Topological Aspects of Random Graphs

Mihyun Kang

46th Workshop on Graph-Theoretic Concepts in Computer Science (WG20)

Guiding questions/themes

- (1) What is a typical genus of Erdős-Rényi random graph?
- (2) How does a topological constraint influence the component structure of a random graph?
 - planarity
 - upper bound on genus
- (3) What is the length of the longest and shortest cycles?
 - in Erdős-Rényi random graph
 - in a random planar graph

Part I.

Erdős-Rényi Random Graphs

Throughout the talk

• let G(n, m) denote a uniform random graph:

- $\mathcal{G}(n,m) =$ set of all simple graphs on vertex set $[n] := \{1, \dots, n\}$ with m = m(n) edges
- G(n,m) = chosen uniformly at random from $\mathcal{G}(n,m)$
- whp = with probability tending to one as $n \to \infty$
- all asymptotics are taken as $n \to \infty$

Emergence of giant component

$$L_1$$
 = largest component in $G(n,m)$

 $|L_1| = \#$ vertices in L_1

$$m = d \cdot \frac{n}{2}$$
 ($d =$ average degree)

Theorem

[ERDŐS-RÉNYI 1959]

- If d < 1, whp $|L_1| = O(\log n)$
- If d > 1, whp $|L_1| = \Theta(n)$

Largest component L_1 in G(n, m)

$$m = d \cdot \frac{n}{2}$$
 for $d > 1$

$$1 - \rho = \exp(-d \rho)$$

Theorem

whp

$$|L_1| = (1 + o(1)) \rho n$$

Planarity of G(n,m)

 $m = d \cdot \frac{n}{2}$

Theorem

[ERDŐS-RÉNYI 1959-60]

- If d < 1, whp
 - each component is either a tree or unicyclic component
 - G(n,m) is planar
- If d > 1, whp
 - largest component contains \geq two cycles
 - G(n,m) is not planar

Part II.

Random Planar Graphs

Random planar graphs

Let P(n, m) denote a uniform random planar graph:

$$- \mathcal{P}(n,m) =$$
 set of all simple graphs on vertex set $[n]$
with $m = m(n)$ edges that are
embeddable on sphere without crossing edges

- P(n,m) = chosen uniformly at random from $\mathcal{P}(n,m)$

Note

•
$$\mathcal{P}(n,m) \subset \mathcal{G}(n,m)$$

• for m > 3n - 6: • for $1 \le m < \frac{n}{2}$: $|\mathcal{P}(n,m)| = \emptyset$

$$\frac{|\mathcal{P}(n,m)|}{|\mathcal{G}(n,m)|} \stackrel{n \to \infty}{\longrightarrow} 1$$

Random planar graph P(n,m)

$$L_1 =$$
 largest component in $P(n,m)$

 $m = d \cdot \frac{n}{2}$

Theorem	[KŁuczak 2012]
• If $d \in (1,2)$, whp	$ L_1 = (1 + o(1)) (d - 1)n$
• If $d \in [2,6]$, whp	$ L_1 = (1 + o(1)) n$

Phase transitions and critical phases

Uniform random graph G(n, m)

Random planar graph P(n,m)

Weakly supercritical random graphs

$$m = \frac{n}{2} + s$$
 for $s > 0$ and $n^{2/3} \ll s \ll n$

Uniform random graph G(n,m) [BOLLOBÁS 84; ŁUGZAK 90] whp $|L_1| = (4+o(1)) s$

Random planar graph P(n,m)

[K.-ŁUCZAK 2012]

whp
$$|L_1| = (2 + o(1)) s$$

Part III.

Random Graphs on Surfaces

Random graph on a surface

• Random graph $S_g(n, m)$ on an orientable surface of genus g:

$$- S_g(n,m) =$$
 set of all simple graphs on vertex set [n]

with m = m(n) edges and genus $\leq g$

 $-S_g(n,m) =$ chosen uniformly at random from $S_g(n,m)$

• Note
$$\mathcal{P}(n,m) = \mathcal{S}_0(n,m) \subset \mathcal{S}_g(n,m) \subset \mathcal{G}(n,m)$$

• For which g = g(n), are G(n,m) and $S_g(n,m)$ indistinguishable under viewpoint of whp–properties?

In other words, when are G(n,m) and $S_g(n,m)$ contiguous?

Genus of G(n,m)

$$g = \text{genus of } G(n,m)$$

Theorem

 $m = \frac{n}{2} + s$ for s > 0 and $n^{2/3} \ll s \ll n$

[DOWDEN-K.-KRIVELEVICH 2019]

whp
$$g = (1 + o(1)) \frac{8s^3}{3n^4}$$

Proof ideas: let G = G(n, m)

genus of G = genus of largest component L_1 of G= genus of 2-core C of L_1 = $\frac{1}{2} (e(C) - v(C) - f(C) + 2)$

 $f(C) \ll e(C) - v(C) = \exp(C) = \exp(C)$

Contiguity threshold

- g = genus of G(n,m)
- $m = \frac{n}{2} + s$ for s > 0 and $n^{2/3} \ll s \ll n$
- $T = \frac{8s^3}{3n^2}$ = contiguity threshold

Theorem

[DOWDEN-K.-KRIVELEVICH 2019]

For every $\varepsilon > 0$,

• if $g \ge (1 + \varepsilon)T$, G(n, m) and $S_g(n, m)$ are contiguous

 $(\forall a \text{ property } \mathcal{P}, \text{ whp } G \text{ satisfies } \mathcal{P} \text{ iff } \text{ whp } S_g \text{ satisfies } \mathcal{P})$

• if $g \leq (1 - \varepsilon)T$, G(n, m) and $S_g(n, m)$ are not contiguous

Largest component in $S_g(n,m)$

- $L_1 = \text{largest component of } S_g(n,m)$
- $m = \frac{n}{2} + s$ for s > 0 and $n^{2/3} \ll s \ll n$
- $T = \frac{8s^3}{3n^2}$ = contiguity threshold

Theorem

[DOWDEN-K.-MOSSHAMMER-SPRÜSSEL 2019+]

whp

•
$$|L_1| = (4 + o(1)) s$$
 if $g \ge (1 + o(1))T$

•
$$|L_1| = (2 + o(1)) s$$
 if $g = o(T)$

Genus of G(n,m)

$$g = \text{genus of } G(n,m)$$

$$m = d \cdot \frac{n}{2} \text{ for } d > 1$$
Theorem
$$[\text{ Dowden-K.-KRIVELEVICH 2019 }]$$
whp
$$g = (1 + o(1)) \mu(d) d \cdot \frac{n}{2}$$

$$g/m \sim \mu(d)$$

0.1-

2

Largest component L_1 in $S_g(n,m)$

Largest component L_1 in $S_g(n, m)$

Part IV.

Longest and shortest cycles in random graphs

Cycles in graphs

Given a graph G:

- c(G) = circumference = length of longest cycle
- g(G) = girth = length of shortest cycle
- $L_1 = L_1(G)$ = largest component
- $R = G \setminus L_1$

= graph outside largest component

Cycles in $G(n, d \cdot \frac{n}{2})$

Theorem	[Erdős-Rényi 1960; Ajtai-Komlós-Szemerédi 1981]
• If $d < 1$, whp and	$c(L_1) = g(L_1) = 0$ $c(G) = O_p(1)$
• If $d > 1$, whp and	$c(L_1) = \Theta(n)$ $c(R) = O_p(1), g(L_1) = O_p(1)$

If d < 1, whp

- G consists of trees and unicyclic components
- L_1 is a tree

Cycles in G(n, n/2 + s)

[KOLCHIN 1987; ŁUCZAK 1991; ŁUCZAK-PITTEL-WIERMAN 1994]

	$s n^{-2/3} \to -\infty$	$s n^{-2/3} \to c$	$s n^{-2/3} \to \infty$
$c(L_1)$	no cycle	$\Theta_p\left(n^{1/3} ight)^*$	$\Theta\left(s^2 n^{-1}\right)$
$g(L_1)$	no cycle	$\Theta_p\left(n^{1/3} ight)^*$	$\Theta_p\left(ns^{-1}\right)$
$c(\mathbf{R})$	$\Theta_p\left(n s ^{-1}\right)$	$\Theta_p\left(n^{1/3}\right)$	$\Theta_p\left(ns^{-1} ight)$

Cycles in P(n, n/2 + s)

[K.-MISSETHAN 2020+]

	$s n^{-2/3} \to -\infty$	$s n^{-2/3} \rightarrow c$	$s n^{-2/3} \to \infty$
$c(L_1)$	no cycle	$\Theta_p\left(n^{1/3} ight)^*$	$\omega(n^{1/3}), O(sn^{-1/3})$
$g(L_1)$	no cycle	$\Theta_p\left(n^{1/3} ight)^*$	$\Theta_p\left(ns^{-1}\right)$
$c(\mathbf{R})$	$\Theta_p\left(n s ^{-1} ight)$	$\Theta_p\left(n^{1/3}\right)$	$\Theta_p\left(n^{1/3} ight)$

Cycles in P(n, n/2 + s)

[K.-MISSETHAN 2020+]

	$s n^{-2/3} \to -\infty$	$s n^{-2/3} \rightarrow c$	$s n^{-2/3} \to \infty$
$c(L_1)$	no cycle	$\Theta_p\left(n^{1/3}\right)^*$	$\Theta\left(sn^{-1/3}\right)$?
$g(L_1)$	no cycle	$\Theta_p\left(n^{1/3} ight)^*$	$\Theta_p \left(n s^{-1} \right)$
c(R)	$\Theta_p\left(n s ^{-1}\right)$	$\Theta_p\left(n^{1/3} ight)$	$\Theta_p\left(n^{1/3} ight)$

Summary & open problems

(1) Largest component L_1 in $S_g(n, d \cdot n/2)$ for d > 1

 \implies behaviour of largest component L_1 when $g = \Theta(n)$?

Summary & open problems

(1) Largest component L_1 in $S_g(n, d \cdot n/2)$ for d > 1

 \implies behaviour of largest component L_1 when $g = \Theta(n)$?

(2) Circumference $c(L_1)$ of L_1 in P(n, n/2 + s) for $n^{2/3} \ll s \ll n$: $n^{1/3} \ll c(L_1) = O(sn^{-1/3})$

IF \exists cycle of linear order in a random cubic planar graph, THEN $c(L_1) = \Theta\left(s n^{-1/3}\right)$