ R Sg(n)

Sg(n) = set of all vertex-labelled simple graphs on [ n ]

that are embeddable on Sg

Sg(n) = chosen uniformly at random from Sg(n)

Theorem [ MCDIARMID-STEGER-WELSH 05 (g = 0); MCDIARMID 08 ]

whp the order of largest component L1 in Sg(n) is n− O(1)

Theorem [ GIMÉNEZ–NOY 09 (g = 0); CHAPUY–FUSY–GIMÉNEZ–MOHAR–NOY 11 ]

|Sg(n)| ∼ αg n
5
2 g− 7

2 γn n!

where αg > 0 and γ ≈ 27.23 is the exponential growth rate of planar graphs
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‘Dense’

random graphs on surfaces

Sg(n) ∈ R Sg(n)

Theorem [ GIMÉNEZ–NOY 09 (g = 0); CHAPUY–FUSY–GIMÉNEZ–MOHAR–NOY 11 ]

• Xn = # edges in Sg(n)

Xn − E(Xn)

σ(Xn)

D−→ N(0, 1)

where E(Xn) ≈ 2.21 n and σ2(Xn) ≈ 0.43 n (same as planar case)

• For m = d · n
2 with d ∈ (2, 6),

|Sg(n,m)| ∼ αg(d) n
5
2 g−4 γ(d)n n!

where αg(d) > 0 and γ(d) is same as planar case

∗ whp |L1| = n− o(1)
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‘Sparse’ random graphs on surfaces

L1 = largest component in Sg(n,m) ∈ R Sg(n,m)

m = d · n
2 for d ∈ (1, 2)

Theorem [ K.–ŁUCZAK 2012 (g = 0); K.–MOSSHAMMER–SPRÜSSEL 2020]

whp |L1| = (1 + o(1)) (d − 1)n

d

|L1|/n

0 1 2 3
0

0.5

1

Q1. What is the limit distribution of |L1| ?

Q2. Joint distribution of the number of vertices and edges in L1 ?
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ER random graph vs random graphs on surfaces

d = 2m
n

|L1|
n

Uniform random graph G(n,m)

0 1 2 3
0

0.5

d = 2m
n

|L1|
n

Random graph on a surface Sg(n,m)

0 1 2 3
0

0.5

1

∗ fragment R = G(n,m) \ L1 is subcritical (i.e., 2mR/nR < 1)

∗ fragment R = Sg(n,m) \ L1 is critical (i.e., 2mR/nR → 1)
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Part VI.

Topological aspects of random graphs

X Typical genus of the Erdős-Rényi random graph

X Random graphs on surfaces with constant genus

Benjamini-Schramm local weak limits

Random graphs on surfaces with non-constant genus



Local structure of Erdős-Rényi random graph

G = G(n,m) ∈ R G(n,m)

m = d · n
2 for d > 0

r ∈ R V(G) = a vertex chosen uniformly at random from V(G)

r
d+(r) ∼ Po (d)

u
d+(u) ∼ Po (d)

v
d+(v) ∼ Po (d)
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Benjamini–Schramm local weak limit

[ BENJAMINI–SCHRAMM 2001; ALDOUS–STEELE 2004]

Given a rooted graph (H, r) and ` ∈ N := {1, 2, . . .}, let

B` (H, r) := H
[
{v ∈ V(H) : dH(v, r) ≤ `}

]

r

Two rooted graphs (H, r) and (H′, r′) are isomorphic,

(H, r) ∼=
(
H′, r′

)
if ∃ isomorphism φ from H onto H with φ(r) = r′
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Benjamini–Schramm local weak limit — cont’d

Given a sequence
(

(Gn, rn)
)

n
of random connected rooted graphs,

a random connected rooted graph (G0, r0) is the local weak limit of (Gn, rn)

(Gn, rn)
D−−→ (G0, r0)

if for each fixed rooted graph (H, rH) and ` ∈ N,

P
[
B` (Gn, rn) ∼= (H, rH)

]
n→∞−−−−→ P

[
B` (G0, r0) ∼= (H, rH)

]

r

D−−→

∗ For not necessarily connected (Gn, rn), its local weak limit?

=⇒ define it as the local weak limit of the component of Gn containing rn
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Erdős-Rényi random graph vs GW tree

G = G(n,m) ∈ R G(n,m)

r ∈ R V (G)

2m/n n→∞−−−−→ d ∈ [0,∞)

GWT (d) = Galton-Watson tree with offspring distribution Po (d)

Theorem [ DEMBO–MONTANARI 2010; VAN DER HOFSTAD 2022+ ]

(G, r) D−−→ GWT (d)



Local weak limit of a random tree

T = T(n) ∈ R T (n)

= a tree chosen uniformly at random from the class of all trees on [n]

r ∈ R V (T)

Theorem [ GRIMMETT 1980/1981 ]

(T, r) D−−→ T∞

Skeleton tree T∞

= a rooted tree obtained from an infinite path by replacing each vertex
of the path by an independent Galton-Watson tree GWT (1)



Local weak limits

GWT (d) Galton-Watson tree

T∞ Skeleton tree



Local weak limit of a random graph on a surface

S = Sg(n,m) ∈ R Sg(n,m)

r ∈ R V (S) a vertex chosen uniformly at random from V(S)

2m/n n→∞−−−−→ d ∈ [1, 2]

Theorem [ K.–MISSETHAN 2022+ ]

(S, r) D−−→ (2− d) GWT (1) + (d − 1) T∞

meaning that for each rooted graph (H, rH) and ` ∈ N, we have

P
[
B` (S, r) ∼= (H, rH)

]
n→∞−−−→

(2− d)P
[
B` (GWT (1)) ∼= (H, rH)

]
+ (d − 1)P

[
B` (T∞) ∼= (H, rH)

]
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Global structure of a random graph on a surface

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

R = S \ L1 fragment of S



Global structure of the fragment

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

R = S \ L1 fragment of S

rR ∈ R V (R)

The fragment R ‘behaves similarly’ like

a critical ER random graph G(n̄, m̄) with n̄ = (2− d) n and 2m̄/n̄ → 1



Global structure of the fragment

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

R = S \ L1 fragment of S

rR ∈ R V (R)

The fragment R ‘behaves similarly’ like

a critical ER random graph G(n̄, m̄) with n̄ = (2− d) n and 2m̄/n̄ → 1

(R, rR)
D−−→ GWT (1)



Internal structure of the largest component

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of Sg

C 2-core = max subgraph of L1 with min deg ≥ two

|L1| = (1 + o(1)) (d − 1) n and |C| = o(n)

L = C + each vertex in V(C) replaced by a rooted tree
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Local weak limit of a random forest

F = F(n, t) ∈ R F(n, t) a forest on vertex set [n] with t tree components

rF ∈ R V (F) a vertex chosen uniformly at random from V(F)

rT the root of the tree component T in F that contains rF

Lemma [ K.–MISSETHAN 2022+ ]

If t = t(n) = o(n), then

whp dF(rF, rT) = ω(1) and

(F, rF)
D−−→ T∞

rF

rT

(T, rF)
D−−→ T∞
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Internal structure of the largest component

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S

R = S \ L1 fragment of S

rL1 ∈ R V (L1)

|L1| = (1 + o(1)) (d − 1) n and |C| = o(n)

L1 = C + each vertex in V(C) replaced by a rooted tree
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|L1| = (1 + o(1)) (d − 1) n and |C| = o(n)

L1 = C + each vertex in V(C) replaced by a rooted tree

(L1, rL1 )
D−−→ T∞



Finer view of local weak limits

S = Sg(n,m) ∈ R Sg(n,m) and 2m/n → d ∈ (1, 2)

L1 largest component of S and |L1| ∼ (d − 1) n

R = S \ L1 ∼ crtitical ER random graph and |R| ∼ (2− d) n

rR ∈ R V (R),

rL1 ∈ R V (L1)

and rS ∈ R V (S)

Theorem [ K.–MISSETHAN 2022+ ]

(R, rR)
D−−→ GWT (1)

(L1, rL1 )
D−−→ T∞

(S, rS)
D−−→ (2− d) GWT (1) + (d − 1) T∞

(L1, rL1 )
D−−→ T∞

(R, rR)
D−−→ GWT (1)
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Part V.

Topological aspects of random graphs

X Typical genus of the Erdős-Rényi random graph

X Random graphs on surfaces with constant genus

X Benjamini-Schramm local weak limits

Random graphs on surfaces with non-constant genus



ER random graph vs random graphs on surfaces

IF whp the genus of G(n,m) is T = T(n,m),

THEN ∀ g ≥ T

|Sg(n,m)|
|G(n,m)| ≥ |ST(n,m)|

|G(n,m)|
n→∞−−−→ 1.

In other words, for ∀ g ≥ T,

Sg(n,m) is indistinguishable from G(n,m) under viewpoint of whp-properties

If for every property A

whp G(n,m) satisfies A iff whp Sg(n,m) satisfies A

then we say G(n,m) and Sg(n,m) are contiguous.
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Contiguity threshold and more on the giant

m = d · n
2 for 1 < d < 2

T = ν(d) · n = contiguity threshold

L1 = largest component in Sg(n,m) ∈ R Sg(n,m)

Theorem [ DOWDEN–K.–MOSSHAMMER–SPRÜSSEL 2022+ ]

whp
|L1| = (1 + o(1)) ρ n if g � T

|L1| = (1 + o(1)) (d − 1) n if g � T

d

|L1|/n
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0

0.5

1

d

|L1|/n

0 1 2 3
0

0.5

1



Contiguity threshold and more on the giant

m = d · n
2 for 1 < d < 2

T = ν(d) · n = contiguity threshold

L1 = largest component in Sg(n,m) ∈ R Sg(n,m)

Theorem [ DOWDEN–K.–MOSSHAMMER–SPRÜSSEL 2022+ ]

whp
|L1| = (1 + o(1)) ρ n if g � T

|L1| = (1 + o(1)) (d − 1) n if g � T

d

|L1|/n

0 1 2 3
0

0.5

1

d

|L1|/n

0 1 2 3
0

0.5

1



Proof sketch – asymptotic enumeration

|Sg(n,m)| = # graphs on [n] with m edges and genus ≤ g

=
∑

k,`

(
n
k

)
Cg(k, k + `) U(n− k,m− k − `)

where

Cg(k, k + `) = # complex part on [k] with k + ` edges

U(n− k,m− k − `) = # graphs consisting of

trees or unicyclic components

on [n− k] with m− k − ` edges

X Asymptotic behaviour of U(n− k,m− k − `) is well understood



Proof sketch – core-kernel approach

• Complex part G

• 2-Core = max. subgraph of G with min. degree ≥ 2

• Kernel = replace each bare-path in 2-core by an edge

∗ g is genus of G iff g is genus of kernel of G
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Proof sketch – construction of complex part

• Construct complex part G

by

B choosing kernel of G from the set of possible candidates

B putting on its edges vertices of degree 2 to obtain 2-core

B adding a forest rooted at vertices of 2-core

Cg(k, k + `) = # complex part on [k] with k + ` edges

=
∑

i,j

Kg(2`− j)
(k)i

(2`− j)!

(
i− a `− 1
3`− j− 1

)
i kk−i−1

∗ Asymptotic behaviour of Cg(k, k + `) ?

=⇒ combinatorial variants of Laplace method X
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Summary and open problems

Global properties of Sg(n,m) when m = d · n
2 for d > 1

contiguity threshold T = ν(d) · n

largest component L1

d

|L1|/n

|L1| ∼ ρ n if g� T

0 1 2 3
0

0.5

1

d

|L1|/n

|L1| ∼ (d − 1) n if g� T

0 1 2 3
0

0.5

1

Q1. Order of largest component when g = Θ(T) ?

Q2. Length of longest cycle when g� T or g = Θ(T) ?

∗ when g� T, it follows from G(n,m) [ AJTAI-KOMLÓS-SZEMERÉDI 1981 ]



Summary of the minicourse

I. Prelude

II. Basic probabilistic tools

III. Erdős-Rényi random graphs

IV. Higher-dimensional analogues

V. Random subgraphs of the hypercube

VI. Topological aspects of random graphs

∗ Slides available at

https://www.math.tugraz.at/ ˜ kang/talks/Kang-RandNET2022.pdf


