Topological Aspects of Random Graphs

Mihyun Kang

46th Workshop on Graph-Theoretic Concepts in Computer Science (WG20)

Guiding questions/themes

(1) What is a typical genus of Erdős-Rényi random graph?
(2) How does a topological constraint influence the component structure of a random graph?

- planarity
- upper bound on genus
(3) What is the length of the longest and shortest cycles?
- in Erdős-Rényi random graph
- in a random planar graph

Part I.

Erdős-Rényi Random Graphs

Throughout the talk

- let $G(n, m)$ denote a uniform random graph:
- $\mathcal{G}(n, m)=$ set of all simple graphs on vertex set $[n]:=\{1, \ldots, n\}$ with $m=m(n)$ edges
- $G(n, m)=$ chosen uniformly at random from $\mathcal{G}(n, m)$
- whp $\quad=$ with probability tending to one as $n \rightarrow \infty$
- all asymptotics are taken as $n \rightarrow \infty$

Emergence of giant component

$L_{1}=$ largest component in $G(n, m)$
$\left|L_{1}\right|=\#$ vertices in L_{1}
$m=d \cdot \frac{n}{2} \quad(d=$ average degree $)$
Theorem

- If $d<1$, whp $\quad\left|L_{1}\right|=O(\log n)$
- If $d>1$, whp $\quad\left|L_{1}\right|=\Theta(n)$

$\theta(n)$

Largest component L_{1} in $G(n, m)$

$m=d \cdot \frac{n}{2}$ for $d>1$
$1-\rho=\exp (-d \rho)$

Theorem

whp

$$
\left|L_{1}\right|=(1+o(1)) \rho n
$$

$m=d \cdot \frac{n}{2}$
Theorem

- If $d<1$, whp
- each component is either a tree or unicyclic component
- $G(n, m)$ is planar
- If $d>1$, whp
- largest component contains \geq two cycles
- $G(n, m)$ is not planar

Part II.

Random Planar Graphs

Random planar graphs

Let $P(n, m)$ denote a uniform random planar graph:

- $\mathcal{P}(n, m)=$ set of all simple graphs on vertex set $[n]$ with $m=m(n)$ edges that are
embeddable on sphere without crossing edges
- $P(n, m)=$ chosen uniformly at random from $\mathcal{P}(n, m)$

Note

- $\mathcal{P}(n, m) \subset \mathcal{G}(n, m)$
- for $m>3 n-6$:

$$
\begin{aligned}
& \mathcal{P}(n, m)=\emptyset \\
& \frac{|\mathcal{P}(n, m)|}{|\mathcal{G}(n, m)|} \xrightarrow{n \rightarrow \infty} 1
\end{aligned}
$$

- for $1 \leq m<\frac{n}{2}$:

Random planar graph $P(n, m)$
$L_{1}=$ largest component in $P(n, m)$
$m=d \cdot \frac{n}{2}$
Theorem

- If $d \in(1,2)$, whp $\quad\left|L_{1}\right|=(1+o(1))(d-1) n$
- If $d \in[2,6]$, whp $\quad\left|L_{1}\right|=(1+o(1)) n$

Phase transitions and critical phases

Uniform random graph $G(n, m)$

Random planar graph $P(n, m)$

Weakly supercritical random graphs

$m=\frac{n}{2}+s$ for $s>0$ and $n^{2 / 3} \ll s \ll n$

Uniform random graph $G(n, m)$
[Bollobás 84; Łuczak 90]
whp

$$
\left|L_{1}\right|=(4+o(1)) s
$$

Random planar graph $P(n, m)$
whp

$$
\left|L_{1}\right|=(2+o(1)) s
$$

Part III.

Random Graphs on Surfaces

Random graph on a surface

- Random graph $S_{g}(n, m)$ on an orientable surface of genus g :
- $\mathcal{S}_{g}(n, m)=$ set of all simple graphs on vertex set $[n]$ with $m=m(n)$ edges and genus $\leq g$
- $S_{g}(n, m)=$ chosen uniformly at random from $\mathcal{S}_{g}(n, m)$
- Note $\mathcal{P}(n, m)=\mathcal{S}_{0}(n, m) \subset \mathcal{S}_{g}(n, m) \subset \mathcal{G}(n, m)$
- For which $g=g(n)$, are $G(n, m)$ and $S_{g}(n, m)$ indistinguishable under viewpoint of whp-properties?

In other words, when are $G(n, m)$ and $S_{g}(n, m)$ contiguous?

Genus of $G(n, m)$

$g=$ genus of $G(n, m)$
$m=\frac{n}{2}+s$ for $s>0$ and $n^{2 / 3} \ll s \ll n$
Theorem
[Dowden-K.-Krivelevich 2019]
whp

$$
g=(1+o(1)) \frac{8 s^{3}}{3 n^{2}}
$$

Proof ideas: let $G=G(n, m)$

$$
\text { genus of } \begin{aligned}
G & =\text { genus of largest component } L_{1} \text { of } G \\
& =\text { genus of } 2 \text {-core } C \text { of } L_{1} \\
& =\frac{1}{2}(e(C)-v(C)-f(C)+2)
\end{aligned}
$$

$$
f(C) \ll e(C)-v(C)=\operatorname{excess}(C)=\operatorname{excess}\left(L_{1}\right)
$$

Contiguity threshold

$g=$ genus of $G(n, m)$
$m=\frac{n}{2}+s$ for $s>0$ and $n^{2 / 3} \ll s \ll n$
$T=\frac{8 s^{3}}{3 n^{2}}=$ contiguity threshold

Theorem

For every $\varepsilon>0$,

- if $g \geq(1+\varepsilon) T, G(n, m)$ and $S_{g}(n, m)$ are contiguous
(\forall a property \mathcal{P}, whp G satisfies \mathcal{P} iff whp S_{g} satisfies \mathcal{P})
- if $g \leq(1-\varepsilon) T, G(n, m)$ and $S_{g}(n, m)$ are not contiguous

Largest component in $S_{g}(n, m)$

$L_{1}=$ largest component of $S_{g}(n, m)$
$m=\frac{n}{2}+s$ for $s>0$ and $n^{2 / 3} \ll s \ll n$
$T=\frac{8 s^{3}}{3 n^{2}}=$ contiguity threshold

Theorem

whp

- $\left|L_{1}\right|=(4+o(1)) s \quad$ if $\quad g \geq(1+o(1)) T$
- $\left|L_{1}\right|=(2+o(1)) s \quad$ if $\quad g=o(T)$

Genus of $G(n, m)$

$g=$ genus of $G(n, m)$
$m=d \cdot \frac{n}{2}$ for $d>1$
Theorem
whp

$$
g=(1+o(1)) \mu(d) d \cdot \frac{n}{2}
$$

$g / m \sim \mu(d)$

Largest component L_{1} in $S_{g}(n, m)$

$m=d \cdot \frac{n}{2}$ for $d>1$
$g \gg n \quad:$ thus $S_{g}(n, m)$ and $G(n, m)$ are contiguous
Theorem
whp

$$
\left|L_{1}\right|=(1+o(1)) \rho n
$$

Largest component L_{1} in $S_{g}(n, m)$

$m=d \cdot \frac{n}{2}$ for $d>1$
$g \ll n \quad:$ thus $S_{g}(n, m)$ and $G(n, m)$ are not contiguous
Theorem
[Dowden-K.-Mosshammer-Sprüssel 2019+]
whp

$$
\left|L_{1}\right| \sim\left\{\begin{aligned}
(d-1) n & \text { if } \quad d \in(1,2) \\
n & \text { if } \quad d \in[2,6]
\end{aligned}\right.
$$

Part IV.

Longest and shortest cycles in random graphs

Cycles in graphs

Given a graph G :

- $c(G)=$ circumference $=$ length of longest cycle
- $g(G)=$ girth $\quad=$ length of shortest cycle
- $L_{1}=L_{1}(G) \quad=$ largest component
- $R=G \backslash L_{1}$
$=$ graph outside largest component

Cycles in $G\left(n, d \cdot \frac{n}{2}\right)$

Theorem

- If $d<1$, whp $\quad c\left(L_{1}\right)=g\left(L_{1}\right)=0$

$$
\text { and } \quad c(G)=O_{p}(1)
$$

- If $d>1$, whp $\quad c\left(L_{1}\right)=\Theta(n)$

$$
\text { and } \quad c(R)=O_{p}(1), \quad g\left(L_{1}\right)=O_{p}(1)
$$

If $d<1$, whp

- G consists of trees and unicyclic components
- L_{1} is a tree

Cycles in $G(n, n / 2+s)$

[Kolchin 1987; Łuczak 1991; Łuczak-Pittel-Wierman 1994]

	$s n^{-2 / 3} \rightarrow-\infty$	$s n^{-2 / 3} \rightarrow c$	$s n^{-2 / 3} \rightarrow \infty$
$c\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\Theta\left(s^{2} n^{-1}\right)$
$g\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\Theta_{p}\left(n s^{-1}\right)$
$c(R)$	$\Theta_{p}\left(n\|s\|^{-1}\right)$	$\Theta_{p}\left(n^{1 / 3}\right)$	$\Theta_{p}\left(n s^{-1}\right)$

${ }^{\wedge_{\Delta \Delta}} c\left(L_{1}\right) \quad \square_{\square}\left(L_{1}\right) \quad{ }^{\bullet \bullet} c(R)$

Cycles in $P(n, n / 2+s)$

	$s n^{-2 / 3} \rightarrow-\infty$	$s n^{-2 / 3} \rightarrow c$	$s n^{-2 / 3} \rightarrow \infty$
$c\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\omega\left(n^{1 / 3}\right), O\left(s n^{-1 / 3}\right)$
$g\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\Theta_{p}\left(n s^{-1}\right)$
$c(R)$	$\Theta_{p}\left(n\|s\|^{-1}\right)$	$\Theta_{p}\left(n^{1 / 3}\right)$	$\Theta_{p}\left(n^{1 / 3}\right)$

${ }^{\boldsymbol{\Delta}_{\Delta}^{\Delta}} c\left(L_{1}\right) \quad{ }^{\square}{ }^{-1}\left(L_{1}\right) \quad{ }^{\bullet \bullet} c(R)$

Cycles in $P(n, n / 2+s)$
[K.-Missethan 2020+]

	$s n^{-2 / 3} \rightarrow-\infty$	$s n^{-2 / 3} \rightarrow c$	$s n^{-2 / 3} \rightarrow \infty$
$c\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\Theta\left(s n^{-1 / 3}\right) ?$
$g\left(L_{1}\right)$	no cycle	$\Theta_{p}\left(n^{1 / 3}\right)^{*}$	$\Theta_{p}\left(n s^{-1}\right)$
$c(R)$	$\Theta_{p}\left(n\|s\|^{-1}\right)$	$\Theta_{p}\left(n^{1 / 3}\right)$	$\Theta_{p}\left(n^{1 / 3}\right)$

${ }^{\boldsymbol{\Delta}_{\Delta}^{\Delta}} c\left(L_{1}\right) \quad{ }^{\square} \boldsymbol{\square}\left(L_{1}\right) \quad{ }^{\bullet \bullet} c(R)$

Summary \& open problems

(1) Largest component L_{1} in $S_{g}(n, d \cdot n / 2)$ for $d>1$

\Longrightarrow behaviour of largest component L_{1} when $g=\Theta(n)$?

Summary \& open problems

(1) Largest component L_{1} in $S_{g}(n, d \cdot n / 2)$ for $d>1$

$S_{g}(n, m)$ for $g \gg n$
\Longrightarrow behaviour of largest component L_{1} when $g=\Theta(n)$?
(2) Circumference $c\left(L_{1}\right)$ of L_{1} in $P(n, n / 2+s)$ for $n^{2 / 3} \ll s \ll n$:

$$
n^{1 / 3} \ll c\left(L_{1}\right)=O\left(s n^{-1 / 3}\right)
$$

IF \exists cycle of linear order in a random cubic planar graph, THEN

$$
c\left(L_{1}\right)=\Theta\left(s n^{-1 / 3}\right)
$$

