## D(-1) quadruples, Theorem 3 N=1.641*10^55 M=18*((12/float(pi^2))*N*log(N)+4.332*N) print N print log(N) print M #1.64100000000000e55 #127.137485926780 #4.69396175860710e58 ##---------------------------------------------------- ## Improvement of Theorem 2, for N\geq 1000 for n in range(1000,1701): if sum([(moebius(m))^2 for m in range(1,n+1)])>0.62*n: print n ##----------------------------------------------------- ## the function K(x) < (8/float(pi^2))*x*log(x)+0.648*x for x\geq 2 #c=0.647 c=0.648 x=2 (c-0.496)*x-0.608/x plot(0.648*x-(0.496*x+0.608/x),(x,0.5,3)) ##---------------------------------------------------- ## EXAMPLES COMPUTATIONS ## \lambda(\delta) - the coefficient in McKee's formula def l(d): print 12*pari(4*d).qfbhclassno()/(3.1416*sqrt(4*d)) #Constants (C_1,C_2,C_3) from Theorem 1 def Const(b,c,d): if mod(d,4)!=2: if mod(d,4)!=3 : print "Not good discriminant" q=4*abs(d) kappa=(4/float(pi^2))*float(sqrt(q))*float(log(q))+0.648*float(sqrt(q)) ksi=float(sqrt(1+2*abs(b)+abs(c))) A=ceil(max(abs(b),float(sqrt(abs(c))))) c1=(12/float(pi^2))*(log(kappa)+1) c2=2*(kappa+(log(kappa)+1)*((6/float(pi^2))*float(log(ksi))+1.166)) c3=2*kappa*A print (c1,c2,c3) #EXAMPLES FROM THE TABLE ##n^2+1 print 'n^2+1' l(1) Const(0,1,-1) ## n^2+10n+27 print 'n^2+10n+27' l(2) Const(5,27,-2) ## n^2+4n+10 print 'n^2+4n+10' l(6) Const(2,10,-6) ## n^2+52n+706 print 'n^2+52n+706' l(30) Const(26,706,-30) ## n^2+10n-26 #discriminant is positive, no McKee's formula print 'n^2+10n-26' Const(5,-26,51) #n^2+1 #0.954927425515661 #(2.29022985955444, 10.0257540720166, 4.83937576872585) #n^2+10n+27 #1.35047131624627 #(2.96548152735700, 19.5144159446370, 50.5982729489532) #n^2+4n+10 #1.55938995593531 #(3.95111220213397, 31.8971233487115, 75.8760488968092) #n^2+52n+706 #1.39476077796070 #(5.28257784085363, 84.3557338925090, 1531.08233404361) #n^2+10n-26 #(5.70220562480180, 101.311664340512, 480.478649736826)