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Abstract. For positive integers k ≤ n let Pn,k(x) :=
∑k

j=0

(
n
j

)
xj be

the binomial expansion of (1 + x)n truncated at the kth stage. In this

paper we show the finiteness of solutions of Diophantine equations of

type Pn,k(x) = Pm,l(y) in x, y ∈ Z under assumption of irreducibility

of truncated binomial polynomials Pn−1,k−1(x) and Pm−1,l−1(x). Al-

though the irreducibility of Pn,k(x) has been studied by several authors,

in general, this problem is still open. In addition, we give some results

about the possible ways to write Pn,k(x) as a functional composition of

two lower degree polynomials.

1. Introduction and main results

For positive integers k ≤ n put

Pn,k(x) :=

k∑
j=0

(
n

j

)
xj =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

k

)
xk.

The polynomial Pn,k(x) is said to be a truncated binomial expansion (poly-

nomial) at the kth stage. We study Diophantine equations of type

(1.1) Pn,k(x) = Pm,l(y) with n, k,m, l ∈ N, k ≤ n− 1, l ≤ m− 1.

We prove that the equation (1.1) has only finitely many integer solutions

under certain reasonable assumptions. The main results are deduced from

a general finiteness criterion for the Diophantine equation f(x) = g(y) es-

tablished by Bilu and Tichy in [2]. The proof requires several auxiliary

results about the possible ways to write a truncated binomial expansion

as a functional composition of two lower degree polynomials, as the above

mentioned theorem of Bilu and Tichy essentially says that the equation of

type f(x) = g(y) has only finitely many solutions in integers x, y, unless the

polynomials f(x) and g(x) can be written as a functional composition of
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some lower degree polynomials in a prescribed way. Factorization of poly-

nomials under the operation of functional composition, i.e. “polynomial

decomposition” was first studied by Ritt [13], and subsequently investigated

and applied by many other authors; see, for instance, [2, 6, 9, 12, 15, 18, 20].

Our interest in the equation (1.1) has arisen from our considerations

of decomposition properties of truncated binomial expansions. Note that

P ′n,k(x) = nPn−1,k−1(x), so if Pn,k(x) = g(h(x)), where g(x), h(x) ∈ Q[x]

satisfy deg g > 1 and deg h > 1, then

nPn−1,k−1(x) = P ′n,k(x) = g′(h(x))h′(x),

and, consequently, the polynomial Pn−1,k−1(x) is reducible over Q. The

question of irreducibility of truncated binomial expansions first appeared

in [14]. It was studied by Filaseta, Kumchev and Pasechnik [8], and sub-

sequently by Khanduja, Khassa and Laishram [10]. There are indications

that the polynomials Pn,k(x) are irreducible for all pairs k, n ∈ N satisfying

k ≤ n− 2, although this problem is still far from being solved. It is known

that Pn,k(x) are irreducible for n ≤ 100 and k ≤ n− 2, see [8]. It is easy to

see that Pn,k(x) is irreducible for k = 2, since in this case the discriminant of

the polynomial is negative, so that it has two complex roots. It is also known

that Pn,k(x) are irreducible for all k, n ∈ N satisfying 2k ≤ n < (k+ 1)3, see

[10]. Furthermore, as it was shown in [8] for any fixed integer k ≥ 3 there

exists an integer n0(k) such that Pn,k(x) is irreducible for every n ≥ n0.

Finally, in the same paper it was proved that if n is prime, then Pn,k(x) is

irreducible for each k in the range 1 ≤ k ≤ n− 1.

In this paper we prove the following.

Theorem 1.1. Let n, k,m, l ∈ N be such that 2 ≤ k ≤ n− 1, 2 ≤ l ≤ m− 1

and k 6= l. If Pn−1,k−1(x) and Pm−1,l−1(x) are irreducible, then the equation

Pn,k(x) = Pm,l(y) has at most finitely many integer solutions (x, y).

Note that the truncated binomial expansion at the last stage, i.e. when

k = n − 1, takes the form Pn,n−1(x) = (x + 1)n − xn. If n is a composite

integer, then Pn,n−1(x) is clearly reducible. If n = p is a prime, then the

polynomial Pn,n−1(x) = Pp,p−1(x) is irreducible, by the Eisenstein criterion

applied to the reciprocal polynomial xp−1Pp,p−1(1/x). As an auxiliary result

we show that if n is even, then Pn,n−1(x) cannot be written in the form

Pn,n−1(x) = g(x) ◦ h(x) = g(h(x))
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with g(x), h(x) ∈ C[x] and deg g > 1, deg h > 1. We further show that if

n is odd, then essentially the only way to write Pn,n−1(x) as a functional

composition of polynomials of lower degree is the following: write n = 2n′+1

and ωj = exp(2πij/n), j = 1, 2, . . . , n, so that ωn = 1 and ωn−j = ωj for all

j = 1, 2, . . . , n′. Then

Pn,n−1(x) =

 n′∏
j=1

((2− ωj − ωj)x+ 1)

 ◦ (x2 + x).

Using these results we will prove the following.

Theorem 1.2. For any positive integers n > m ≥ 3 there are only finitely

many integer solutions x, y of the equation

(1.2) (1 + x)n − xn = (1 + y)m − ym.

In Section 2 we recall some classical results on polynomial decomposition

and present new ones on the possible decompositions of truncated binomial

expansions and give some auxiliary results on the location of roots of Pn,k(x).

We show that Pn,k(x) is indecomposable, i.e. not representable as a func-

tional composition of lower degree polynomials, not only when Pn−1,k−1(x)

is irreducible, but also when for any two distinct roots of Pn−1,k−1(x), say

ζ and ξ, we have ζk 6= ξk. Using the latter approach we will resolve the

question of possible decompositions of Pn,k(x) in the case k = n− 1, which

is our main tool in proving Theorem 1.2. The existence of such roots and

the irreducibility of Pn−1,k−1(x) with k < n− 1 seem to be two independent

questions, both of which remain generally open. Some results on polynomi-

als which have two roots whose quotient is a root of unity can be found in

[5, 16, 19].

In order to prove Theorem 1.1 and Theorem 1.2 we combine several of

our auxiliary results together with the main result of [2] which we recall

in Section 3. One of the difficulties is to describe all possibilities when the

polynomial Pn,k(x) is representable by linear transformation of a so-called

Dickson polynomial given by

(1.3) Dk(x, γ) =

bk/2c∑
j=0

k

k − j

(
k − j
j

)
(−1)jγjxk−2j .

We shall prove slightly more than we need, namely, the following lemma.
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Lemma 1.3. For any integers n > k ≥ 3 there do not exist a, b, u, v ∈ R
and c ≥ 0 for which the identity

(1.4) Pn,k(x) = aDk(ux+ v, c) + b

holds for all x ∈ R. Furthermore, if n > k ≥ 4, then (1.4) holds for some

a, b, u, v ∈ R and c < 0 if and only if (n, k) = (5, 4) and v 6= 0, u = 2v,

a = 5/(16v4), c = −v2/2, b = −3/32.

The proof of this lemma will be given in Section 4. In Section 5 we will

complete the proof of Theorem 1.2. Finally, in Section 6 we prove Theo-

rem 1.1 for k, l ≥ 3 under assumption of indecomposability of Pn,k(x) and

Pm,l(x) which is weaker than the assumption of irreducibility of Pn−1,k−1(x)

and Pm−1,l−1(x) in Theorem 1.1. The case m = 3 of Theorem 1.2 and the

case l = 2 (or k = 2) of Theorem 1.1 can be made effective and to that end

we use Baker’s theorem. These two cases are treated by Lemma 3.3 (see

Section 3) and at the end of Section 6, respectively.

2. Functional decomposition

A polynomial f(x) ∈ C[x] with deg f > 1 is called indecomposable (over

C) if it cannot be written as the composition f(x) = g(x) ◦ h(x) = g(h(x))

with g(x), h(x) ∈ C[x] such that deg g > 1 and deg h > 1. Otherwise,

f(x) is said to be decomposable. Any representation of f(x) as a functional

composition of polynomials of degree greater than 1 is called a decomposition

of f(x). It follows by induction that any polynomial f(x) with deg f > 1

can be written as a composition of indecomposable polynomials. Such an

expression of f(x) is said to be a complete decomposition of f(x).

Ritt [13] proved that any complete decomposition of f(x) can be obtained

from any other via finitely many steps, where each step consists of replacing

two adjacent indecomposables by two others with the same composition.

Ritt then solved the functional equation a(b(x)) = c(d(x)) in indecompos-

able polynomials a(x), b(x), c(x), d(x) ∈ C[x], and in this way completely

described the extent of nonuniqueness of the “prime” factorization of poly-

nomials with complex coefficients with respect to functional composition.

For more on the topic of functional decomposition we refer to [15, Chap. 1]

and [20]. We will make use of the following two results that belong to the

classical theory of polynomial decomposition.
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Proposition 2.1. If f(x) ∈ Q[x] is decomposable (over C), then it can be

written as the functional composition of two polynomials of degree at least 2

in Q[x].

For the proof of Proposition 2.1 see [15, Chap. 1, Theorem 6, p. 20] or

the paper [9].

Proposition 2.2. Assume that f(x) = g1(x)◦g2(x) = h1(x)◦h2(x) for some

f(x), g1(x), h1(x), g2(x), h2(x) ∈ C[x] such that deg g1 = deg h1, and hence

deg g2 = deg h2. Then there exists a linear polynomial `(x) ∈ C[x] such that

g1(x) = h1(`(x)) and g2(x) = `(−1)(x) ◦ h2(x), where `(−1)(x) denotes the

inverse of `(x) with respect to functional composition.

The proof of Proposition 2.2 can be found in [20, Corollary 2.9]. The

result was first proved by Ritt [13].

We next introduce the following quantity. For f(x) ∈ C[x] and γ ∈ C let

(2.1) δ(f, γ) = deg gcd(f(x)− γ, f ′(x)).

We have the following lemma.

Lemma 2.3. If f(x) = g(h(x)) with deg g > 1, deg h > 1, then there exists

γ ∈ C such that δ(f, γ) = deg gcd(f(x)− γ, f ′(x)) ≥ deg h.

Proof. If β is a root of g′(x) (which exists, since by the condition of the

lemma, deg g′ ≥ 1) and γ = g(β), then h(x)− β divides both f(x)− γ and

f ′(x) = g′(h(x))h′(x). �

From Lemma 2.3 it follows that if f(x) ∈ C[x] is such that δ(f, γ) ≤
1 for all γ ∈ C, then f(x) is indecomposable. This approach in proving

indecomposability was first used, to the best of our knowledge, by Beukers,

Shorey and Tijdeman [3] to prove that for an arbitrary integer m ≥ 1 the

polynomial f(x) = x(x + 1)(x + 2) · · · (x + m) is indecomposable. It was

further used by Dujella and Tichy [6] to study possible decompositions of

Chebyshev polynomials of the second kind, as well as by Stoll [18] to prove

that certain classes of orthogonal polynomials are indecomposable.

In the sequel we focus on possible decompositions of the truncated bino-

mial polynomial Pn,k(x). First note that

(2.2) P ′n,k(x) = nPn−1,k−1(x)
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and

(2.3) Pn,k(x)− (x+ 1)
P ′n,k(x)

n
=

(
n− 1

k

)
xk.

The following lemma will be very useful later on.

Lemma 2.4. Let k, n ∈ N be such that k ≤ n − 1. Then all the roots of

Pn,k(x) are simple. Furthermore, Pn,k(x) has exactly one real root if k is

odd, and no real roots if k is even.

Proof. It follows from (2.3) that Pn,k(x) has only simple roots. If k is even

and Pn,k(x) (of degree k) has a real root, then it must have at least two real

roots. Assume that x0 < x1 are two smallest real roots. Then x0 < x1 < 0

and Pn,k(x) < 0 for each x ∈ (x0, x1). Hence there exists x2 ∈ (x0, x1) such

that P ′n,k(x2) = 0 (by Rolle’s theorem), which together with (2.3) implies

0 <

(
n− 1

k

)
xk2 = Pn,k(x2) < 0,

a contradiction. If k is odd, then Pn,k(x) clearly must have a real root.

Assume that k > 1 and that Pn,k(x) has another real root. Let x0 < x1 be

the smallest real roots of Pn,k(x). Then x0 < x1 < 0 and Pn,k(x) > 0 for

each x ∈ (x0, x1). Thus, there exists x2 ∈ (x0, x1) such that P ′n,k(x2) = 0,

wherefrom by (2.3) we get

0 >

(
n− 1

k

)
xk2 = Pn,k(x2) > 0,

a contradiction. �

Lemma 2.5. Let n, k ∈ N be such that 2 ≤ k ≤ n − 1 and the polynomial

Pn−1,k−1(x) is either irreducible or it does not have two distinct roots ζ and

ξ satisfying ζk = ξk. Then Pn,k(x) is indecomposable.

Proof. Assume to the contrary that Pn,k(x) is decomposable. Then, by

Proposition 2.1, it follows that Pn,k(x) = g(h(x)) for some g(x), h(x) ∈ Q[x]

with deg g > 1, deg h > 1. Hence g′(h(x))h′(x) = P ′n,k(x) = nPn−1,k−1(x),

by (2.2), so Pn−1,k−1(x) is reducible, a contradiction.

Furthermore, by Lemma 2.3, there exists γ ∈ C such that δ(Pn,k, γ) =

deg gcd(Pn,k(x)−γ, P ′n,k(x)) ≥ deg h ≥ 2. Since P ′n,k(x) = nPn−1,k−1(x) has

only simple roots (see (2.2) and Lemma 2.4), it follows that there exist two

distinct roots of Pn−1,k−1(x), say ζ and ξ, such that γ = Pn,k(ζ) = Pn,k(ξ).
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Note that then from (2.3) it follows that

γ =

(
n− 1

k

)
ζk =

(
n− 1

k

)
ξk.

This yields ζk = ξk, contrary to the assumption of the lemma. �

Remark 2.6. Computations (based on the algorithm [19, Method 2, Sect.

4.1]) show that for n ≤ 100 and k ≤ n − 2 there do not exist two distinct

roots of Pn−1,k−1(x), say ζ and ξ, satisfying ζk = ξk. The same is true when

n ≤ 100, k = n − 1 and n is even. However, when k = n − 1 and n is odd,

the computations suggest that such two roots of Pn−1,k−1(x) always exist.

This will be explained by Lemma 2.9 below. As we shall see, Pn,k(x) is in

that case decomposable (see Proposition 2.8). It seems very likely that for

n ≥ k + 2 no two distinct roots ζ and ξ of Pn−1,k−1(x) satisfying ζk = ξk

exist. By the result of Ferguson [7], this can be shown for k even, but,

unfortunately, under assumption of irreducibility of Pn−1,k−1(x).

Corollary 2.7. For n, k ∈ N satisfying 2 ≤ k ≤ n−1 the polynomial Pn,k(x)

is indecomposable if any of the following holds:

• k + 2 ≤ n ≤ 101,

• 2k − 1 ≤ n ≤ k3,

• k is a prime,

• n− 1 is prime.

Furthermore, for any fixed integer k ≥ 2, there exists an integer n0(k) such

that Pn,k(x) is indecomposable for every n ≥ n0(k).

Proof. In [10] it is shown that Pn−1,k−1(x) is irreducible for all k, n ∈ N such

that 2(k − 1) ≤ n − 1 < k3. In [8] the same was checked for k + 2 ≤ n ≤
101. This combined with Lemma 2.5 implies the first two statements of the

corollary. Since degPn,k(x) = k, it is clear that Pn,k(x) is indecomposable

when k is a prime. Finally, as it was shown in [8], Pn,k(x) is irreducible

when n is a prime and also when n is large enough for each fixed k. This

implies the last two assertions of the corollary. �

In the sequel we will completely describe the possible decompositions of

Pn,n−1(x). Note that if n is a composite integer, then Pn,n−1(x) is clearly

reducible. When n is odd, then Pn,n−1(x) is also decomposable. Indeed,

write n = 2n′ + 1 and ωj = exp(2πij/n), j = 1, 2, . . . , n so that ω2n′+1 = 1,
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ωn−j = ωj for all j = 1, 2, . . . , n′. Then

(x+ 1)n − xn =
n′∏
j=1

(x+ 1− ωjx) (x+ 1− ωjx)

=
n′∏
j=1

(
(2− ωj − ωj)(x2 + x) + 1

)

=

 n′∏
j=1

((2− ωj − ωj)x+ 1)

 ◦ (x2 + x).

This identity can be rewritten as

(2.4) Pn,n−1(x) = P̃n,n−1(x) ◦ (x2 + x),

where

P̃n,n−1(x) :=

n′∏
j=1

((2− ωj − ωj)x+ 1)(2.5)

and n′, ωj are defined as above.

Proposition 2.8. If n is even, then Pn,n−1(x) is indecomposable. If n is odd

and Pn,n−1(x) = g(h(x)) with g(x), h(x) ∈ C[x] and deg g > 1, deg h > 1,

then there exists a linear polynomial µ(x) ∈ C[x] such that

g(x) = P̃n,n−1(x) ◦ µ(x), h(x) = µ(−1)(x) ◦ (x2 + x)

where P̃n,n−1(x) is defined as in (2.5), and µ(−1)(x) denotes the inverse of

µ(x) with respect to functional composition.

In the proof of Proposition 2.8 we will use the following lemma.

Lemma 2.9. For every integer n ≥ 3 and for any complex number γ we

have δ(Pn,n−1, γ) = deg gcd(Pn,n−1(x)− γ, P ′n,n−1(x)) ≤ 2. Moreover, for n

even we have δ(Pn,n−1, γ) ≤ 1.

Proof. Since the roots of P ′n,n−1(x) = n((x+1)n−1−xn−1) are all simple, we

have δ(Pn,n−1, γ) = r iff there exist exactly r distinct roots of (x+ 1)n−1 −
xn−1, say ζ1, . . . , ζr, for which Pn,n−1(ζ1), . . . , Pn,n−1(ζr) are all equal. Take

two roots α and β of (x + 1)n−1 − xn−1 such that Pn,n−1(α) = Pn,n−1(β).

The former implies that (α+ 1)n−1 = αn−1 and (β + 1)n−1 = βn−1, and so

the latter yields αn−1 = βn−1. Note that the roots of (x+ 1)n−1 − xn−1 are

zk =
1

ωk − 1
, 1 ≤ k ≤ n− 2, where ω = exp

(
2πi

n− 1

)
,
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all of which lie on the vertical line <(z) = −1/2. Then from αn−1 = βn−1 it

follows that α and β are complex conjugates, since they are distinct but have

equal absolute values. Thus, r cannot exceed 2, and so δ(Pn,n−1, γ) ≤ 2.

If δ(Pn,n−1, γ) = 2, then there exists α ∈ C such that α and α are roots

of (x + 1)n−1 − xn−1 and αn−1 = αn−1. Let ζ = α/α, so that ζn−1 = 1.

Then for some k in the range 1 ≤ k ≤ n− 2 we have

ζ =
α

α
=

1− ωk
1− ωk

= −ωk.

From ωn−1 = 1 and ζn−1 = 1 it follows that 1 = (−1)n−1, so n is odd. �

Proof of Proposition 2.8. From Lemma 2.9 and Lemma 2.3 it follows that

Pn,n−1(x) is indecomposable for even n. Let n be odd. Assume that

Pn,n−1(x) = g(h(x)), where deg g > 1 and deg h > 1. From Proposi-

tion 2.9 and Lemma 2.3 it follows that then necessarily deg h = 2, and hence

deg g = (n− 1)/2. From (2.4) it follows that P̃n,n−1(x) ◦ (x2 +x) = g(h(x)).

Proposition 2.2 completes the proof. �

3. Standard pairs and the case m = 3 of Theorem 1.2

We first recall the main result of [2]. We say that the equation f(x) = g(y)

has infinitely many rational solutions with a bounded denominator if there

exists λ ∈ N such that f(x) = g(y) has infinitely many solutions x, y ∈ Q
that satisfy λx, λy ∈ Z. Note that if the equation f(x) = g(y) has only

finitely many rational solutions with a bounded denominator, then it clearly

has only finitely many integer solutions.

We further need to define five kinds of so-called standard pairs of poly-

nomials. In what follows a and b are nonzero rational numbers, k and l are

positive integers, r ≥ 0 is an integer, q(x) ∈ Q[x] is a nonzero polynomial

(which may be a constant) and Dm(x, a) is the mth Dickson polynomial

with parameter a, defined by the functional equation

(3.1) Dm

(
x+

a

x
, a
)

:= xm +
(a
x

)m
.

It is well known that

(3.2) Dk(x, c) = 2ck/2Tk(x/2
√
c),

where Tk(x) = cos(k arccosx) is the kth Chebyshev polynomial of the first

kind. Another useful expression for Dickson polynomials is the formula (1.3)
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given in Section 1. With this notation five standard pairs of polynomials

over Q are listed in the following table.

kind standard pair (or switched) parameter restrictions

first (xk, axrq(x)k) 0 ≤ r < k, gcd(r, k) = 1, r + deg p > 0

second (x2,
(
ax2 + b)q(x)2

)
none

third
(
Dk(x, a

l), Dl(x, a
k)
)

gcd(k, l) = 1

fourth (a−k/2Dk(x, a),−b−l/2Dl(x, b)) gcd(k, l) = 2

fifth
(
(ax2 − 1)3, 3x4 − 4x3

)
none

Theorem 3.1 (Bilu and Tichy, [2]). Let f(x) and g(x) be nonconstant

polynomials in Q[x]. Then the following assertions are equivalent.

- The equation f(x) = g(y) has infinitely many rational solutions with

a bounded denominator.

- We have

f(x) = φ (f1 (λ(x)) , g(x) = φ (g1 (µ(x))) ,

where λ(x), µ(x) ∈ Q[x] are linear polynomials, φ(x) ∈ Q[x], and

(f1(x), g1(x)) is a standard pair over Q such that the equation f1(x) =

g1(y) has infinitely many rational solutions with a bounded denomi-

nator.

The proof of Theorem 3.1 relies on Siegel’s classical theorem on integral

points on curves, and is consequently ineffective. Theorem 3.1 will be our

main tool in the sequel for proving Theorem 1.1 and Theorem 1.2.

We will use the following result of Baker [1] to show that the case m = 3

of Theorem 1.2 can be made effective Later, it will be also used to treat

the “small case” of Theorem 1.1, i.e. the case k = 2 or l = 2. (The first

ineffective proof of this statement was given by Siegel [17].)

Proposition 3.2. Let f(x) ∈ Q[x] be a polynomial with at least three simple

roots. Then all solutions of the equation f(x) = y2 in integers x, y satisfy

max{|x|, |y|} ≤ C, where C is an effectively computable constant depending

only on the coefficients of f(x).

Lemma 3.3. For each n ≥ 4 the equation (1 +x)n−xn = (1 + y)3− y3 has

only finitely many integer solutions.

Proof. Rewrite the equation as 4(1+x)n−4xn−1 = 3(2y+1)2. By Proposi-

tion 3.2, it suffices to show that f(x) = 4(1+x)n−4xn−1 has at least three
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simple roots. We will show that all the roots of f(x) are simple. Assume

to the contrary that there exists α ∈ C such that f(α) = 0 and f ′(α) = 0.

The latter implies that (1 + α)n−1 = αn−1, wherefrom as in the proof of

Lemma 2.9, we obtain α = 1/(ωk − 1) for ω = exp(2πi/(n− 1)) and some k

in the range 1 ≤ k ≤ n− 2. Furthermore,

0 = f(α) = 4αn−1

(
(1 + α)

(1 + α)n−1

αn−1
− α

)
− 1 = 4αn−1 − 1

yields 1/4 = αn−1, so that

(3.3) 4 =

(
1

α

)n−1

= (ωk − 1)n−1 =

(
2iωk/2 sin

πk

n− 1

)n−1

.

By comparing the absolute values of both sides, we obtain

4 =

(
2 sin

πk

n− 1

)n−1

, wherefrom sin
πk

n− 1
= 2−(n−3)/(n−1).

For n = 4 and n ≥ 6, the right hand side, 2−(n−3)/(n−1), is an algebraic

number which has a complex (nonreal) conjugate, whereas the left hand side,

sin πk
n−1 , is a totally real algebraic number, a contradiction. Hence n = 5.

Then the right hand side is 2−(n−3)/(n−1) = 1/
√

2, and one easily checks that

this equality is possible for k = 1 and k = 3. However, by inserting n = 5 and

k ∈ {1, 3} into (3.3) we find that 1 = (iωk/2)4 = ω2k = exp(πik) = (−1)k, a

contradiction. �

We conclude this section with the following simple lemma which will serve

us in the proofs of Theorems 1.1 and 1.2.

Lemma 3.4. For integers n > k ≥ 3 there do not exist a, b, u, v ∈ R and

h(x) ∈ R[x] with a root of multiplicity at least 3 for which the identity

ah(ux+ v) + b = Pn,k(x) holds for all x ∈ R.

Proof. Assume to the contrary that such a, b, u, v ∈ R and h(x) ∈ R[x]

exist. Note that a, u 6= 0. By taking derivatives of both sides of the identity,

we obtain auh′(ux + v) = P ′n,k(x) = nPn−1,k−1(x). By the assumption

on h(x), the polynomial on the left hand side has a zero of multiplicity at

least 2, whereas, by Lemma 2.4, all the zeros of Pn−1,k−1(x) are simple, a

contradiction. �
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4. Proof of Lemma 1.3

Recall that Dk(x, c) denotes the kth Dickson polynomial with parameter

c, defined by (1.3) and (3.1). Dickson polynomials appear in the table of

standard pairs over Q. We now prove Lemma 1.3.

Proof of Lemma 1.3. Assume that n > k ≥ 3 and that there exist some

a, b, u, v, c ∈ R for which (1.4) holds. Consider derivatives of both sides of

the identity. It is well known that the roots of Dk(x, c) are all real when

c ≥ 0, see for instance [4, Sect. 6, p. 216], and so are also all the roots of

the derivative D′k(x, c). Thus, if c ≥ 0, then all the roots of auD′k(ux+ v, c)

are real, whereas P ′n,k(x) = nPn−1,k−1(x) has at most one real root by

Lemma 2.4, a contradiction in view of k − 1 ≥ 2.

Therefore, in all what follows we will assume that c < 0 and k ≥ 4.

Suppose, by (1.4) and (3.2), that the identity

(4.1) Pn,k(x) = aDk(ux+ v, c) + b = 2ack/2Tk((ux+ v)/2
√
c) + b

holds. The roots of Tk(x) = cos(k arccosx) are xj := cos(π(2j− 1)/2k), j =

1, 2, . . . , k. Consequently, the roots of Tk((ux+v)/2
√
c) are −v/u+2

√
cxj/u,

j = 1, 2, . . . , k. They all lie on the vertical line <(z) = −v/u. Hence, by the

Gauss-Lucas theorem, for 1 ≤ j ≤ k−1, all the roots of T
(j)
k ((ux+v)/2

√
c),

where T
(j)
k (x) denotes the jth derivative of Tk(x), lie on the line <(z) = −v/u

as well. By taking k − 3 derivatives of both sides of (4.1), we obtain

n(n− 1) . . . (n− k + 4)Pn−k+3,3(x) = a24−kc3/2uk−3T
(k−3)
k ((ux+ v)/2

√
c).

By Lemma 2.4, the polynomial on the left hand side has exactly one real

root. The roots of the polynomial on the right hand side are all on the line

<(z) = ω := −v/u, so the only real root is ω. Since the other two roots

lying on <(z) = ω are also roots of the polynomial with real coefficients

PN,3(x) =

(
N

3

)
x3 +

(
N

2

)
x2 +

(
N

1

)
x+ 1,

where N = n − k + 3 ≥ 4, they must be of the form ω + iτ and ω − iτ for

some τ > 0. The sum of these three roots is

3ω =
−
(
N
2

)(
N
3

) =
−3

N − 2
,

wherefrom we get ω = −1/(N − 2). Therefore, from

0 = PN,3(ω) = PN,3

(
− 1

N − 2

)
=

(N − 3)(N − 4)

3(N − 2)2
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we derive that the only possibility is N = 4, i.e. n = k + 1.

It remains to investigate the case n = k+1 for k ≥ 4. To that end rewrite

(4.1) in the form

(4.2) (1 + x)k+1 − xk+1 = 2ack/2Tk((ux+ v)/2
√
c) + b.

As the roots of the polynomial on the left hand side all lie on the line

<(z) = −1/2, and those of the polynomial on the right hand side all lie on

the line <(z) = −v/u, we must have u = 2v. Recall that c < 0. Writing

c = −1/w2 for some w > 0 we deduce that (ux+ v)/2
√
c = −ivw(x+ 1/2).

Therefore, (4.2) can be rewritten as

(4.3) (1 + x)k+1 − xk+1 = 2aw−kikTk(−ivw(x+ 1/2)) + b.

From (3.2) it follows that Tk(−ivwx) = 2k−1(vw)k(−i)kDk(x,−1/4v2w2).

(This can be checked separately for v > 0 and v < 0. Note that clearly

v 6= 0). By replacing x by x− 1/2 in (4.3) we obtain

(4.4)

(
x+

1

2

)k
−
(
x− 1

2

)k
= a2kvkDk(x,−1/4v2w2) + b.

Suppose that k > 4. Using the expansion (1.3) we find that the first three

nonzero terms (with highest powers of x) on the right hand side of (4.4) are

a2kvkxk + a2kvk
k

4v2w2
xk−2 + a2kvk

k(k − 3)

32v4w4
xk−4 + · · · .

The highest three nonzero terms on the left hand side of (4.4) are

(4.5)

(
k + 1

1

)
xk +

(
k + 1

3

)
xk−22−2 +

(
k + 1

5

)
xk−42−4 + · · ·

By comparing the leading coefficients on both sides of (4.4) we get a2kvk =

k + 1. Comparison of the next two nonzero coefficients then yields

(k + 1)k = v2w2

(
k + 1

3

)
, (k + 1)k(k − 3) = 2v4w4

(
k + 1

5

)
,

wherefrom 3(k − 2) = 5(k − 1), a contradiction.

Let now k = 4. Then n = 5. Since D4(x, c) = x4 − 4cx2 + 2c2, the

equation (4.4) can be rewritten as(
x+

1

2

)5

−
(
x− 1

2

)5

= 16av4

(
x4 +

1

v2w2
x2 +

1

8v4w4

)
+ b

Using (4.5) we get a = 5/(16v4), v2w2 = 2 and b = −3/32. Thus, c = −v2/2.

It is easy to check that with these values the identity aD4(ux+ v, c) + b =
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P5,4(x) holds. Indeed,

aD4(ux+ v, c) + b =
5

16v4
D4(v(2x+ 1),−v2/2)− 3

32

=
5

16v4

(
v4(2x+ 1)4 + 4v2(2x+ 1)2 v

2

2
+
v4

2

)
− 3

32

= (1 + x)5 − x5 = P5,4(x).

This completes the proof of the lemma. �

5. Proof of Theorem 1.2

We are now ready to prove one of our main results, namely, Theorem 1.2.

Proof of Theorem 1.2. For m = 3 the theorem follows from Lemma 3.3.

Assume henceforth m ≥ 4. If the equation (1.2) has infinitely many integer

solutions, then from Theorem 3.1 it follows that

(1 + a0 + a1x)n − (a0 + a1x)n = φ(f(x)),(5.1)

(1 + b0 + b1x)m − (b0 + b1x)m = φ(g(x)),(5.2)

where (f(x), g(x)) is a standard pair over Q, a0, a1, b0, b1 ∈ Q, a1b1 6= 0 and

φ(x) ∈ Q[x]. Assume that h := deg φ > 1. Then from Proposition 2.8 it

follows that 1 ≤ deg f,deg g ≤ 2. Since n > m, we must have deg f = 2 and

deg g = 1. In view of deg g = 1 there exist g0, g1 ∈ Q such that g1 6= 0 and

(1 + g0 + g1x)m − (g0 + g1x)m = φ(x), so that by (5.1) and (5.2),

(1 + g0 + g1f(x))m − (g0 + g1f(x))m = φ(f(x))

= (1 + a0 + a1x)n − (a0 + a1x)n.

Since deg f = 2, by making the substitution x 7→ (x − a0)/a1, we see that

there exist c2, c1, c0 ∈ Q, c2 6= 0, such that

(1 + c2x
2 + c1x+ c0)m − (c2x

2 + c1x+ c0)m = (1 + x)n − xn.

Now, as c2 6= 0, from Proposition 2.8 it follows that c2 = c1 and that

(1+c1x+c0)m−(c1x+c0)m = P̃n,n−1(x). However, all the roots of P̃n,n−1(x)

are real, by (2.5), while (1 + c1x + c0)m − (c1x + c0)m = Pm,m−1(c1x + c0)

has at most one real root by Lemma 2.4. This is a contradiction in view of

m− 1 ≥ 2.
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If deg φ = 1, then we have

(1 + x)n − xn = e1f(c1x+ c0) + e0,(5.3)

(1 + x)m − xm = e1g(d1x+ d0) + e0,(5.4)

where (f(x), g(x)) is a standard pair over Q, c1, c0, d1, d0, e1, e0 ∈ Q, and

c1d1e1 6= 0. Clearly, by (5.3) and (5.4), deg f = n − 1 and deg g = m − 1.

Note that (f(x), g(x)) cannot be a standard pair over Q of the second kind,

since n > m ≥ 4 and hence 3 ≤ deg g < deg f . If (f(x), g(x)) is a standard

pair over Q of the fifth kind, then g(x) = 3x4 − 4x3, and hence m = 5.

(The case when f(x) = 3x4 − 4x3 is symmetric.) Then from (5.4) it follows

that P5,4(x) = e1(d1x + d0)3(3(d1x + d0) − 4) + e0, which is impossible, by

Lemma 3.4. If (f(x), g(x)) is a standard pair over Q of the first kind, then

either f(x) = xn−1 or g(x) = xm−1, i.e. either Pn,n−1(x) = e1(c1x+c0)n−1 +

e0 or Pm,m−1(x) = e1(d1x+d0)m−1 +e0, which is again in contradiction with

Lemma 3.4, since n − 1 > m − 1 ≥ 3. Finally, if (f(x), g(x)) is a standard

pair over Q of the third or of the fourth kind, then

Pn,n−1(x) = e1Dn−1(c1x+ c0, α) + e0,

Pm,m−1(x) = e1Dm−1(d1x+ d0, β) + e0,

for some α, β ∈ Q \ {0}. Since n− 1 > m− 1 ≥ 3, Lemma 1.3 implies that

(n,m) = (5, 4) and α, β < 0. Then, as gcd(4, 3) = 1, the pair (f(x), g(x))

must a standard pair over Q of the third kind, with α = a3 and β = a4 for

some a ∈ Q \ {0}, which contradicts β < 0. �

6. Proof of Theorem 1.1

Proposition 6.1. Let n, k,m, l ∈ N be such that 3 ≤ k ≤ n−1, 3 ≤ l ≤ m−1

and k 6= l. If Pn,k(x) and Pm,l(x) are indecomposable, then the equation

(1.1) has at most finitely many integer solutions.

Proof. Assume to the contrary that the equation (1.1) has infinitely many

integer solutions. Then from Theorem 3.1 it follows that

(6.1) Pn,k(x) = φ (f (ux+ v))) , Pm,l(x) = φ
(
g
(
u′x+ v′)

))
,

where φ(x) ∈ Q[x], u, u′, v, v′ ∈ Q, uu′ 6= 0 and (f(x), g(x)) is a standard

pair over Q. If both f(x) and g(x) are linear polynomials, then, by com-

parison of degrees in (6.1), we get k = l, contrary to the assumption. Thus,

either deg f ≥ 2 or deg g ≥ 2. If deg φ > 1, then either Pn,k(x) or Pm,l(x) is

decomposable, contrary to the assumption. Hence deg φ = 1 and not both
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f(x) and g(x) are linear polynomials. Therefore, writing φ(x) = e1x + e0

we have

(6.2) Pn,k(x) = e1f(ux+ v) + e0, Pm,l(x) = e1g(u′x+ v′) + e0,

with deg f = k and deg g = l.

Note that (f(x), g(x)) cannot be a standard pair of the second kind since

k, l ≥ 3. If (f(x), g(x)) is a standard pair of the fifth kind, then either f(x)

or g(x) is equal to 3x4−4x3. Without loss of generality assume that f(x) =

3x4−4x3. Then, by (6.2), we have Pn,4(x) = e1(3(ux+v)−4)(ux+v)3 +e0,

which is impossible by Lemma 3.4. If (f(x), g(x)) is a standard pair of the

first kind, then either f(x) = xk or g(x) = xl. Without loss of generality

assume that f(x) = xk. Then Pn,k(x) = e1(ux + v)k + e0, contradicting

Lemma 3.4 in view of k ≥ 3. Let (f(x), g(x)) be a standard pair of the

third kind or of the fourth kind. By Lemma 1.3, it follows that k, l ≤ 4.

Since k, l ≥ 3 and k 6= l, by assuming without restriction of generality

that k > l, we must only check the impossibility of the case (k, l) = (4, 3).

If (k, l) = (4, 3), then the pair of Dickson polynomials (f(x), g(x)) must

be of the third kind (since gcd(4, 3) = 1). Hence f(x) = D4(x, c3) and

g(x) = D3(x, c4) for some c ∈ Q\{0}. Then Pm,3(x) = e1D3(u′x+v′, c4)+e0,

which contradicts Lemma 1.3 in view of c4 > 0. �

Proof of Theorem 1.1. For k, l ≥ 3 the theorem holds, by Proposition 6.1

and Lemma 2.5. It remains to examine the case when either k = 2 or l = 2.

Recall the assumption k 6= l and assume without loss of generality that l = 2

and k ≥ 3. Then the equation (1.1) can be rewritten as

2m(m− 1)Pn,k(x)−m2 + 2m = (m(m− 1)y +m)2.

By Proposition 3.2, it suffices to show that the polynomial of the left hand

side has at least three simple roots (here m, k ≥ 3, n ≥ 4). We will show that

all k roots of the polynomial aPn,k(x) + b, where a 6= 0 and b are rational

numbers, are simple under assumption of irreducibility of Pn−1,k−1(x).

Write aPn,k(x)+b in the form cf1(x)d1 . . . ft(x)dt , where f1(x), . . . , ft(x) ∈
Q[x] are distinct irreducible polynomials with constant terms equal to 1, with

c ∈ Q \ {0} and d1, . . . , dt ∈ N. If aPn,k(x) + b has a double root s, then

s is the root of its derivative. Hence, by (2.2), we obtain Pn−1,k−1(s) = 0.

Since Pn−1,k−1(x) is irreducible and has constant term equal to 1, it must

be one of the polynomials fi(x), say f1(x). Furthermore, d1 ≥ 2, since the

derivative of the product cPn−1,k−1(x)d1 . . . ft(x)dt vanishes at x = s. The
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degree consideration now leads to

k = deg(aPn,k(x)+b) = deg(cPn−1,k−1(x)d1 . . . ft(x)dt) ≥ d1(k−1) ≥ 2(k−1),

a contradiction. �

Note that for k = l = 2 the equation Pn,2(x) = Pm,2(y) may have infinitely

many solutions. Indeed, consider, for example, the equation

P4,2(x) =
(6x+ 2)2 + 2

6
= P3,2(y) =

(6y + 3)2 + 3

12
,

which can be rewritten as (6y + 3)2 − 2(6x + 2)2 = 1. This is a Pell-type

equation with infinitely many solutions x, y ∈ N.
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