Introduction to Random Graphs

Mihyun Kang

TU

Grazm

Combinatorics Workshop 2019, Incheon, Korea, 13-15 August 2019



I. Erd6s-Rényi Random Graphs

Il. Higher-Dimensional Analogues

lll. Topological Aspects



Part |
Erdos-Rényi Random Graphs

() Threshold phenomena
() Connectedness

(Ill) Largest component



Random graph models
Let G(n, m) denote a uniform random graph:

a graph taken uniformly at random from the set G(n, m) of all
graphs on vertex set [n] := {1,..., n} with m = m(n) edges

Paul Erdés (1913 — 1996)

Alfréd Rényi (1921 — 1970)



Random graph models
Let G(n, p) denote a binomial random graph:

a graph on vertex set [ n], in which each pair of vertices is

joined by an edge with probability p = p(n), independently



Random graph models
Let G(n, p) denote a binomial random graph:

a graph on vertex set [ n], in which each pair of vertices is

joined by an edge with probability p = p(n), independently

=

G(n, m) and G(n, p) are ’essentially equivalent’ when m ~ (3) p



Threshold phenomena in G(n, p)

Let p = p(n) € [0, 1]

- 1 complete
— logn/n isolated vertex / connected
— 1/n cycles / giant component

- p=0 empty



Thresholds in G(n, p)
Let .A be a monotone increasing property
e.g.
— G(n, p) contains no isolated vertex

— G(n, p) is connected

Threshold
A function p* = p*(n) is called a threshold for A if

0 if p < p*

P[ G(n, p) satisfies 4] =%
[ (n.p) ] {1 it p> p*



Sharp thresholds in G(n, p)

Let A be a monotone increasing property

e.g.

— G(n, p) contains no isolated vertex

— G(n, p) is connected

Sharp threshold

A function p* = p*(n) is called a sharp threshold for A if Ve > 0,

0 if p
1 if p

(1—-¢)p*

P[ G(n, p) satisfies A] ==
[ G(m, p) I = { (1+¢)p*

IA A



Sharp threshold for isolated vertices

A sharp threshold for property that G(n, p) contains no isolated

vertex is
«  logn

n




Sharp threshold for isolated vertices

A sharp threshold for property that G(n, p) contains no isolated
vertex is

«  logn
==
Theorem
logn + ¢(n
Let p = M

n
where |c(n)] — oo arbitrarily slowly as n — co. Then

P[ G(n, p) contains no isolated vertex |

s 0 if e(n) - —o0
—
1 if ¢(n) — oo



First moment method
Markov’s inequality

Let X be a non-negative integer-valued random variable. Then

forany t >0
Pz < =X
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First moment method
Markov’s inequality

Let X be a non-negative integer-valued random variable. Then
forany t > 0 E[X
PX>t] < [t }

In particular, P[X>1] < E[X]

For example, let X = X(n) = # isolated vertices in G(n, p).

IF E[X] = o,



First moment method
Markov’s inequality

Let X be a non-negative integer-valued random variable. Then

forany t >0
PX>t] < E[tx]

In particular, P[X>1] < E[X]

For example, let X = X(n) = # isolated vertices in G(n, p).

IF E[X] = o,

THEN _ _
P[G(n, p) contains an isolated vertex|

= PXx>1 < EX] == 0



Second moment method
Chebyshev’s inequality

Let X be a random variable with E[X] > 0. Then

PX=0] < P[|X~E[X]|>E[X]]




Second moment method

Chebyshev’s inequality

Let X be a random variable with E[X] > 0. Then

PX=0] < P[|X~E[X]|>E[X]]

For example, let X = X(n) = # isolated vertices in G(n, p).

IF Var[X] oo
E[X]°

0,



Second moment method

Chebyshev’s inequality

Let X be a random variable with E[X] > 0. Then

PX=0] < P[|X~E[X]|>E[X]]

For example, let X = X(n) = # isolated vertices in G(n, p).

IF Var[X] oo
E[X]°

0,

THEN
PP[G(n, p) contains no isolated vertex|

Var [X ] Nes 00

= P[XZO] ]E[X}z




Variation of second moment method

Let X = Xi + X5 + ... be a sum of indicator random variables
with E[X] > 0. Then
Var[X] _ 1 N iz Cov [ X, X]

S Rt RN e

where Cov[X,, X] = E[X:X] — E[X]E[X].



Variation of second moment method

Let X = Xi + X5 + ... be a sum of indicator random variables
with E[X] > 0. Then
Var[X] _ 1 N iz Cov [ X, X]

P[XZO] E[X}z = E[X] ]E[X}z

I

where Cov[X,, X] = E[X:X] — E[X]E[X].

Zi;éj Cov [Xi X/] n—oco

IF E[X] ™ oo and > 0,
E[X]
THEN
PP[G(n, p) contains no isolated vertex|
— P[X=0] 1 iz Cov [ Xi, X]] oo

: E[X] " E[X]?



Sharp threshold for isolated vertices

Theorem

_ logn + ¢(n)
N n
where |c(n)] — oo arbitrarily slowly as n — co. Then

Let

P[ G(n, p) contains no isolated vertex |

heo 0 if ¢(n) - —o0
—
1 if e(n) — oo



Proof ideas
Note that the function F : [0,1] — [0, 1] defined by
F(p) := P[ G(n, p) contains NO isolated vertex |

is monotone increasing in p. To prove the statement, we may

assume without loss of generality that |c(n)| < log n.



Proof ideas - contd

1 if v is isolated in G(n, p)

Foreachv e [n], let X, = _
0 otherwise.



Proof ideas - contd

1

Foreachv e [n], let X, = {0

Set X - ZVG[N] Xv. Then

B[X] = Y E[X)

ve[n]

if v is isolated in G(n, p)
otherwise.



Proof ideas - contd

1 if v is isolated in G(n, p)

Foreachv e [n], let X, = )
0  otherwise.

Set X == ZVG[H] Xv. Then //,.
E[X] = > E[X/] Vel e
veln] R

=n(1- p)n—1 \\‘



Proof ideas - contd

1 if v is isolated in G(n, p)

Foreachv e [n], let X, = _
0 otherwise.

Set X == ZVG[H] Xv. Then //,.
E[X] = > E[X/] Vel e
velr] o

=n(1- p)n—1 e

= exp (log n— pn+ p+ O(p?n)),

using 1 —x =exp(—x+ O(x?)) for x=o(1).



Proof ideas - contd

1 if v is isolated in G(n, p)

Foreachv e [n], let X, = _
0 otherwise.

Set X == ZVG[H] Xv. Then //,.
E[X] = > E[X/] Vel e
velr] o

=n(1- p)n—1 e

= exp (log n— pn+ p+ O(p?n)),

using 1 —x =exp(—x+ O(x?)) for x=o(1).

log n+ c(n)
n

Taking p = with |¢(n)| < log n, we have

E[X] = (14 0(1))exp (—c(n)).



Proof ideas - contd

Recall X denotes the number of isolated vertices in G(n, p) and

E[X] =1 +o0(1))exp(—c(n)).



Proof ideas - contd

Recall X denotes the number of isolated vertices in G(n, p) and

E[X] =1 +o0(1))exp(—c(n)).

Case (1): assume that c(n) — .
Using first moment method, we have

PX>1] < E[X] = (1+0(1))exp(—c(n)) — 0,



Proof ideas - contd

Recall X denotes the number of isolated vertices in G(n, p) and

E[X] =(140(1)) exp (- c(n)).

Case (1): assume that c(n) — .
Using first moment method, we have

PX>1] < E[X] = (1+0(1))exp(—c(n)) — 0,

P[G(n, p) contains an isolated vertex] = P[X >1] — 0.



Proof ideas - contd

Recall X denotes the number of isolated vertices in G(n, p) and

E[X] =(140(1)) exp (- c(n)).

Case (1): assume that c(n) — .
Using first moment method, we have

PX>1] < E[X] = (1+0(1))exp(—c(n)) — 0,

P[G(n, p) contains an isolated vertex] = P[X >1] — 0.

log n+ c(n)

Therefore, if p = -

with ¢(n) — oo,

P[G(n, p) contains no isolated vertex] = P[X =0] — 1.



Proof ideas - contd
Case (2): assume that c(n) — —cc.

We have E[X] = (1+0(1)) exp (—c(n)) — o



Proof ideas - contd
Case (2): assume that c(n) — —cc.

We have E[X] = (1+0(1)) exp (—c(n)) — o
For v # w,

Cov[Xy, Xw| = E[XyXu] —E[X/]E[Xu]
= (1-pP"%—(1—ppP"?
= p(1-p)*?



Proof ideas - contd
Case (2): assume that c(n) — —cc.

We have E[X] = (1+0(1)) exp (—c(n)) — o
For v # w,
Cov[Xy, Xw| = E[XyXu] —E[X/]E[Xu]

=(1- p)2”—3 —(1- p)2n—2
— ,0(1 _ p)2n—3
and therefore
Zv;éw Cov[Xv,Xw] ~n(n—1)p(1 - p)2n-3
E[X]? T (1 - p)n-2

— 0



Proof ideas - contd
Case (2): assume that c¢(n) — —cc.

We have E[X] = (1+0(1)) exp(—c(n)) —

and > vzw Cov [ Xy, X

5 — 0.
E[X]




Proof ideas - contd
Case (2): assume that c¢(n) — —cc.

We have E[X] = (1+0(1)) exp(—c(n)) —

and > vw Cov [ Xy, X

5 — 0.
E[X]

Using second moment method, we have

1 N Z#W Cov [Xv, XW]
E[X] E[X]?

P[X =0] < — 0



Proof ideas - contd
Case (2): assume that c¢(n) — —cc.

We have E[X] = (1+0(1)) exp(—c(n)) —

and EV;éWCOV [XV,XW]

5 — 0.
E[X]

Using second moment method, we have

]P’[X _ O} _ 1 N Z#WCOV [XV,XW]

= E[X] IE[X]2 — 0

Therefore, if p = w with ¢(n) — —oo,

P[G(n, p) contains no isolated vertex] = P[X =0] — 0.



Sharp threshold for isolated vertices

Theorem

_ logn + ¢(n)
N n
where |c(n)] — oo arbitrarily slowly as n — co. Then

Let

P[ G(n, p) contains no isolated vertex |

heo 0 if ¢(n) - —o0
—
1 if e(n) — oo



Isolated vertices in critical window
Theorem

|
Let p= Ogn:;C(n), where c¢(n) — ceR.

Let X = X(n) be # isolated vertices in G(n, p). Then

X —2 . Po(e®).

It means, for every ¢ =0,1,2,...
i —fl=e el
nan;oP[X fl=e et/
In particular,

P[G(n, p) contains no isolated vertex | = P[X =0] — e © "



Isolated vertices in G(n, p)

Theorem

Let o logn + C(n)'
n

Then

P[ G(n, p) contains no isolated vertex |
0 if ¢(n) - —o0
n—oo
—

e®° ifcn —ceR

1 if ¢(n) - o



Minimal obstruction for connectedness

P[ G(n, p) is connected |
= PP[G(n, p) contains no isolated vertex | + o(1)



Minimal obstruction for connectedness

P[ G(n, p) is connected |
= PP[G(n, p) contains no isolated vertex | + o(1)

0 if ¢(n) - —o0
i e®° ifcn —»ceR
1 if ¢(n) — oo
if logn + c(n)
p=—"F"

— higher-dimensional analogue



With high probability . . .

whp = with probability tending to one as n — oo

Given a property A, we say
whp G(n, p) satisfies A if P[G(n,p) satisfies A] — 1



Emergence of giant component
Letd = (n—1)p be aconstant.

|L1| = # vertices in largest component in G(n, p).
Theorem [ ERDOS—RENYI 60 |
o lfd<1, whp IL1] = O(logn)
@ Ifd>1, whp ILiy] = ©(n)
. o
o o ® o .
o. PY .0 .
. [ ] [

O(log n) o(n)



BFS tree and GW tree
(1) Breadth-First Search tree

v
Construct spanning tree T,

of component C, that contains vertex v

(2)  # neighbours of v ~ Bi(n—1,p) ~ Po(d)
(3) Coupling BFS tree with Galton-Watson tree
with offspring distribution Po(d)

v

p =P (GW tree is infinite)
1—p=3, P(Po(d)=0)(1 - p)f

= exp(—d
¢ subtrees P(=dp)



Galton-Watson tree

Theorem

Let p be a solution of 1 — p = exp(—d p).

o lfd<1,thenp = 0.
o lfd>1,thenp € (0,1).

‘small’ component in G(n, p) ‘giant’ component in G(n, p)



Largest component
Assume d = (n—1)p isaconstant and 1 — p =exp(—dp)

|[L1] = # vertices in largest component in G(n, p)

Theorem [ ERDOS—RENYI 60; KARP 91 |
o lfd<1, whp IL1] = O(logn)
o Ifd>1, whp ILy| = (14+o0(1))pn

:‘:

0.5




Largest component
Assume d = (n—1)p isaconstant and 1 — p = exp(—dp)

|[L1|] = # vertices in largest component in G(n, p)

Theorem [ ERDOS—RENYI 60; KARP 91 ]
o Ifd<1, whp L] = O(logn)
o Ifd>1, whp ILi] = (14+o0(1))pn




Largest component — contd
Assume d = (n—1)p — 1 and 1 — p =exp(—dp)
|[L1| = # vertices in largest component in G(n, p)

Lete = ¢(n) satisfy e >0, ¢ =+ 0, e3n — oo

Theorem [ BOLLOBAS 84; tuUCZzAK 90; BOLLOBAS—RIORDAN 12 ]
o lfd=1—-¢, whp ILi] = (1+o0(1))22log(3n)
@ lfd=1+¢, whp IL1] = (1+4+o0(1))2en

— higher-dimensional analogue



Part I

Higher-Dimensional Analogues

(I) Random hypergraphs

(I Random simplicial complexes



Random hypergraphs
Let Hx(n, p) denote a random binomial k-uniform hypergraph
on vertex set [n] :={1,2,...,n},
in which each k-(element sub)set of vertex set [n] is

a hyperedge with probability p, independently

Note HQ(nHD) = G(nvp)

In the section (I) we assume k > 2, 1 <j< k —1.



High-order components
@ Given two j-(element sub)sets Ji, J>, we say
Jy is reachable from J,
if 3 sequence Ej, ..., E; of hyperedges such that
J CE,hLCE,and |[ENEj 1| >j, ielt—1].

NTD @G

Eq Ei Eir1 Ei
o Reachability is an equivalence relation on j-sets, and
equivalence classes are called j-(tuple)component.

o If H consists of a single j-component, it is j-connected.



Sharp threshold for j-connectedness

Theorem [ COOLEY-K.—KOCH 16 ]
Let _ jlogn + ¢(n)
@
k—j
Then 0 if ¢(n) — —oo

P[ Hi(n, p) is j-connected ] "% e‘%c if c(n) — ceR

1 if c(n) — oo

an isolated j-set is a minimal obstruction for j-connectedness



Heuristics for threshold for giant component
Component exploration & Breadth-First Search tree

5‘%;3 P

@ Begin with a j-set J
@ Discover all hyperedges that contain that j-set J

3 (,’(’j) such hyperedges containing J, each with prob. p
@ For each hyperedge E containing J,

discover ((¥) — 1) new j-sets in £

E[ # j-sets discovered from J | = ((‘j‘) —1) (;3) p=d



Largest j-component

Assume d = ((¥)—1) (ij)p — 1.

Let |[L;| = # j-sets in largest j-component in Hk(n, p)

Lete = ¢(n) satisfy £ >0, e -0, 2n/ = o, ...

Theorem [ COOLEY-K.—KOCH 18; COOLEY-FANG—DEL GIUDICE-K. 19]

k

elfd = 1—¢ whp |L; = (1 +o(1))2((’;%1)'0g(63(7))

@lfd = 1+¢ whp |L;] = (1+0(1)) (155_1 (7)




Random simplicial complexes
Random k-dimensional simplicial complex G, arising from
Hk.1(n, p) by taking its downward-closure, i.e.
e O-simplices are singletons of [ n]
e k-simplices are hyperedges of Hx.1(n, p)
e Vie [k —1],i-simplices are (i + 1)-(element sub)sets

that are contained in hyperedges of Hy.1(n, p)

eg. k=2




Cohomology groups

Let X be a k-dimensional simplicial complex. For0 <j < k —1
@ C/(X) denotes the set of {0, 1}-functions on j-simplices
@ coboundary operator §/: C/(X) — C/T1(X), h— §/h,
is defined such that for each (j + 1)-simplex o
[67h] (0) = > h(r)  (mod2)
J-simplex 7 C o
e.g. [6°f] (uv) = f(u) + f(v) (mod 2)
[67g] (uvw) = g(uv) + g(vw) + g(wu) (mod 2)
@ j-th cohomology group of X with coefficients in F is the

Ker (/)
Im (§/-1)

uotient gro )
AHOTEMAIR hi(x: my)



Cohomology groups — contd

Ker (/)

HI(X; Fy) = im (571

£0 <= 3h e Ker(5/)\ Im(s/")

e.g. {0,1}-function hon j-simplices that assigns
@ even number of 1’s on j-simplices
that are contained in each (j + 1)-simplex
@ odd number of 1’s on a set J of j-simplices s.t.

every (j — 1)-simplex is contained in even # j-simplices in J

—

his an obstacle for vanishing of cohomology group



Minimal obstruction M = (K, C,J) fork =2, j =1
K = 2-simplex (i.e. hyperedge) in G,




Minimal obstruction M = (K, C,J) fork =2, j =1

= 2-simplex (i.e. hyperedge) in Gp

= 0-simplex in K such that for each w € K'\ C,
1-simplex C U {w} is contained in no other 2-simplex




Minimal obstruction M = (K, C,J) fork =2, j =1
K = 2-simplex (i.e. hyperedge) in G,
C = 0-simplex in K such that foreach w € K'\ C,
1-simplex C U {w} is contained in no other 2-simplex
J = set of 1-simplices (i.e. a cycle) such that

@ every 0-simplex is contained in even # 1-simplices in J

@ it contains exactly one CU {wy}, wp € K\ C

Wo




Minimal obstruction M = (K, C,J) fork =2, j =1
K = 2-simplex (i.e. hyperedge) in G,
C = 0-simplex in K such that foreach w € K'\ C,
1-simplex C U {w} is contained in no other 2-simplex
J = set of 1-simplices (i.e. a cycle) such that

@ every 0-simplex is contained in even # 1-simplices in J

@ it contains exactly one CU {wy}, wp € K\ C

Wo




Minimal obstruction M, = (K, C,J) fork > 2,1 <j < k —1
K = k-simplex (i.e. hyperedge) in Gp
C = (j— 1)-simplex in K such that for each w € K'\ C,
Jj-simplex C U {w} is contained in no other k-simplex
J = set of j-simplices (i.e. a j-cycle) such that
@ every (j— 1)-simplex is contained in even # j-simplices in J
@ it contains exactly one CU {wp}, wp € K\ C

W K




Vanishing of cohomology groups in G,
Theorem [ COOLEY-DEL GIUDICE-K.—SPRUSSEL 19 ]
Letk>2,1<j<k-1,and

_ (j+1)logn+loglogn+ c(n)
(k=i+1(")

Then '
P[H(Gp; F2) =0, Viel]]]
0 if ¢(n) - —o0
n—o0 _ _G+ne €
e (k—+1)2) if ¢(n) - ceR

1 if ¢(n) - o



Part Il

Topological Aspects



Guiding questions/themes
(1) What is a typical genus of Erdés-Rényi random graph?

* genus of a graph G is minimum number of handles
that must be attached to a sphere in order to embed G
without any crossing edges

Ks genus of K5 =1



Guiding questions/themes
(2) How does a topological constraint influence component
structure of a random graph?
— planarity

— upper bound on genus



Throughout the talk
@ Let G(n, m) denote the set of all graphs
on vertex set [n] := {1,..., n} with m = m(n) edges

@ Let G(n, m) denote a graph taken uniformly at random from
G(n, m)

o Let |L¢]| denote # vertices in largest component



Planarity of G(n, m)
Theorem

o lfd=2" <1, whp |Ly| = O(logn),

n

and G(n, m) is planar

olfd=2" > 1, whp  |Li] = (1+0(1))pn,

where 1 — p = exp(—d p), and G(n, m) is not planar

[Lyl/n




Random planar graphs
@ Let P(n, m) denote the set of all graphs on vertex set [ n]
with m = m(n) edges that are embeddable on the sphere

without crossing edges

@ Let P(n, m) denote a graph taken uniformly at random from
P(n, m)

@ For1 <m«< 3,
P[ G(n,m) is planar] = r;gg’g;‘ UmEcNES




Random planar graph P(n, m)
Theorem [ K.—LUCZAK 2012; GIMENEZ-NOY 2009 |
@ If 2™ <1, then whp |L4] = O(logn).

o If 27 — de(1,2), then whp
IL1] = (1+0(1)) (d—1)n.
@ If 2" — d € [2,6], then whp
L] = (1+0(1)) n.




Phase transitions and critical phases

[L1] L]

n n

0.5+ 0.5

Uniform random graph G(n, m) Random planar graph P(n, m)



Phase transitions and critical phases

|Lq] IL1]

n n

0.5+ 0.5

Uniform random graph G(n, m) Random planar graph P(n, m)



Weakly supercritical random graphs

Letm=J+sfors>0 n"PP<s<n.

Uniform random graph G(n, m) [ BOLLOBAS 84; LUCZAK 90 |
whp ILi] = (4+0(1)) s
Random planar graph P(n, m) [ K—tuczak 2012 |

whp ILi| = (2+0(1)) s



Random graphs on a surface
@ Let Sy(n, m) denote the set of all graphs on vertex set [ n]

with m edges and with genus < g

Note P(”? m) = SO(”? m)

@ Let S4(n, m) denote a graph taken uniformly at random

from Sg(n, m)



Random graphs on a surface
From which g = g(n), are Sy(n, m) and G(n, m)

not distinguishable under viewpoint of whp-properties?

IF whp genusof G(n,m)is T,
THEN Vg > T, we have that

|Sg(n, m)| |ST(n7 m)‘ n—0o0

D Gmm = Gnm) 1

(2) for every property A,
whp G(n, m) satisfies A iff whp Sg(n, m) satisfies A



Genus of weakly supercritical G(n, m)
Letm=J+sfor s>0, ?®<s<n.
Let g denote the genus of G(n, m).

Theorem [ DOWDEN—K.—KRIVELEVICH 2019 |

8s3



Largest component in weakly supercritical Sy(n, m)

Letm=2+s for s> 0, M8 <s<nandletT= gf;

Let [L1| = # vertices in largest component in Sy(n, m).
Theorem [ DOWDEN—K.—MOSSHAMMER—SPRUSSEL 2019+ |
whp

o |Li| = (4+0(1))s if g>(1+0(1))T

o |Li| = (2+0(1))s if g=o(T)



Largest component in weakly supercritical Sy(n, m)

Letm=2+s for s> 0, M8 <s<nandletT= gf;

Let [L1| = # vertices in largest component in Sy(n, m).
Theorem [ DOWDEN—K.—MOSSHAMMER—SPRUSSEL 2019+ |
whp

e |Li] = (4+0(1))s if g>1+001))T
e |Ly| = (f(c)+o0(1))s if g=(c+0(1))T for ce(0,1)
o |Li| = (2+0(1))s if g=o(T)

where f(c) »2asc—0and f(c) ~4asc— 1.



Genus of supercritical G(n, m)

Let 27”7 — d > 1 and g denote the genus of G(n, m).
Theorem [ DOWDEN—K.—KRIVELEVICH 2019 ]

whp g = o(n)



Largest component L, in supercritical Sy(n, m)

Assume 27 — d>1andg>n
Theorem [ DOWDEN—K.—MOSSHAMMER—SPRUSSEL 2019+ |
whp ILil=(+0(1))pn,

where 1 — p = exp(—d p).

:‘:

0.5




Largest component L, in supercritical Sy(n, m)
Assume 27 — d > 1andg < n.
Theorem [ DOWDEN—K.—MOSSHAMMER—SPRUSSEL 2019+ |

o Ifd e (1,2), then whp
ILi]=(14+0(1)) (d —1)n.
o Ifd € [2,6], then whp
L] = (1 +o(1)) n.

:‘_':
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Component structure of Sy(n, m)

=
o

tree components  unicyclic compopnents ~ complex components



Enumeration of |Sy(n, m)|

|Sg(n,m)| = # graphs on [n] with m edges and genus < g

= ZM< )cgk k+0)Un—k,m—k—1)

where
Cy(k,k +1¢) = + complex parton [k] with k + ¢ edges
Un—k,m—k —{) = 4+ graphs consisting of trees

or unicyclic components

on [n — k]| with m — k — ¢ edges
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Core-Kernel approach

® Complex part G

2-Core = max. subgraph of G with min. degree > 2
Kernel = replace each path in 2-core by an edge

® gisgenusof G iff gisgenus ofkernel of G
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Combinatorial Laplace’s method
In order to to analyse a sum of the form
S(n) =S Q) R(N—1) = 3 exp (|og(o(i) R(n—i))),
i€lh i€l
let An(i) = log(Q(i) R(n—i)) and assume Ap,(r) = 0, Ay(r) < 0:
_ , B A/,;(r) P2 o
S(n) = > exp(An(i)) = D _ exp An(r) + 5 (i—r?+

i€lp i€lp

~ exp (An(r)) D exp (-'A%,‘fr)’(i— r)2>

i=r+0(\/1/1A5(n)])
~ exp (An(r)) v/ 2r/|An(r)]|




Combinatorial Laplace’s method

In order to to analyse a sum of the form

S(n) =S Q) R(N—1) = 3 exp (|og(o(i) R(n—i))),

i€lp i€l

let An(i) = log(Q(i) R(n—i)) and assume A}(r) =0, A)(r) < 0:

S(n) = Y exp(An(i)) = ) exp (An(r) + A/’;Z(r)(/_ r)? +)

i€lp i€lp

~ exp (An(r)) > exp (—A;’;fr)’(i —~ r)2>

i=r+0(\/1/1A5(n)])
~ exp (An(r)) v/ 2r/|An(r)]|

This is an ideal scenario, but ...



Summary & open problem

Largest component Ly in Sy(n, m) with d = 27’" > 1.

IL4] IL4]

n n

0.5 0.5
° 1 ; 5 d ° 1 : ;
Syg(n,m) for g< n Sg(n,m) for g>>n
analogous to P(n, m) analogous to G(n, m)

— behaviour of |L| when g = ©(n)?



