Density of power-free values of polynomials
 Number Theory Down Under 8
 Melbourne (online)

Kostadinka Lapkova
joint work with Stanley Yao Xiao

Graz University of Technology
7.10.2020

Introduction

We say that an integer n is k-free if there is no prime p, such that p^{k} divides n.
Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of degree d.
Let us define the main quantity we want to estimate

$$
N_{F, k}(B):=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\left|x_{i}\right| \leq B, i=1, \ldots, n ; F(\mathbf{x}) \text { is } k \text {-free }\right\}
$$

- The goal is to find an asymptotic formula for $N_{F, k}(B)$ when there is no prime p such that $p^{k} \mid F(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{Z}^{n}$;
- find out how k is related to d;
- the smaller k, and farther from d, the harder the problem.

Introduction, $n=1$

The expected asymptotic formula for some $c_{F, k}>0$

$$
N_{F, k}(B) \sim c_{F, k} B
$$

has been shown in the following chronological order:

- $k \geq d$ (Ricci, 1933);
- $k=d-1$ (Erdős, 1953):

$$
N_{F, d-1}(B) \gg \frac{B}{(\log \log B)^{2}}
$$

- $k=d-1$ (Hooley, 1967);
- $k \geq(3 d+1) / 4$ (Browning, 2011).

Introduction, $n=2, F$-homogeneous

The expected asymptotic formula

$$
N_{F, k}(B) \sim c_{F, k} B^{2}
$$

has been proven in the following cases:

- $k \geq(d-1) / 2$ (Greaves, 1992);
- $k>7 d / 16$ (Browning, 2011);
- $k>7 d / 18$ (Xiao, 2017).

Since F is a form, one can use geometry of numbers methods.

Introduction, $n=2, F$-inhomogeneous

A lower bound for certain k 's

$$
N_{F, k}(B) \gg c_{F, k} B^{2}
$$

has been proven by:

- Hooley, 2009;
- Browning, 2011.

In another paper from 2009 Hooley proves an asymptotic formula for certain classes of inhomogeneous polynomials in 2 variables.

Introduction, $n \geq 1$

The most difficult case is $k=2$ for square-free values of $F(\mathbf{x})$. Then

$$
N_{F, 2}(B) \sim c_{F, 2} B^{n}
$$

has been established by:

- Poonen, 2003, modulo the abc-conjecture, and differently defined density (not exactly $N_{F, 2}$);
- Bhargava et al., 2014-2016, for special cases of invariant polynomials. We will use, however, the methods of the previously mentioned works of Hooley and Browning.

Main results

We say that a polynomial F is k-admissible if for any prime p there exists an integer n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ for which $p^{k} \nmid F\left(m_{1}, \ldots, m_{n}\right)$.

Theorem 1 (L-Xiao,2019)

Let $k \geq 2$ be a positive integer and let F be a k-admissible square-free polynomial $F(\mathbf{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, for any $n \geq 1$. Then there exists $C_{F, k}>0$, such that the asymptotic relation

$$
N_{F, k}(B) \sim C_{F, k} B^{n}
$$

holds whenever $k \geq(3 d+1) / 4$.
Here $C_{F, k}=\prod_{p}\left(1-\rho_{F}\left(p^{k}\right) / p^{k n}\right)$, where

$$
\rho_{F}(m)=\#\left\{\mathbf{s} \in(\mathbb{Z} / m \mathbb{Z})^{n}: F(\mathbf{s}) \equiv 0 \quad(\bmod m)\right\}
$$

Prime arguments

We can specialize our Theorem 1 to prime arguments. Let us have primes $p_{i}, i=1, \ldots, n$ and $\mathbf{p}:=\left(p_{1}, \ldots, p_{n}\right)$. Consider the quantity

$$
\mathcal{N}_{F, k}(B):=\#\left\{\mathbf{p} \in \mathbb{Z}^{n}:\left|p_{i}\right| \leq B, i=1, \ldots, n ; F(\mathbf{p}) \text { is } k \text {-free }\right\}
$$

Theorem 2 (Prime inputs)

We have

$$
\mathcal{N}_{F, k}(B) \sim C_{F, k}^{\prime} \frac{B^{n}}{(\log B)^{n}}
$$

for some $C_{F, k}^{\prime}>0$ and $k \geq(3 d+1) / 4$
Here $C_{F, k}^{\prime}=\prod_{p}\left(1-\rho_{F}^{*}\left(p^{k}\right) / \varphi\left(p^{k}\right)^{n}\right)$ with
$\rho_{F}^{*}(m)=\#\left\{\mathbf{s} \in(\mathbb{Z} / m \mathbb{Z})^{n}, \operatorname{gcd}\left(s_{i}, s_{j}\right)=1\right.$ for $\left.i<j: F(\mathbf{s}) \equiv 0(\bmod m)\right\}$.

Prime arguments and Erdős

Conjecture [Erdős,1953]

For the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree d with no fixed $(d-1)$-th power prime divisor the set $f(\mathbb{P})=\{f(p), p$ - prime $\}$ contains infinitely many $(d-1)$-free values.

- (Heath-Brown, Browning, Helfgott, ...)
- (Reuss, 2013) $d \geq 3$

We can extend this conjecture of Erdős for any number of variables.

Conjecture, $n \geq 1$

For any $n \geq 1$ and an irreducible polynomial $F(\mathbf{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ of degree d, which is $(d-1)$-admissible, the set $F\left(\mathbb{P}^{n}\right)=\left\{f\left(p_{1}, \ldots, p_{n}\right), p_{i}\right.$ - prime $\}$ contains infinitely many $(d-1)$-free values.

Main results (cont.)

An immediate corollary of Theorem 1 is the following.

Corollary 3 ($k=d-1$)

For any square-free k-admissible polynomial $F(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$ and $d \geq 5$ we have

$$
N_{F, d-1} \sim C_{F, d-1} B^{n} .
$$

And this is a corollary of Theorem 2, which solves the extension of the conjecture of Erdős for $d \geq 5$.

Corollary 4

For any square-free k-admissible polynomial $F(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$ and $d \geq 5$ we have

$$
\mathcal{N}_{F, d-1} \sim C_{F, d-1}^{\prime} \frac{B^{n}}{(\log B)^{n}}
$$

Main results (cont.)

We can fill up the missing cases for the asymptotic of $N_{F, d-1}$ for $d=3,4$.

Theorem 5 (L-Xiao,2020)

For any square-free k-admissible polynomial $F(\mathbf{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ in $n \geq 1$ variables and $d \geq 3$ we have

$$
N_{F, d-1} \sim C_{F, d-1} B^{n} .
$$

However, our method still cannot prove the expected asymptotic formula for prime arguments:

$$
\mathcal{N}_{F, d-1} \stackrel{?}{\sim} C_{F, d-1}^{\prime} \frac{B^{n}}{(\log B)^{n}}, \quad \text { for } d=3,4, \text { and any } n \geq 1
$$

Sketch of the proof; sieving

Let us recall

- Theorem 1: $N_{F, k} \sim C_{F, k} B^{n}, \quad k \geq(3 d+1) / 4$;
- Theorem $5: N_{F, d-1} \sim C_{F, d-1} B^{n}, \quad d \geq 3$.

For the proofs of both theorems we apply the simple sieve of Hooley

$$
N_{1}(B)-N_{2}(B)-N_{3}(B) \leq N_{F, k}(B) \leq N_{1}(B)
$$

for certain quantities N_{1}, N_{2}, N_{3}, to be defined soon.
The difference in the proofs of the two theorems is only in the estimate of N_{3}. For this we use

- Theorem 1: the determinant method like in [Browning, 2011];
- Theorem 5 : sieving argument à la [Hooley, 2009].

Sketch of the proof; simple sieve

For parameters $\xi_{1}<\xi_{2}$ we define

$$
\begin{gathered}
N_{1}(B)=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\| \leq B, \quad p^{k} \mid F(\mathbf{x}) \Longrightarrow p>\xi_{1}\right\} \\
N_{2}(B)=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\| \leq B, p^{k} \mid F(\mathbf{x}) \Longrightarrow p>\xi_{1}\right. \\
\left.\exists \xi_{1}<p \leq \xi_{2} \text { s.t. } p^{2} \mid F(\mathbf{x})\right\},
\end{gathered}
$$

and

$$
\begin{aligned}
& N_{3}(B)=\#\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\| \leq B, p^{k} \mid F(\mathbf{x}) \Longrightarrow p>\xi_{1}\right. \\
& \left.p^{2} \nmid F(\mathbf{x}) \text { for } \xi_{1}<p \leq \xi_{2} \text { and } \exists p>\xi_{2} \text { s.t. } p^{k} \mid F(\mathbf{x})\right\} .
\end{aligned}
$$

Then the initial simple sieve

$$
N_{1}(B)-N_{2}(B)-N_{3}(B) \leq N_{F, k}(B) \leq N_{1}(B)
$$

holds, since it is equivalent to

$$
\begin{aligned}
& k \text {-free such that } \\
& \forall p \in\left(\xi_{1}, \xi_{2}\right] \quad p^{2} \nmid F(\mathbf{x})
\end{aligned}
$$

Sketch of the proof; $N_{1}(B)$

It is straightforward to show that

$$
N_{1}(B)=B^{n} \prod_{p \leq \xi_{1}}\left(1-\frac{\rho_{F}\left(p^{k}\right)}{p^{n k}}\right)+O_{\varepsilon}\left(B^{n-1+\varepsilon}\right)
$$

Lemma 6

Let F be a square-free polynomial in n variables with integer coefficients, and such that for all primes p, p^{k} does not divide F identically. Then for any $k \geq 2$ we have $\rho_{F}\left(p^{k}\right)=O_{F}\left(p^{n k-2}\right)$.

It follows that the infinite product $C_{F, k}=\prod_{p}\left(1-\rho_{F}\left(p^{k}\right) / p^{k n}\right)$ converges. When $B \rightarrow \infty$ we get

$$
N_{1}(B)=\text { Main Term }+ \text { Error Term },
$$

so it is enough to show that $N_{2}(B), N_{3}(B)$ are error terms.

Sketch of the proof; $N_{2}(B)$

Recall that for $\mathbf{x} \in \mathbb{Z}^{n}$ counted by $N_{2}(B)$ there exists a prime $p \in\left(\xi_{1}, \xi_{2}\right]$ such that $p^{2} \mid F(\mathbf{x})$. Then there are two possibilities:

- $p^{2} \mid F(\mathbf{x}), p \nmid \frac{\partial F}{\partial x_{1}}(\mathbf{x})$

Here for $f(x):=F\left(x, x_{2}, \ldots, x_{n}\right)$ we have $p \nmid \Delta(f)$ and we reduce the argument to polynomials in one variable. We use that $\rho_{f}\left(p^{k}\right) \leq d$ is independent of the coefficients of f. Then the contribution is

$$
<_{d} B^{n-1} \sum_{\xi_{1}<p \leq \xi_{2}}\left(\frac{B}{p^{2}}+1\right) \ll_{d} \frac{B^{n}}{\xi_{1}}+\frac{B^{n-1} \xi_{2}}{\log \xi_{2}}
$$

Actually, we choose $\left(\xi_{1}, \xi_{2}\right)=\left(\log B / n k, B(\log B)^{1 / 2}\right)$ (Theorem 1) and $\left(\xi_{1}, \xi_{2}\right)=\left(\log _{3} B / \log _{4} B, B(\log B)^{1 / n}\right)$ (Theorem 5).

- $p^{2}|F(\mathbf{x}), p| \frac{\partial F}{\partial x_{1}}(\mathbf{x})$

These we estimate by the Ekedahl's sieve.

Sketch of the proof; $N_{2}(B)$

For the second case we apply

Ekedahl's sieve

Let \mathcal{B} be a compact region in \mathbb{R}^{n} having finite measure, and let Y be any closed subscheme of $\mathbb{A}_{\mathbb{Z}}^{n}$ of co-dimension $s \geq 2$. Let r and M be positive real numbers. Then we have

$$
\begin{aligned}
\#\left\{\mathbf{x} \in r \mathcal{B} \cap \mathbb{Z}^{n}:\right. & \left.\mathbf{x} \quad(\bmod p) \in Y\left(\mathbb{F}_{p}\right) \text { for some prime } p>M\right\} \\
& =O\left(\frac{r^{n}}{M^{s-1} \log M}+r^{n-s+1}\right) .
\end{aligned}
$$

We work with the variety $Y_{F}:=\left\{\mathbf{x} \in \mathbb{C}^{n}: F(\mathbf{x})=\frac{\partial F}{\partial x_{1}}(\mathbf{x})=0\right\}$. Then if $N^{*}(p ; B)=\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\| \leq B, \mathbf{x}(p) \in Y_{F}\left(\mathbb{F}_{p}\right)\right\}$ the second group counted in $N_{2}(B)$ is bounded from above by

$$
\# \bigcup_{p>\xi_{1}} N^{*}(p ; B) \ll \frac{B^{n}}{\xi_{1} \log \xi_{1}}+B^{n-1}
$$

We can reduce the argument to one variable case, by fixing x_{2}, \ldots, x_{n}. Again $f(x)=F\left(x, x_{2}, \ldots, x_{n}\right), f \in \mathbb{Z}[x], \operatorname{deg} f \leq d$ and one needs to estimate

$$
\begin{gathered}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}: f(x)=y z^{k}, B_{1} / 2 \leq x \leq B_{1}, B_{2} / 2 \leq y \leq B_{2}\right. \\
\left.B_{3} / 2 \leq z \leq B_{3}\right\}
\end{gathered}
$$

By the determinant method one can estimate the number of points in a box, lying on a surface, which is bounded by a quantity that is

- independent on the coefficients of f;
- gives power saving for $N_{3}(B)$;
- but only if $k \geq(3 d+1) / 4$.

$N_{3}(B)$ for $N_{F, d-1}$, Theorem 5

Using Ekedahl's sieve we can essentially assume that F is absolutely irreducible. To estimate $N_{3}(B)$ it is enough to evaluate the number of elements in a set of the type

$$
\left\{\mathbf{x} \in \mathbb{Z}^{n}:\|\mathbf{x}\| \leq B, F(\mathbf{x})=u_{1} u_{2} q^{d-1}, \text { for prime } q>\xi_{2}\right\}
$$

where $u_{1} \mid \prod_{p<\xi_{1}} p^{d-2}$ and $u_{2} \mid \prod_{\xi_{1}<p \leq \xi_{2}} p$. For this sake estimate the number of solutions $\left(\bmod u_{1} u_{2} \mathcal{D}\right)$ of the system of equations

$$
\begin{gathered}
F(\mathbf{m}) \equiv 0 \quad\left(\bmod u_{1}\right) \\
F(\mathbf{m}) \equiv 0 \quad\left(\bmod u_{2}\right) \\
F(\mathbf{m}) \equiv u_{1} u_{2} s^{d-1} \quad(\bmod \mathcal{D}), s=0,1, \ldots, \mathcal{D}-1,
\end{gathered}
$$

for a parameter \mathcal{D} coprime to $u_{1} u_{2}$. Apply trivial bound for the first and Lang-Weil bound for the other congruences, delicate choice of \mathcal{D}.

Thank you!

