Concrete Mathematics

Lecturer: Dijana Kreso E-mail: kreso@math.tugraz.at Due: April 19, 2016

Let μ be the Möbius function and φ be the Euler function.

- 1. (a) (1 point) Show that the Euler function φ is multiplicative.
 - (b) (2 points) Show that $\sum_{d|n} \varphi(d) = n$ for $n \in \mathbb{N}$.
 - (c) (1 point) Determine all positive integers *n* such that $\varphi(n) = 10$.
- 2. (2 points) Show that if $f : \mathbb{N} \to \mathbb{C}$ and $g : \mathbb{N} \to \mathbb{C}$ are such that $g(n) = \sum_{d|n} f(d)$ is multiplicative, then f is multiplicative. (We showed the converse in lectures).
- 3. (2 points) Show that for any real $x \ge 1$ we have

$$\sum_{n\leq x}\mu(n)\cdot\left\lfloor\frac{x}{n}\right\rfloor=1.$$

4. (2 points) Assume that $f : \mathbb{N} \to \mathbb{C}$ and $F : \mathbb{N} \to \mathbb{C}$ are such that

$$f(n) = \sum_{d|n} \mu(d) F(n/d)$$

for all *n*. Show that then $F(n) = \sum_{d|n} f(d), n \in \mathbb{N}$.

(In lectures, we showed the converse of this statement which is called Möbius inversion theorem.)

- 5. Let *n* be a positive integer and let $\tau(n)$ denote the number of positive divisors of *n*.
 - (a) (1 point) Show that if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_1, \ldots, p_k are distinct primes and $\alpha_1, \ldots, \alpha_k$ positive integers, then

$$\tau(n) = \prod_{i=1}^k (\alpha_i + 1).$$

- (b) (2 points) Show that $\sum_{n \le x} \tau(n) = x \ln(x) + O(x)$.
- 6. (2 points) Let $a, b \in \mathbb{N}$ be such that $b^n + n$ is a multiple of $a^n + n$ for all positive integers n. Prove that a = b.