Due: January 25, 2016

Note that there are two pages of this exercise sheet!

Let μ be the Möbius function, φ be the Euler function and ζ the Riemann zeta function.

- 1. (a) (1 point) Show that $\sum_{d|n} \mu(d) = 0$ for $n \in \mathbb{N}$ with n > 1.
 - (b) (1 point) Show that $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0$ for any $n \in \mathbb{N}$.
 - (c) (2 points) Show that for any real $x \ge 1$ we have

$$\sum_{n\in\mathbb{N},\ n\leq x}\mu(n)\left\lfloor\frac{x}{n}\right\rfloor=1.$$

(d) (2 points) Show that for any real $x \ge 1$ we have

$$\Big|\sum_{n\in\mathbb{N},\ n\leq x}\frac{\mu(n)}{n}\Big|\leq 1$$

- 2. (1 point) Show that $\sum_{d|n} \varphi(d) = n$ with $d, n \in \mathbb{N}$.
- 3. (1 point) Show that the product of Dirichlet series of two arithmetical functions f and g is the Dirichlet series of the convolution of f and g.
- 4. (2 points) Show that for any complex number *s* with the real part > 1 we have

$$\frac{1}{\zeta(s)} = \prod_{\text{prime } p} (1 - p^{-s}) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$

5. (2 points) Show that for any complex number *s* with the real part > 2 we have

$$\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s}.$$

6. (2 points) Let $a : \mathbb{N} \to \mathbb{C}$ be an arbitrary sequence of complex numbers, and let

$$A(x) := \sum_{n \le x} a(n), \quad A(0) = 0,$$

be the associated summatory function. Show Abel's identity, which states that for any continuously differentiable function $f : [x, y] \rightarrow \mathbb{C}$, 0 < y < x we have

$$\sum_{y < n \le x} a(n)f(n) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t)dt.$$

7. (2 points) Let p_n be the *n*-th prime. Show that the Prime Number Theorem implies

$$\lim_{n \to \infty} \frac{p_n}{n \log n} = 1$$

8. (2 extra points) Show that the series

$$\sum_{\text{p prime}} \frac{1}{p}$$

diverges.

Hint: Either use Abel's identity and Prime Number Theorem or assume to the contrary and deduce that the series $\sum \log(1 - p^{-s})$ converges uniformly for $1 \le \sigma \le 2$, where $\sigma := \Re(s)$ is the real part of *s*.

- 9. (2 extra points) Show that $\sum_{n \le x} \mu(n) = o(x)$, that is that $\sum_{n \le x} \mu(n)/x \to 0$ when $x \to \infty$.
- 10. (1 extra points) Let p_n be the *n*-th prime. Assume that

$$\lim_{n\to\infty}\frac{p_n}{n\log n}=1,$$

and show that the Prime Number Theorem holds.