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Outline of talk

|. Singularity analysis of generating functions

> the number M of edges is linear in the number n of vertices

ll. Probabillistic counting method

> M < n

l1l. Matrix integral method

> maps vs graphs on surfaces



Part |: Singularity analysis of generating functions

e Trees

e Planar graphs
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View the generating function T'(z) = 3", t(n)%; as a complex-valued
function that is analytic at the origin. Let [2"|T'(z) = t(n)/n!.

Let R be the radius of convergence of T'(z). Then
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[Pringsheim’s Theorem]
The point z = R is a dominant singularity of 7'(z), when T'(z) has
non-negative Taylor coefficients.

How to determine
e the dominant singularity R and

e the subexponential factor 6(n)?
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Singularity analysis

Let ¢)(u) be the functional inverse of T'(z).
(Indeed ¥ (u) = ue™" for rooted trees.)

Let » > 0 be the radius of convergence of vy, and suppose there exists
uo € (0,r) such that ¢’ (ug) = 0 and " (ug) # 0.

Indeed, =, = ¢! and thus "2 = 9(n)e”, where limsup |6(n)[}/" = 1.
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¢(U) — 77D<UO) + §¢/l(u0)(u — u0)2 + ...
It implies a locally quadratic dependency between z and u = T'(2):
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Local dependency
Taylor expansion of z = v(u) at ug is of the form
0(u) = (o) + 51" (uo)(u — uo)? + -+
It implies a locally quadratic dependency between z and v = T'(2):

(T(:) = T(0)? = (1= w0)? ~ sl = 20) = s (1= /0

Since T'(z) is increasing along the positive real axis, we have

T(2) = T(z0) ~ — /=20 (u0)/v"(uo) (1 — 2/29)"/?

Using A-analycity of T'(z) and transfer theorem, we have

(2" T(2) ~ —/=20(u0) /4" (uo)[2"] (1 — 2/20) "
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Basic scale

In summary we have

2T (2) ~ —V2 [2"](1 — e 2) !/,

RESCALING RULE/ GENERALISED BINOMIAL THEOREM

2] (1 — e-2) M2 = (” _ng/ 2) & f;’; e,

The number of rooted trees on n vertices equals

1
t(n)  ~ —=n"32e"n]
V2T
N Ln—?’/%n(ﬁ)” o (Stirling’s formula)
V2T €

= pn ! (Cayley’s formula)
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Block structure of a graph

[ HARARY=PALMER 78 ]

A block of a graph is a maximal connected subgraph without a cut-vertex:
e a maximal 2-connected subgraph,
e an edge (including its ends), or

e an isolated vertex

The block structure of a graph is a forest with two types of vertices:
the blocks and the cut-vertices of the graph.

Let P(x) (resp. C(x), B(z), T(x)) be the EGF for labelled (resp.
connected, biconnected, triconnected) planar graphs:

P(x) = exp(C(x))
xC' () zexp(B'(zC'(x)))
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Tutte’s structure theorem

2-connected graphs with one edge distinguished and oriented

<~ networks [ TRAKHTENBROT 58; TUTTE 63; WALSH 82 ]

s-network p-network h-network

N = S+P+H
N2
S = z(N—-S)N = S=_=
1+ aN
P = (1+y)exp(N—P)—(N—-—P)—1 = 1+ N=(1+y)exp(S+ H)
M (z, N)
H =
22 N
1+ N N2 M(z,N
R T i T (, N)

= +
1+y 1+aN 212N
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Unigue embedding

Unigue embedding of 3-conn. planar graphs on the sphere [ WHITNEY 32 ]

3-conn. planar graphs < 3-conn. planar maps

Tutte rooting: given a 3-conn. planar graph,
select one edge, a direction on the edge and a side of the edge

<— c-net [ TUTTE 63; MULLIN-SCHELLENBERG 68 ]
oT(z,y) _  M(z,y)
dy 4y
1 1 1 2(1 2
M(:E,y) _ x2y2< 4+ _1_( —I—’LL)( +?3}))
l+zy 14y (14 u+v)
v = zy(l4v)?

v o= y(l+u)?



Generating functions

Connected graphs < block structure

[ HARARY=PALMER 78 ]

C'(x) = exp(B'(zC"(x)))

2-connected graphs <= networks

3-conn. planar graphs <= c-nets

[ TRAKHTENBROT 58; TUTTE 63; WALSH 82 ]

0B(z,y) _ xz*(1+N(z,y))

Oy 2(1+y)
T N2 1+N M (z,N)
TN log 1:7; T e 0

[ TUTTE 63; MULLIN-SCHELLENBERG 68 ]

zy(1 + v)?,

1
2, 2
7y (1—|—xy+

1 (14 u)?(1 +v)?
1+y_1_ (1+u+v)3 )

v =1y(1+u)?



Singularity analysis

c-nets <= 3-conn. planar graphs [ BENDER-RICHMOND 84; BGJK 05 |
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Singularity analysis

c-nets <= 3-conn. planar graphs [ BENDER-RICHMOND 84; BGJK 05 |
o T(n) ~ an~"2n"nl, n = 21.05
e T(n,m) ~ agn=*n%nl m=dn, de(1,3)

Networks <= 2-conn. planar graphs [ BENDER—GAO-WORMALD 02 ]

e N(z,y) = analytic part + g(y)(1 — =/R(y))*/?, for y~1
e N(n) ~ Bn=22)\"nl, A= 26.1
e N(n,m) ~ Bgn=3 A\ n! m =dn, de€(1,3)

Inserting an edge between poles and unrooting networks, we have

e B(n) ~ bn~ "2 \"nl, A = 26.1

e B(n,m) ~ bgn~* A\ nl m =dn, de€(1,3)



Singularity analysis

2-conn. planar graphs = conn. planar graphs: C’'(z) = exp(B'(xC’'(x)))

e Difficulty: integration of implicitly defined function

=0

B(z.y) /yl—|—Na:t rN? | 1—|—N_|_M(£L’,N)
= — —lo
Y 1+t " 1+4+aN g1+y 202N

analytic part + ¢(y)(1 — z/R(y))>/?

=
S

s
||
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Singularity analysis

2-conn. planar graphs = conn. planar graphs: C’'(z) = exp(B'(xC’'(x)))

e Difficulty: integration of implicitly defined function

Blr.y) — _/y1—|—N:13t | x N2 _10g1+N+M(x,N):O
1+t 1+ 2N 1+y = 212N
N(z,y) = analytic part + ¢(y)(1 —xz/R(y))>/?
(Connected) planar graphs [ GiMENEZ-NOY 09 ]
e C(n) ~ cn™ /2", v =27.2
e C(n,m) ~ cgn=*~"nl m=dn, de(1,3)

With probability tending to one as n — oo (for short w.h.p.) a random
planar graph 7 (n,m) contains the giant component of size n — O(1).



Part II: Probabilistic counting method

e Erdos—Rényi random graph G(n,m)

e Random planar graph P(n,m)



Planarity

ERDOS—RENYI RANDOM GRAPH [ JANSON-KNUTH—-LUCZAK—PITTEL 93 ]

Let m =n/2 + s with s = o(n).
o If sn=2/3 — —o0, w.h.p. G(n,m) is planar.
o If sn=2/3 — ), with positive probability G(n, m) is non-planar.

o If sn=2/3 = +00, W.h.p. G(n,m) is non-planar.



Planarity

ERDOS—RENYI RANDOM GRAPH [ JANSON—KNUTH—EUCZAK—PITTEL 93 ]
Let m =n/2 + s with s = o(n).

o If sn=2/3 — —oo, wh.p. G(n,m) is planar.

o If sn=2/3 — ), with positive probability G(n, m) is non-planar.

o If sn=2/3 = +00, W.h.p. G(n,m) is non-planar.

Internal structure =- core and kernel of complex graphs

o
— @
complex com. .
([
trees
unicyc. com.
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e Core: maximal subgraph with minimum degree two.

e Kernel: obtained from the core by replacing each path whose
Internal vertices are all of degree two by a single edge.
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Complex planar graphs

CuBIC PLANAR GRAPHS [ K.— tuczAck 09+ ]

Let K(n) denote the number of all cubic planar weighted multigraphs
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Complex planar graphs

CuBIC PLANAR GRAPHS [ K.— tuczAck 09+ ]

Let K(n) denote the number of all cubic planar weighted multigraphs
on n vertices. Then

K(n) ~ gn~ 2 ~"nl
where g, are analytic constants.

COMPLEX PLANAR GRAPHS [ K.— Luczack 09+ ]

Let C(n,n + £) denote the number of all connected planar graphs on n
vertices with n + ¢ edges where ¢ > 0. Then for £ = o(n'/3)

C(n,n+0) ~ af nH30/2—1/2 p—30/2—3

where «, § are analytic constants.



Number of planar graphs

[ K.— LuczACcKk 09+ ]
Letm =n/2+s, s=o(n).

2/3

® sn “/° — —0o0.

P(n7m) ~ o nht2s (TL 4 28)—77,/2—3—1/2 e71/24—8—1/2

® sn72/3 5 A\ A€ (—o0,00):
P(?’L7 m) ~ B)\ nn_1/2 (n _ 28)_n/2+8 671/2—8+a)\(n—23)—2/3

2/3

® sn — 00

P(TL, m) ~ 7y nn+11/6 3_7/2 (n _ 28)—n/2+8 6n/2—s+asn_2/3



Number of planar graphs

[ K.— LuczAck 09+ ]
Letm =n/2+ s, s=o(n).

2/3

® sn /7 — —00!

P(n7m) ~ o nht2s (TL 4 28)—77,/2—3—1/2 e71/24—8—1/2

® sn72/3 5 A\ A€ (—o0,00):
P(?’L7 m) ~ B)\ nn_1/2 (n _ 28)_n/2+8 671/2—8+a)\(n—23)—2/3

2/3

® sn — 00"

P(TL, m) ~ 7y nn+11/6 3_7/2 (n _ 28)—n/2+8 6n/2—s+asn_2/3

......... P(n,m)form=an,a € (1/2,1), m =n+ o(n)



Critical phase

[ K.— LuczAcKk 09+ ]
Letm =n/2+ s, s =o0(n)and L(n) be the number of vertices in the
largest component in a random planar graph P(n,m). Then w.h.p.

® sn 23 o o L(n) = 0(”2/3)
@ sn 23 )\ Ne (—00, 00): L(n) = 6(”2/3)

o sn 23 5 to0: L(n) ~ 2s



Critical phase

[ K.— LuczAcKk 09+ ]
Letm =n/2+ s, s =o0(n)and L(n) be the number of vertices in the
largest component in a random planar graph P(n,m). Then w.h.p.
o sn 23 - —o0: L(n) = o(n?/?)
® sn 23 =\ A€ (—00,00); L(n)=0(n?3

o sn 23 5 to0: L(n) ~ 2s

> In arandom graph G(n,m): L(n) ~ 4s

> In arandom forest F(n,m): L(n) ~ 2s



Critical phase

[ K.— LuczAcKk 09+ ]
Letm =n+t, t =o0(n)and R(n) be the number of vertices outside the
giant component in a random planar graph P(n,m). Then w.h.p.

o tn 35 5 o

R(n) ~ a(n+26)[t|~%3 —t/2
® tn 3% 5\ e (—o0,00):
3/5

R(n) ~ axn

(] tn_3/5 — +00.

R(n) N 5n3/2t—3/2



Part IlI: Matrix integral method

e Feynman diagram
e Fat graphs = maps

e Graphs embeddable on surfaces
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Gaussian integral

The Gaussian integral is defined by

2

1 > _ a2
(f) = \/—Q—W/_mf(l’)e 2 dx.

)
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(") = | o
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Gaussian integral

The Gaussian integral is defined by

2

1 > _ a2
(f) = \/—Q—W/_mf(l’)e 2 dx.

)
() . (n— 1! if nis even
r —

\O If n is odd
. . s 1 00 _($_3)2_|_£ ﬁ
Using the source integral (™) = T [ e 2 >dxr =e2,we
obtain
d" d” ar 2
ny _ /__ xS — /s — 5
<ZE > <d8n c s:0> ds™ <€ > s=0 dSne s=0




Gaussian matrix integral

Let H denote the set of all N x N Hermitian matrices M = (M;;)

Let Mij — Ty —+ ;ylj for Tij,Yij € R. Then sz’ — Tjj — ;ylj

(21 \

L22

Tij + 1 Yij

Lij — ¥ Yij

\ o)

and Hy forms an N2-dimensional vector space over the real numbers.




Gaussian matrix integral

Let H denote the set of all N x N Hermitian matrices M = (M,;) and
dM = 1], dM;; [ ],_; d Re(M;;)d Im(M;;) the Haar measure on H .

1<J
Let Mij — T + ;y@] for Tij,Yij € R. Then Mji — Ti5 — ;yw

(211 \

X292

Tij + 1 Yij

Lig — T Yij

\ o)

and Hy forms an N2-dimensional vector space over the real numbers.




Gaussian matrix integral

Let H denote the set of all N x N Hermitian matrices M = (M,;) and
dM = 1], dM;; [ ],_; d Re(M;;)d Im(M;;) the Haar measure on H .

1<J
The Gaussian matrix integral is defined by

12
o £ 5 s

2
—N Tr(2)
Jagy € ’

(f)

dM



Gaussian matrix integral

Let H denote the set of all N x N Hermitian matrices M = (M,;) and
dM = 1], dM;; [ ],_; d Re(M;;)d Im(M;;) the Haar measure on H .

1<J
The Gaussian matrix integral is defined by

Me=N 5 g
gy = e FOD |

fHN N Tr(MTQ)dM

. . r(S2) .
Using the source integral (¢17(V5)) — c=55 we obtain

| (52 510
(Mij M) = 09 <€TY(MS>>| -9 9 A S L
8Sj7; 0S|k S=0 8Sj7; oSk S=0 N




Wick’s Theorem

and
o 0 0
MZM an — . (e Tr(MS)
(Mij M ) 955 98 05mm € >’S:0
o 0 0 Tr(52)

— - e 2N

0S5 OSii OSnm

S=0

The derivatives must be taken in pairs to get a non-zero contribution.
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(Mij M ) 955 98 05mm € >’S:0
o 0 0 Tr(52)

— - e 2N

0S5 OSii OSnm

S=0

The derivatives must be taken in pairs to get a non-zero contribution.

[ Wick 50 ]
Let M € H and I be a multiset of elements of V x N. Then

> 1] (M)

1jel pairing PCI1?2  (ij,kl)eP

- DR |

pairing PCI?  (ij,kl)eP

=
E
|




Wick’s Theorem

and
o 0 0
MZM an — . (e Tr(MS)
(Mij M ) 955 98 05mm € >’S:0
o 0 0 Tr(52)

— - e 2N

0S5 OSii OSnm

S=0

The derivatives must be taken in pairs to get a non-zero contribution.

[ Wick 50 ]
Let M € H and I be a multiset of elements of V x N. Then

O e ] M) e Y 1] (M)
I I

1jel pairing PCI1?  (ij,kl)eP
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Pictorial interpretation
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. . 5,10,
Pictorial interpretation from (M;; My, ) = =52
7 &———=——
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Pictorial interpretation

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

o . 5,10,
Pictorial interpretation from (M;; My, ) = =52
7 &———=——
Mz’j - ]

1 1 —>—el, [=1
< MijMp >= 5 =+ e < ok k=3j
(Tr(M™)) = ( Z My i Miyig M, i)
1§i17i27"'ain<N
) )

1 th41

— Tti+1
o Z ; H N

1<i1,i2, ,in <N (igik41,01941)EP

where P is a partition of {¢1i2, 213, -+ ,1n21} INtO pairs. @
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Fat graphs

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

5’ikil+15
> > 11 v

1§i1ai27"'ain<N P (lk1k+1,llll+1)ep

41




Fat graphs

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

) )

EEITOVIED SR DI §

1<ig,i2, ,in <N P (igig41,i10141)EP

41

A pairing P with non-zero contribution to {(Tr(M™))
<= a fat graph with one island and » /2 fat edges



Fat graphs

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

) )

ETUEVESED SEED SRR § B

1<ig,i2, ,in <N P (igig41,i10141)EP

41

A pairing P with non-zero contribution to (Tr(M"))
<= a fat graph with one island and » /2 fat edges ordered cyclically.
(It defines uniquely an embedding on a surface: a map!)

vas
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Let F' be a fat graph with one island, e(F') edges and f(F') faces.
e The edges contribute N—¢/), since each edge contributes N 1.

e The faces contribute N/()| since each face attains independently
any index from 1 to V.




Fat graphs

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

0 0

ETUETESED SEED SRR § B

1§i1ai27"'ain<N P (lklk+1,llll+1)ep

41

Let F' be a fat graph with one island, e(F') edges and f(F') faces.
e The edges contribute N—¢/), since each edge contributes N 1.

e The faces contribute N/()| since each face attains independently
any index from 1 to V.

Thus
(Tr(M™)) =) N~
F

where the sum is over all fat graphs F' with one island.



Maps on a surface

For example,

(Te(m®) ] [Ter?) Py = 30 N |
F

where the sum is over all fat graphs (i.e. maps) F' with four vertices of
degree 3, and three vertices of degree 2.
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Maps on a surface

For example,

<[TI“(M3)23]4 [Tr(M2)22]3> = Z NIE)=elF) 504 503
F

where the sum is over all fat graphs (i.e. maps) F' with four vertices of
degree 3, and three vertices of degree 2.

[ BREZIN-ITZYKSON—PARISI-ZUBER 78; ZVONKIN 97; DI FRANCESCO 04 ]

The generating function of maps on a surface can be formulated as a
matrix integral of functions of traces.
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[ BREZIN=ITZYKSON—PARISI-ZUBER 78 ]

Consider a function ) which maps M € Hy to

Y(M; 2,1 € N) :=exp(—N ZZEN r (M*) 2;/1),

where N is the set of all positive integers and z;’s are formal variables.



Maps on a surface

[ BREZIN=ITZYKSON—PARISI-ZUBER 78 ]

Consider a function ) which maps M € Hy to

Y(M; 2,1 € N) :=exp(—N ZzeN r (M*) 2;/1),

where N is the set of all positive integers and z;’s are formal variables.
Then

k VL7
B R LT

= (na i )eNk  i=1

where M,(nq,--- ,ni) denotes the number of connected maps with ge-
nus g and n; vertices of degree i for 1 < i < k.

The expression f(z) ' = ' g(z) means that all the derivatives of f, g are equal
when the variable z Is set to zero.



Maps on a surface

[ BREZIN=ITZYKSON—PARISI-ZUBER 78 ]

Consider a function ) which maps M € Hy to

Y(M; 2,1 € N) :=exp(—N ZzeN r (M*) 2;/1),

where N is the set of all positive integers and z;’s are formal variables.
Then

k VL7
B R LT

= (na i )eNk  i=1

where M,(nq,--- ,ni) denotes the number of connected maps with ge-
nus g and n; vertices of degree i for 1 < i < k.

Partial results on the convergence of the above generating function

[ ERCOLANI-MCLAUGHLIN 03; GUIONNET 04 ]



Maps on a surface

[ BREZIN=ITZYKSON—PARISI-ZUBER 78 ]

Consider a function ) which maps M € Hy to

Y(M; 2,1 € N) :=exp(—N ZzeN r (M*) 2;/1),

where N is the set of all positive integers and z;’s are formal variables.
Then

k "
log () '=" Y N*7% %" 11 Me(na, - mi) (_;:!)

= (na i )eNk  i=1

where M,(nq,--- ,ni) denotes the number of connected maps with ge-
nus g and n; vertices of degree i for 1 < i < k.

1
2"] lim ﬁlog ()

N — o0

IS the number of connected planar maps on n vertices

2=z
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Graphs on a surface

Matrix integral for graphs embeddable on a surface?

e Combinatorially defined functions instead of functions of traces

o letM e HyandletD =D(M) = (N,N x N) be a complete directed
graph with weights on directed edges given by M

M € 'H, —
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Graphs on a surface

Matrix integral for graphs embeddable on a surface?

e Combinatorially defined functions instead of functions of traces

o letM e HyandletD =D(M) = (N,N x N) be a complete directed
graph with weights on directed edges given by M

e AC N x N is called eulerian if for each vertex its indegree in A is equal to
Its outdegree in A.

2
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Graphs on a surface

Matrix integral for graphs embeddable on a surface?

e Combinatorially defined functions instead of functions of traces

o Let M e Hyandlet D =D(M) = (N,N x N) be acomplete directed
graph with weights on directed edges given by M

e A C N x N is called eulerian if for each vertex its indegree in A is equal to
Its outdegree in A.

e (' C Aiscalled acomponentof Aif Cisa maximal subset of A w.r.t.
Inclusion that induces a connected underlying undirected graph

Consider a function p which maps M € Hy to

NCI/241 _ 77 ICl/2
LTS PSR SENG | FYATENE | L o

| Nz—y
ACN x N eulerian ecA C': component of A



Graphs on a surface

[ K.—LOEBL 09 ]

Let s(N) < < be a function in N tending to oo slower than N when N — oo.

5T n—2
exp ZZ n,r)+e1(N,n,r)] y, " <swy
e n!
N | / Zryn—Q
e (p(Miy.2)) "<y "exp| )y ) [p(n) +ea(Nynyr)] =—— |,
n>17r>0 '

where p(n,r) denotes the number of labelled connected graphs on n < N
vertices which have planar embeddings with r faces, and e; (N, n,r), ea(N,n, r)
are functions of type O(N~1).

The expression f(z) ' <4 ' g(z) means that all the k-th derivatives of f, g, for
k < s(N), satisfy the inequality when the variable z is set to zero.



Graphs on a surface

[ K.—LOEBL 09 ]

Let s(N) < 5 be a function in N tending to co slower than N when N — oo.

exp (Z > [p(n, ) +ex(Nom,r) ] 2 ) <oy

n>1r>0

| 2
e—N2<p(]\/[;y,Z)> <g’/eXp<ZZ (n,r) +ea(N,n, )| i‘ ),

n>1r>0

where p(n,r) denotes the number of labelled connected graphs on n < N
vertices which have planar embeddings with r faces, and e; (N, n,r), ea(N,n, r)
are functions of type O(N~1).

n—2 1
> > pln,r) yn! = Jim 7 log () |,

n>1r>0



Graphs on a surface

[ K.—LOEBL 09 ]

Let s(N) < 5 be a function in N tending to co slower than N when N — oo.

exp (Z > [p(n, ) +ex(Nom,r) ] 2 ) <oy

n>1r>0

| 2
e—N2<p(]\/[;y,Z)> <g’/eXp<ZZ (n,r) +ea(N,n, )| i‘ ),

n>1r>0

where p(n,r) denotes the number of labelled connected graphs on n < N
vertices which have planar embeddings with r faces, and e; (N, n,r), ea(N,n, r)
are functions of type O(N~1).

n—2
n—2 Y — [y 2 ! ~7/2 .m
[y 7] §>1 §>Op(n,7“) == [y lim S log (o) [, 777 ~enTTy
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e \What is the asymptotic number of planar graphs with a given degree
seguence?

e \What is the asymptotic number of unlabelled planar graph?

e \What is the chromatic number of a typical planar graph?
[ K.— LuczAcK 09+ ]

Let P(n, m) be a random planar graph with n vertices and m edges and ¢ > 0.
e Ifm < (1—¢)n, whp. x(P(n,m))=S3.
o Ifm > (1+¢)n, wh.p. x(P(n,m)) =4.



Open questions

e \What is the asymptotic number of planar graphs with a given degree
seguence?

e \What is the asymptotic number of unlabelled planar graph?

e \What is the chromatic number of a typical planar graph?
[ K.— LuczAcK 09+ ]

Let P(n, m) be a random planar graph with n vertices and m edges and ¢ > 0.
e Ifm < (1—¢)n, whp. x(P(n,m))=S3.
o Ifm > (1+¢)n, wh.p. x(P(n,m)) =4.
e What is the threshold for the appearance of K4 in P(n, m)?

> heuristic: m = n + O(n7/9)



	Outline of talkvphantom {p}
	vphantom {p}
	Treesvphantom {p}
	Asymptotic numbervphantom {p}
	Singularity analysisvphantom {p}
	Local dependencyvphantom {p}
	Basic scalevphantom {p}
	Block structure of a graphvphantom {p}
	Tutte's structure theoremvphantom {p}
	Unique embeddingvphantom {p}
	Generating functionsvphantom {p}
	Singularity analysisvphantom {p}
	Singularity analysisvphantom {p}
	vphantom {p}
	Planarityvphantom {p}
	Core and kernelvphantom {p}
	Complex planar graphsvphantom {p}
	Number of planar graphsvphantom {p}
	Critical phasevphantom {p}
	Critical phasevphantom {p}
	vphantom {p}
	Gaussian integral vphantom {p}
	Gaussian matrix integral vphantom {p}
	Wick's Theorem vphantom {p}
	Pictorial interpretationvphantom {p}
	Fat graphsvphantom {p}
	Fat graphsvphantom {p}
	Maps on a surfacevphantom {p}
	Maps on a surfacevphantom {p}
	Graphs on a surfacevphantom {p}
	Graphs on a surfacevphantom {p}
	Open questionsvphantom {p}

