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K = Q(
√

d)

Class group = free group of fractional ideals/principal fractional ideals

Class number = h(d) (the finite order of the class group)

Gauss conjectures:

1 If d < 0 and |d | → ∞, then h(d) →∞. (solved)

2 There are infinitely many d > 0, for which h(d) = 1. (open)
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Dirichlet class number formula

For positive d we have

h(d) log εd = d1/2L(1, χd),

where εd is the fundamental unit of K and χd =
( .

d

)
.

Siegel’s theorem

L(1, χd) �ε |d |−ε.

If εd is small, then h(d) →∞.
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Richaud-Degert (R-D) discriminants:

d = (an)2 + ka with a, n > 0 , ±k ∈ {1, 2, 4} .

They have small fundamental units : log εd � log d .

⇒ R-D class number tends to infinity with d →∞.
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Siegel’s theorem is ineffective.

Class number one problem : Find the exact d for which h(d) = 1.

Biró solves the class number one problem in the following cases:

Theorem (Biró 2003)

Yokoi’s conjecture is true : Let d = n2 + 4. Then h(d) > 1 if n > 17;

Chowla’s conjecture is true : Let d = 4n2 + 1. Then h(d) > 1 if
n > 13.

Until now not known results for two-parameter R-D discriminants without
GRH.
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We use Biró’s methods, without any computer work, to obtain

Theorem

If d = (an)2 + 4a is square-free for a and n – odd positive integers such
that 43.181.353 divides n, then h(d) > 1.

The parameter 43.181.353 :

h(−43.181.353) = 29.3 .
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Main identity

qh(−q)h(−qd) =
n

6

(
a +

(
a

q

)) ∏
p|q

(p2 − 1) ,

where q ≡ 3 (mod 4) is squarefree, q | n, (q, a) = 1 and
h(d) = h((an)2 + 4a) = 1.

a ≡ 3 (mod 4) (genus theory)(
a

q

)
= −1 (small primes are inert)

⇒ Right-hand side is with fixed 2-part

! Take h(−q) with big 2-part
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Another possible choice of parameter is 5.359.541:

h(−5.359.541) = 29 .

Theorem

If d = (an)2 + 4a is square-free for a and n – odd positive integers such
that 5.359.541 divides n, then h(d) > 1.
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Theorem (Byeon,Lee 2008)

If n ≥ 1 is integer, then there are infinitely many imaginary quadratic fields
with discriminant of only two prime divisors and an element of order 2n in
their class group.

Using application of the circle method from Balog&Ono[1]:

Theorem

Let n ≥ 1 be an integer. There are infinitely many imaginary quadratic
fields with discriminant of only three prime divisors, each of which is
congruent to 3 modulo 8, such that in their class group there is an
element of order 2n.
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Theorem

There exists an infinite family of parameters q, which have exactly three
distinct prime factors, with the following property. If d = (an)2 + 4a is
square-free for a and n – odd positive integers, and q divides n, then
h(d) > 1.
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Problem

Solve the class number one problem for all R-D discriminants of
square-free d = (an)2 + 4a, a and n – odd positive integers.

Partial zeta function at 0 after Biró&Granville[3] for the particular
R-D discriminant.

Results with computer for some residue classes of a, computer work
on pregress.
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Theorem

Let ∆, ` be positive integers for which 16`2 | ∆ and (15,∆) = 1. Let
P1,P2 be infinite sets of primes satisfying Siegel-Walfisz condition for ∆
such that every p ∈ P1 is ≡ −5 (mod ∆) and every r ∈ P2 is ≡ 3
(mod ∆). If Rd(X ) denotes the number of positive integers d ≤ X of the
form

d = p1p2p3 = 4m2` − n2 ,

where p1 ∈ P1 and p2, p3 ∈ P2 are distinct and satisfy

p1 ≤ x , p1 ∈ P1 ; x1/4 < p2 ≤ x1/2 , x3/4 < p2p3 ≤ x and p2, p3 ∈ P2 .

with x =
√

X, then

Rd(X ) � X 1/2+1/(2`)

log2 X
.

4m` = p1 + p2p3
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Thank you for your attention!
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