

Note that there are two pages of this exercise sheet!

Due: November 30, 2015

Recall that for any a ∈ Q \{0}, the number of solutions of the equation u₁+u₂+…+u_k = a in S-units u_i's, such that no zero subsum of u₁+u₂+…+u_k exists, is bounded by a constant independent of a.

An *n*-tuple of distinct rational numbers $(a_1, a_2, ..., a_n)$ with n > 2 is said to be an *S*-cycle of size *n* if $a_i - a_j$ is an *S*-unit exactly when either *i* and *j* are consecutive integers, or $\{i, j\} = \{1, n\}$.

- (a) (1 point) Show that if $2 \notin S$, for odd *n* no *S*-cycle of size *n* exists.
- (b) (2 points) Show that there exists an S-cycle of size 4, and if $2 \in S$ an S-cycle of size 3 exists.
- (c) (2 points) Show that if 2 ∈ S, then for any n > 2 there exists an S-cycle of size n, and if 2 ∉ S, then for any even n > 2 there exists an S-cycle of size n, by showing that we may always extend an S-cycle by 2.
- 2. Let $f(x) = \zeta_0 x^n + \dots + \zeta_{n-1} x + \zeta_n = \zeta_0 (x \alpha_1) (x \alpha_2) \dots (x \alpha_n) \in \mathbb{C}[x]$. Let $M(f) = |\zeta_0| \cdot \prod_{i=1}^n \max\{1, |\alpha_i|\}$ be the Mahler measure of f (here $|\cdot|$ denotes the usual absolute value on \mathbb{C}).
 - (a) (1 point) Show that $M(f) \ge 2^{-n} \max\{|\zeta_0|, ..., |\zeta_n|\}$.
 - (b) (2 points) Show that for real $x \ge 1$

$$\#\left\{\alpha\in\overline{\mathbb{Q}}\colon \deg\alpha\leq d, H(\alpha)\leq x\right\}\leq \sum_{n=1}^d n(5x)^{n(n+1)}\leq (8x)^{d(d+1)},$$

that is, the number of algebraic numbers of degree at most d and of height at most x is bounded above by $(8x)^{d(d+1)}$.

(Here for an algebraic number α of degree d, $H(\alpha)$ denotes the d-th root of the Mahler measure of the minimum polynomial of α).

3. Suppose $S \subseteq \mathbb{N}_0$, $\psi : \mathbb{N} \to \mathbb{N}_0$ and $Q_0 \in \mathbb{N}$ are such that

$$\#\{s \in S : s \le Q\} > \psi(Q) > 0 \text{ for } Q \ge Q_0.$$

Let $A = S - S := \{s_1 - s_2 : s_1, s_2 \in S\}.$

(a) (2 points) Let $\alpha \in \mathbb{R}$ and $Q \in \mathbb{N}$ with $Q \ge Q_0$. Show that there exists $p \in \mathbb{Z}$ and $q \in A$ such that

$$\left| \alpha - \frac{p}{q} \right| < \frac{1}{\psi(Q) \cdot q} \quad \text{and} \quad 0 < q \le Q.$$

Hint: Split the interval [0,1] into $\psi(Q)$ intervals and apply Pigeonhole principle.

(b) (1 point) Show that if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and ψ is monotone increasing and unbounded, then

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\psi(q) \cdot q}$$

has infinitely many solutions $(p,q) \in \mathbb{Z} \times A$ with q > 0.

- 4. Let *p* be a prime number such that $p \equiv 1 \pmod{4}$.
 - (a) (1 point) Show that there exists an integer *a* such that $a^2 \equiv -1 \pmod{p}$.
 - (b) (2 points) Use Minkowski's First theorem to show that there exist $a, b \in \mathbb{Z}$ such that $p = a^2 + b^2$.
- 5. (2 extra points) Let $n \in \mathbb{N}$ and $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R}$ and Q > 1. Use Minkowski's First Theorem to show that there exist $q, p_1, ..., p_n \in \mathbb{Z}$ such that

$$0 < q \le Q$$
 & $|q \alpha_i - p_i| \le Q^{-1/n}$ for $i = 1, 2, ..., n$.