Concrete Mathematics

Lecturer: Dijana Kreso E-mail: kreso@math.tugraz.at Due: June 02, 2016

Let φ be the Euler function.

- 1. (2 points) Find the sequence $(a_n)_{n\geq 0}$ whose ordinary generating function is $A(x) = 3/(1+5x) + (x/(1+7x))^4$.
- 2. (2 points) Let D_n be the number of permutations σ of the set $\{1, 2, ..., n\}$ without fixed points, i.e. such that $\sigma(i) \neq i$ for all *i*. We showed that the exponential generating function for the sequence $(D_n)_{n\geq 0}$ is $e^{-x}/(1-x)$. Show that $\lim_{n\to\infty} D_n/n! = 1/e$.
- 3. (a) (*2 extra points) Let P_n be the number of permutations σ of the set $\{1, 2, ..., n\}$ such that $\sigma(2i-1) > \sigma(2i), \sigma(2i) < \sigma(2i+1)$ for all $1 \le i \le (n-1)/2$. Prove or disprove that that the sequence $(P_n)_{n\ge 0}$ satisfies

$$P_{n+1} = \sum_{0 \le k \le n, \ k \ \text{even}} \binom{n}{k} P_k P_{n-k}.$$
(1)

- (b) (*2 points) Show that the exponential generating function P(x) of the sequence $(P_n)_{n\geq 0}$ given by (1) satisfies 2P'(x) = P(x)(P(x) + P(-x)).
- (c) (*1 points) Show that $P(x) = \tan x + 1/\cos x$.
- 4. (2 points) Let a_n be the number of positive integers with n digits whose digits are in the set $\{2,3,7,9\}$ and which are divisible by 3. Find a_n .
- 5. (1 point) Find the Dirichlet generating function of the sequence $(\varphi(n))_{n\geq 1}$.
- 6. (2 points) Let *n* be a positive integer. Let P_k be the number of pairs (a, b) of nonnegative integers such that ka + (k+1)b = n+1-k. Find $P_1 + P_2 + \cdots + P_{n+1}$.
- 7. Let N(m,n) be the number of ways to string beads of n different colors into a necklace of length m, where we consider two necklaces to be the same if one can be obtained from another by rotation, and $N_r(m,n)$ be that number, where we consider two necklaces to be the same if one can be obtained from another by rotation or vertical axis reflection. We showed that $mN(m,n) = \sum_{d|m} \varphi(d) n^{m/d}$.
 - (a) (*2 points) Show that $\sum_{d|m} \varphi(d) n^{m/d} \equiv 0 \pmod{m}, m, n \in \mathbb{N}$, using number-theoretic arguments.
 - (b) (*1 points) Find $N_r(10,2)$.
- 8. (*1 extra points) For an integer *n* and a prime *p*, show that $n^{p^k} \equiv n^{p^{k-1}} \pmod{p^k}$, for $k \in \mathbb{N}$.