

- Due: January 11, 2016
- 1. (2 points) Let α be an algebraic number. Show that $\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$.
- 2. Let *K* be a number field of degree 2.
 - (a) (1 point) Show that there exists squarefree integer $d \neq 0, 1$ such that $K = \mathbb{Q}[\sqrt{d}]$.
 - (b) (2 points) Show that for the ring of integers \mathcal{O}_K of K the following holds:

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}], & d \equiv 2,3 \pmod{4}, \\ \mathbb{Z}[(1+\sqrt{d})/2], & d \equiv 1 \pmod{4}. \end{cases}$$

- (c) (1 point) Deduce that \mathcal{O}_K is a free \mathbb{Z} -module of rank $[K : \mathbb{Q}] = 2$.
- (d) (1 point) Let τ_1 and τ_2 be two distinct elements in $\operatorname{Hom}_{\mathbb{Q}}(K)$ with $K = \mathbb{Q}[\sqrt{d}]$ so that $\tau_{1,2}(\sqrt{d}) = \pm \sqrt{d}$. Show that if $\alpha \in \mathcal{O}_K$, then $\tau_{1,2}(\alpha) \in \mathcal{O}_K$ and $\tau_1(\alpha) \cdot \tau_2(\alpha) \in \mathbb{Z}$.
- (e) (1 point) A basic result from algebra states that if $d \in \mathbb{N}$ and I, J are \mathbb{Z} -modules such that
 - $dI \subset J \subset I$,
 - *I* is free and of rank t > 0,

then *J* is free and of rank *t*. Use this to prove that any nonzero ideal in \mathcal{O}_K is a free \mathbb{Z} -module of rank $[K : \mathbb{Q}] = 2$.

- (f) (2 points) Let $\tau: K \to \mathbb{R}^r \times \mathbb{C}^s \simeq \mathbb{R}^2$ be the Minkowski embedding. Show that if $(0) \neq \mathscr{U}$ is an ideal in \mathcal{O}_K , then $\tau \mathscr{U}$ is a lattice in \mathbb{R}^2 .
- 3. Let *K* be a number field and \mathcal{O}_K the ring of integers of *K*.
 - (a) (1 point) Show that if $\alpha \in K$, then there exists $m \in \mathbb{N}$ such that $m\alpha \in \mathcal{O}_K$.
 - (b) (1 point) Conclude that the field of fractions of \mathcal{O}_K is K.

Recall that the field of fractions K of an integral domain R is the smallest field containing R.

- 4. (2 points) An integral domain R with field of fractions F is called integrally closed if whenever $\alpha \in F$ is integral over R, then $\alpha \in R$. Show that the ring of integers \mathcal{O}_K of K is integrally closed.
- 5. (a) (1 point) Show that the equation $y^2 = x^3 + 7$ has no solutions in integers x, y.
 - (b) (2 points) Show that the equation $x^4 + y^4 = z^2$ has no solutions in integers x, y, z with $xyz \neq 0$.