

Due: October 19, 2015

- 1. (1 point) Using the Euclidean algorithm, solve the congruence relation  $555x \equiv 15 \pmod{5005}$ .
- 2. (2 points) Solve the system of congruences

 $x \equiv 3 \pmod{10}$ ,  $x \equiv 8 \pmod{15}$ ,  $x \equiv 5 \pmod{84}$ .

- 3. (2 points) Let p be a positive integer greater than 1. Show that (p-1)! + 1 is divisible by p if and only if p is a prime number.
- 4. (2 points) Let p be a prime number. Show that  $(p-1)! + 1 = p^k$  for some positive integer k if and only if  $p \in \{2,3,5\}$ .
- 5. (1 point) Show that there do not exist positive integers m, n, k such that  $4mn m n = k^2$ .
- 6. Let φ be Euler function and let μ be Möbius function.
  (a) (1 point) Determine all positive integers n such that φ(n) = 12.
  - (b) (2 points) Show that for every positive integer n the following holds:

$$\phi(n) = n \sum_{d \in \mathbb{N}, d \mid n} \frac{\mu(d)}{d}.$$

7. (2 points) Let  $p \ge 2$  be a prime number such that  $p \equiv 2 \pmod{3}$ . Show that in the set

$$\{y^2 - x^3 - 1 \mid x, y \in \mathbb{Z}, 0 \le x, y \le p - 1\}$$

there are less or equal than p elements which are divisible by p.

8. (2 points) Find all positive integers n such that  $2^n - 1$  is divisible by 3 and  $\frac{2^n - 1}{3}$  divides  $4m^2 + 1$  for some integer m.