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Chapter 1

Introduction

This is an introductory course in analytic number theory for graduate students. The first
main focus of the course is presenting the Newman’s proof of the Prime number theorem.
The material is based mostly on the chapters 4,5,6 from [2]. The second main topic is
application of the circle method in the ternary Goldbach’s problem. The used literature
for the circle method is mostly [I], also [5] and [6].

Some of the exercise problems are from [4]; few results are borrowed from [3], which
is a fundamental reference for the subject.

Let us present two proofs of one classical result. The second proof of Euler presents
one of the first instances of application of analytic methods in number theory.

Theorem 1.0.1. There are infinitely many prime numbers.

FEuclid’s proof. Assume there are only finitely many primes. Denote them by py, ..., px
and define N = p;---pr + 1. Then there does not exist a p; for ¢ = 1, ..., k such that p;
is a divisor of N. Therefore N is either prime itself or contains a prime factor differing
from p1q, ...pr. This contradicts the assumption and therefore the theorem holds. n

= 1
Euler’s proof (1737). Consider the harmonic series E — for s > 1. We see that for
nS
n=1

s=1
2k
Zl—1+1+1+1+~--+i>1+ﬁ
nzln_ 2 3 4 ok 2

by taking 2¢ elements together and estimating them with the smallest one, e.g. % + %1 >
2}1 = % But now we have

On the other hand we know that by the main theorem of arithmetic every integer has a



unique representation as a factor of prime powers and then

Eool TR SISO Y OV S
— ns - s 225 3s 325
1

=11 +—+—+ ||1_i

peP pEP p®

-1
Now, if there were only finitely many primes, then when s — 1 the product Hpep (1 — #)

converges to, say, ¢, but then we should also have Zn>1 = ¢, which is a contradic-
tion. ]



Chapter 2

Arithmetic functions

2.1 Basic properties

Definition 2.1.1.

i) A function f: N — C is said to be arithmetic (or number theoretic).

ii) A function f is said to be multiplicative if f is not the zero function and for coprime
m,n € N we have f(mn) = f(m)f(n).

Some examples for multiplicative functions are:

1 ifn=1
The Mébius-function p(n) = 0 if a square is a divisor of n

(_1)k ifn=mp - p

The Euler ¢ function p(n) = > 1
1<k<n
ged(n,k)=1

e The number of divisors function 7(n) =3, 1
e The sum of divisors function o(n) =3, d

e The prime counting function 7(n) =3 _ 1

Definition 2.1.2. The Sum function of an arithmetic function f is defined to be

Sp(n) =2 g f(d).
Lemma 2.1.1. Let f be a multiplicative function and n = p{* ---p*. Then
a) Sp(n) =>4, f(d) =1+ flp) +---+f@I) - (L4 f(pr) + -+ f(PR*))

{(1 — flpy) (1= f(pr)) ifn>1

) Sur() = S (@ (@) = | fno1

Proof.



RHS= T > rw= > I re= > re) o=

1§€i§k 0<Bi<a; 0<Bi<a; 1§]Di§k 0<Bi<a;
0<B;<ay dln
b) Follows by a) O
Corollary. Let again n = p{* ---pp*. Then
: a1 a, pritta1 p:kﬂ_l :

multiplicative. To see this we use f(d) = d.

i) T(n) =g, 1=00+-+1)-- 1+ +1)= (1 + 1) (o + 1) is multiplicative.
To see this we use f(d) = 1.

0 ifn
iii) S,u(n) = Zd\n p(d) = {1 ; n:>11

Lemma 2.1.2 (Vinogradov’s lemma). Let S be a finite set, G a commutative group
written additively f and g both functions from S to N or both from S to G. Then we have

Jthis follows by Lemma|2.1.1b).

seS m=1 SES
f(s)=1 m|f(s)
Proof.
) -
LHS =Y g(s) =Y g(s) Y pu(d)=Y pn(m) > g(s)
A S

]

Theorem 2.1.1 (Mdébius inversion formula). Let g be an arithmetic function, then it can
be expressed in terms of its sum function.

gn) = > u(d)S, (Z) = S u(d) D 9.

dn dln 15

Proof. Define f(s) = = thus we have f(s) = lifand onlyifn = sand S = {k € N|} € N}.
Then we get

seS m=1 seSs m
f(s)=1 m|f(s) sl

gn)= > gls) =D ulm) Y g(s) = p(m)d g(s)
|n

]

Definition 2.1.3. The Dirichlet product (or convolution) of two functions f,g is
defined to be fxg =73, f(d)g(3).

Corollary. Let again n = p{* ---pp*. Then



i) p(n)=n(l— ) (1= )= (" = p ) (" —p* )
it) @ is a multiplicative function
i) Sp(n) =g, p(d) =n

Proof.

i) Define the functions f(s) = ged(s,n) and g(s) = 1 and set S = {1,2,...,n}. Then we
have

dgls)= > T=pm) =) um) > 1=

seS 1<s<n m=1 1<s<n
f(s)=1 ged(s,n)=1 m| ged(s,n)
wim 1 1
St 3 1= St - St by
D1 Dk
m|n 1<s|<?’L m|n

by using Lemma - part b) because the function & ( ) is multiplicative.
ii) By the representation we found in 1) mult1phcat1v1ty follows immediately.

iii) Since ¢ is multiplicative we can again use Lemma and we get that

Se(n) = (L+¢(pr) + -+ 0(p1") - (L +¢(pe) + - + ")) =
(Ltpr—14pi—pit-p =)
(L pe = L P —pe+ -+ 0p" = p7* ) = p -t =

]

Lemma 2.1.3. If f is a multiplicative function and lim k., f(p*) = 0 then also lim,,_, f(n) =
0 where p runs through the primes.

Proof. Let n = p{* -+ -p* = HpE]P’ p’®") the canonical representation of n as factors of

prime powers. Then f(n) = f(Hpe]P,p ) = [Ler f(p*®™) by multiplicativity of f.
Now for each € > 0 there is some constant ¢ such that for all powers p¥ > ¢ we have
that |f(p*)| < e. If n is in such a fashion that every prime power is smaller than some
constant c it follows that n < ¢¢, thus for every n > ¢¢ there is at least one prime factor
such that p*®™ > ¢ and therefore f(p*®™) gets arbitrarily small and so f(n) itself also
gets small.

More formally one would split the prime powers into three sets, one where p*®™ is smaller
than some B, one where it is in between B and C' and one where it is bigger than C'. We
know that there is some A such that | f(p*®™)| < A for all values of p*®™ and we choose
B in a way that |f(p*®™)| < 1 holds for all values in B, and C such that |f(p*®™)| < e
holds for all values in C. This then gives |f(n)| < AB¢ — 0. O

Definition 2.1.4.
Landau symbols: Let f, g, h be functions then we say that

f(z) = g(z) + O(h(x)) if there exist some xo such that for all x > xo we have |f(x) —
g(x)| < c|h(z)| for some ¢ > 0.

f(x) = g(x) + o(h(x)) if lim, o LEED — 0



Two functions f, g are called asymptotically equal, written f(x) ~ g(x), iflim,_, =
1.

Example 2.1.1.
sin(z) = O(1) because |sin(z)| < 1.

sin(z) = z + O(2?) as * — oo because sin(x) = > - (—1)"! D1

T_e—T

sinh(z) = <=

m(x) ~ lozx )

~Y

eZ
E.

Now we want to use Lemma to get some direct estimates of arithmetic functions.

Claim 2.1.1. We have that o(n) = O(n) and for all € > 0 we get n'~¢ = o(p(n)).

Proof. By the definition of the ¢ function we have ¢(n) = > 1<k<n 1 < n and therefore

ged(k,n)=1
©(n) = O(n) holds.
For the second claim let € > 0 be arbitrary and consider the function f(n) = %. This

m(l €) me

way we get f(p™) = ST = pl T < 2p~™€. So clearly for every growing prime power
we have limym o, f(p™) = 0 and thus by Lemma [2.1.3] m also lim,, o f(n) = 0, which is
what we wanted to show. O

Claim 2.1.2. We have n = O(o(n)) and on the other hand for all € > 0 that o(n) =
0(n1+€).

Proof. By definition we get that o(n) = 3_,,d > n+1 and thus n = O(a(n)).

For the second part consider again a function f(n) = Zl(ﬁ) This way we get f(p™) =

e S|

1-
P ST Y = me(:”i) < 2 L and applying Lemma [2.1.3| gives the desired result. [

Claim 2.1.3. A better upper bound is given by o(n) = O(nlogn).

This time we truly use analytic tools comparing the sum to a correspondmg integral
to avoid perturbations. Dirichlet himself compared ~ Zn L f(n) to % fo

Proof.

a(n)zz —n2—<nz zn;%:

m|n m<n

—n—i—nz / 1dt<n+n2/ —dt

=n+n Z(log( ) —log(m — 1)) = n+nlogn.
m=2

Since n logn is the dominating factor we get the desired result. This works because % is
smaller than or equal to the % for ¢ running from m — 1 to m. O

8



2.2 Abel transformation

Remark 2.2.1 (Integration by parts). For f, g functions we get fab f(x) dg(x) = f(b)g(b)—
— f;g(:c) df (z)

Proof. We know that( (2)g(@)) = f'(x)g(x) + g'(x) (x) and therefore [} f(x) dg(x) =

fab( f(x)g(x)) — fab g(z) df (x) and by the fundamental theorem of calculus the statement
follows. N

Theorem 2.2.1 (Abel Transformation 1). Let f, g be arithmetic functions (or even only
sequences). Then for 1 < P < @) we have that

Q
Z fn (n=1)) = f(Q+1)g(Q) = f(P)g(P=1) = > g(n)(f(n+1) - f(n)).
Proof.
Q Q Q
> fm)(g(n) —g(n—1)) = f(n)g(n) =D f(n)g(n—1) =
Q -1
= fgn) = D fn+1)g(n) =

Theorem 2.2.2 (Abel Transformation 2). Define a function g(n) = Y. _,h(m) for
some function h and set g(P — 1) = 0. Then we get

Q Q n
> fn)h(n) = F(Q+1) Zh =) (fn+1) = f(n) Y h(m).
n=P n=P m=P
Proof. Follows directly by applying Theorem [2.2.1] O

Theorem 2.2.3 (Abel Transformation 3). Let f be continuously differentiable on [1,00)
and h be an arithmetic function. Define g(x) = ZK}:I h(m), then we have

[] N
> f(n)h(n) = f(x)g(x) — /1 g(t)f'(t)dt.
n=1

Here [z] denotes the integer part of x and {x} is the fractional part of x.

9



Proof. Apply Theorem with P =1 and @ = [z]| and use the fact that f(n) — f(n+
1) =— [ f(t)dt.

o] o o] "
Z fla]+ 1)) h(n) + Y (f(n) = f(n+1)) Y h(m) =

y [x]+1
[ arwi—gta) [ ro-
| oot = gl + 1) - ) =
[ o0t - g(11(a] + 1)+ f@lota)

Therefore the statement follows. O

Remark 2.2.2. We can extend amthmetic functions g : N — C to g : [1,00) — C via

g(x) = g([z]). Then instead of Z 1, one writes Y, . and we have again the Abel
summation formula -

> fnhtn) = falale) ~ [ ato)s (0

n<lx

for g(z) = ngz h(m).

Theorem 2.2.4 (Euler summation formula). Let a € N and f : [a,00) — C be a
continuously differentiable function. Then we have

/f )dt + R

a<n<x

with the remainder term of the form

= [ @ - ),
In particular if f is monotone and f > 0 we have

O(f(x)) if fis incresing
R= e :
O(f(a)) if fis decreasing

10



Proof. Recall that we can write the fractional part of x as {x} = = — [z] and Theorem

applied to g(z) = >, _, h(m) gives
S fnhtn) = falale) ~ [ gto)f (0.

n<x
ifm=1,2,....,a—1 ift<a-1
Define now h(m) = 0 1.m I thus ¢(t) = 0 Hr=ama
1 ifm>a [t]—a+1 m>a

Therefore we get

> s Zf d-a+1)= [ (-t )f (=

n<zx

— (2] f(2) — (a— D) f(x) - / (1)t + (a— 1) / " p(ydt =
~ lalf(@) ~ (a = D7) - | L (6 + (a— D(f(2) — fla) =
~ lalf() ~ (0 - D f0) - | " (1)t

Now integration by party gives [ f(t)dt = xf(x) —af(a) — [ tf'(t)dt, and we arrive at

/f z)f(z) + f(a) — /x([t]—t)f’(t)dt:
=/ {t}f(t)ydt + f(a) — {2} f(z) =

Now we get that | [“{tLf(t)dt] < [ |[{eLf/ @)t < [ | Oldt = | [ F(t)dt] = |f(x) -
f(a)| because we consider f to be monotone, which implies that f’ does not change its
sign.

In conclusion this yields |R| < |f(z) — f(a)| +]|f(x)| +]|f(a)| and by triangular inequality
R =0(|f(z)| + |f(a)]). Finally a case distinction gives

R O(f(x)) if fis incresing
| O(f(a)) if fis decreasing

Claim 2.2.1. For P,Q € N witch P < @Q and s > 1 € R we get

Q

Lo L (L Ly (L
— ns - s—1 Pps—1 stl ps ’

In particular

oo

<1 1 1 1
- = o1 d — = O .
2o Tso1 () an N * (N)

11



Proof. For s > 1 the function f(t) = t¢* is monotonically decreasing and f(¢) > 0 for all
t > 0. Then by Theorem we get

Q Q
Zf(n):/P f(t)dt+ R where R=O(f(P)).

Therefore we have

Q 1 Q 1
S = = [Tt O(P) = (@) — Py L O(P) =
—p ne P s—1
1 1 1 1
s—1 (Ps—l QS—1)+ (Ps>
The special cases P =1,Q = oo and P = N, Q = oo follow directly. 0

Claim 2.2.2. We have
where

denotes the Fuler-Mascheroni constant.

Proof. Set f(t) = 1 and apply Theorem [2.2.4] Then this yields

S o [Flas s - s+ [ oo =
Z/N —dt+1— {N} {t}dt

N
= log(N +1—/ {}dt—l—/ {}dt—{%}

Now we have that

< {t} /°° 1 1
—=dt < —dt = d =1 — .
/N plt=] & — and so Z og(N)+~v+0O N

]

Remark 2.2.3. The Euler-Mascheroni constant v ~ 0.5772156 is congectured to be
wrrational, but it is still open. It even is not known if it is algebraic or transcendental.

2.3 Average estimates of arithmetic functions
Recall that we have already shown that p(n) = O(n) and for all € > 0 we have n'~¢ =

O(p(n)). Even though the ¢ function itself is not behaving nicely we will see that
averaging has a smoothing effect on the estimates.

12



Claim 2.3.1.
i) % Xamr @(n) = N + O(log(N))
i) & T e = &+ 0 (5.
Proof.

i) Here we use that >, ¢(d) = Sy(n) = n and the Mdbius-inversion formula which gives

(1) = X 1(d)S, (%) = X, 1(d). This way we get

> p(n) = Zu(d)g =SS k(@) =S wd) S k=

n=1 n=1 djn keod d=1 kd<N
RN N 2] Z]+D)
—;u(d)gk—;u(d) : -

= d
SRt o) ape {5 (5
—_— ~ ~ y

By the last Claim we get that Ziﬂ L = log(N) +7 + O(%) and with that ¥, =
o, 1) = O(log(N)). For the last part we obviously get X3 = O, 1) = O(N).
An estimate for 3, goes as follows

oS ulm) g plm) S plm)

m2 m2 m2
m=1 m=1 m=N-+1

M) < L and thus

Here Yooy o1
= p(m) =1 < 1 1 < 1 >>
=0 — =0 +0(—x)) =
e, m? <m§+1 m2> 2 —1(N+1)21 (N +1)2

o(3) o) -o(2)

This follows again by one of the above Claims with s = 2 and now
D=3 Mmoo oL,

m

In order to find an estimate for the sum we multiply ((s) = >, k—ls with the infinite
series > >, “qum that is

iy [ p(m > d
w2 §§ %EE%L
_Z zl:ﬂ

13



Now we have that >~ mé) = ﬁ for every s > 1. In our case we have s = 2 and

((2) = Z=, so it follows that
6 1

6 Y
Plugging together this yields

S (n) = N; (% e (%)) + O(Nlog(N)) = %NQ + O(Nlog(N))

and
—Zgo =—N+0<log( ))-

ii) Applying Theorem [2.2.3] to g(:v) = > s (M) we get

S F(n)h(n) = f(x)g(x) - / "o f (1)t

n<z

By setting f(n) = = and h(n) = ¢(n) this yields

i 200 g~ [ g = %éw h (Z w(n)) it =
= SN+ Ollog(N)) + /1 ) (%tQ Lol log(t))) i =
_ %N+ —(N —1)+ O(log(N)) + O (/1Nlog( )d log( ))
= DN+ 0108(3)) + O ((108(N))? — (log(1))?) = 5 + Ollog? (V)
Therefore

N 2
1 on) 6 log“(N) 6
N; n _7r2+0< N 2

2.4 Density of k-free and square-free numbers

Definition 2.4.1. A natural number n € N is called k-free if there is no m > 1 € N
such that m* is a divisor of n, that is that no k-th power is a divisor of n. Square-free
15 the special case k = 2. Define a function

1 if nis k-free
pu(n) = { :

0 else

Remark 2.4.1. Let n be a natural number such that n = h*l where [ is k-free and h > 1.
If m* is a divisor of n then it is also a divisor of h* and thus m itself is a divisor of h.

14



The other way around if m is a divisor of h then clearly also m* is a divisor of h*. With

that we have
1 ifh=1
> ulm) =3 p(m) = {0 Fho1

mk|h m|h

Therefore pu(n) = 3, k), (M),

Definition 2.4.2. The natural density of a set A C N is defined to be
as N — oo. Clearly here we have 0 < o < 1.

#nshined) _,

Claim 2.4.1. We have

Zuk :—)—l—(’)( ”1>.

That is that de density of the k free numbers equals therefore wn particular the density
of the square-free numbers equals 5 >

Proof.
1 & 1 1 1
o) =y > um) = > pm) =+ D p(m) Y 1=
n=1 E<N mk|n m,l mkI<N mSN% lg%
1 N 1 N N
=5 X || =5 X wow (- (e }) =
mINk m<INk

Claim 2.4.2. For the Dirichlet divisor problem we get that

L
ZT =log(N)+ (2y—1)+ O(N™2).

n:l

Here we are going to use the so called Dirichlet hyperbola method to count the
lattice points under the hyperbola xy = N in order to get the sum of the divisors.

Proof. First recall that 32 7(n) = 2N 37 1 and observe that this summands
can be represented by integer points under the hyperbola zy = N. A further observation
(dating back to Dirichlet) is, that the square with coordinated (v/N,+/N) divides the

15



area under the hyperbola in two parts with equally many integer points, here denoted by
AU B and BUC (see figure below). Thus it follows that we can express the sum as

N v &
;T(n)=2;§v1_[\/ﬁ]2:2; {ﬂ WA =
55 (X {2)) - - -
:zNVN%_Qﬁf{%}_4N—2¢Nhﬁﬂ+{¢ﬁp%:

n=1 n=1

— 2N (log([VN] 4+~ + O (L> +0 (\/N) — N+2VNO(1) + O(1) =

VN
= 2N1og(VN — {VN}) + 2Ny + 0 (VN) = .

Now we claim that log(v/N —{v/N}) = log(v/N) +(9(\/LN), and indeed by the mean value
theorem there exists some ¢ € (VN — {v/N},V/N) such that

logay — 1 _ oa(V/N) —log(VN — (V)
e VN

and therefore

sV~ (VA = log(vR) - V.

Since * < m < \/Q—N holds for large enough N we sce that £ = (’)(\/LN) In conclusion
we get that

ir log(\/_+(9<\/_

= Nlog(N)+(2vy—-1)N+O <\/N) :

)+N(27—1)+O<\/N>—

xy=N

16



Definition 2.4.3. The Dzirichlet series of an arithmetic function f at some point
s € C is defined to be

Dy(s) = Z f(").

ns
=1

3

Claim 2.4.3. If the Dirichlet series D¢(s) and Dy(s) are absolutely convergent then we
have the identity

Diy(s)Dg(s) = Diug(s).
Proof.

n=l mk n=1"" mln n=1

Corollary 2.4.1. We have that

Zufnn:)zﬁ for s > 1.

We have already seen a proof of this statement in Claim [2.3.1] but here we show it
again using the Dirichlet product.

m=1

Proof. Define the function I(n) = 1 for all n € N, then we have that ((s) =Y °, & =
D;(s). Now we use the Mobius-inversion formula p % Sy = f and get that

1 ifn=1

x] =pu*xS, =e=
prEsm ‘ {o ifn>1
because Se(n) = >_,, e(§) =1 = I(n). Therefore we get

e(n)

nS

Di()Du(s) = Dry(s) = Dels) = 3 O =3

n=1
and with that ((s)D,(s) =1 concluding the proof. O

Claim 2.4.4. Assume that D(s) is absolutely convergent. If f is a multiplicative function

then we get
Dt =TI 707

peP >0

If f is even strongly multiplicative, that is f(mn) = f(m)f(n) for all m,n then we get
the Euler product representation

1
Df(S):Hl_f(p).

peP p*®

17



Proof. First note that ) -, f;f:) is absolutely convergent for any prime p as a sub-series

of >0 £52. Therefore
f f(n
Iy - I

p<k v>0 plnp<k
Let k£ — oo then -
f(p fln) _
HZ pvs Z ns )
p v>0 n=1

If f is strongly multiplicative then f(p*) = f(p)* and so

S (8 -

v>0 v>0 p*

because | since else the series would not be convergent. O

2.5 Analytic properties of the Dirichlet series

Claim 2.5.1. If the Dirichlet series Ds(s) = > 7 I0) - converges for some sy € C then

n=1 ns
it converges uniformly for every s € C for which —a < arg(s — so) < a for any a < 7.

Let us first recall the definition of uniform convergence. Let S be a set and
fn: S — C asequence of functions. We say that { f,,} converges uniformly to a limit f if
we have that for every € > 0 there exists some index N € N such that for every z € S and
n> N |fu(z) — f(2)| < e. Therefore we see that the series Dj(s) = 52°°, {2 converges

n=1 ns

uniformly if the sequence { Dy, (s)}2_, = {37, L (m)1oo  converges uniformly for every

nS
s e C.

Proof. Without loss of generality we can assume sy = 0 because else we can transform
the series by D¢(so) = D i) (0). Since Dy(0) is convergent by assumption we get that the
partial sums from some Igoint on get arbitrarily small, that is for every ¢ > 0 and fixed
a < 7 there is some index K depending on € and o such that |Z7]:[:M f(n)| < ecos(a)
whenever N > M > K.

We want to show that for every s € C with |arg(s)| < a we have that | SN/
and use Theorem [2.2.2] for that matter.

f(n)

ns

< €

N

‘N—l—l Zf )+ ) (n = (n+1)" Zf
n=M n=M
1S s \

N
+ Z In™*—(n+1)"
Recall now the de Moivre’s formula. Let z € R then we have that e = cos(x)+i sin(z)
and for s € C we have that 2° = 272 = 17¢'°8" = 29(cos(tlog x + isin(tlogx). Since
the absolute value of the latter part is 1 we get that |2°| = 27| = |2f¢(*)|.
Now we use this fact and the estimate for the series in 0 and get that

Zf

(N +1)"

(N + 1)~ Fe®e cos(a) + e cos(a Z n™*—(n+1)7°
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As an estimate for the summands we get that

1 1 s
— — = dt ——dt = e lgt =
P I I || /n ts+1 ‘ |S’/ ‘terl‘ E |/
E —Re(s) _ -R Rl
_ e(s 1 e(s) < e(s) 1 Re(s)
Re(s) (n (n+ 1)) = cos(a) (n+1)775).
This last inequality follows because for |arg(s)| < a we have that cos(arg(s)) = Rrs(f) >«
and therefore RLS(|S) < cosl(a).
Plugging things together yields
ecos al
1)~ Re(s) —Re(s) 1)~ Re()y —
+1) e cos(a) cos( 712]\:4 (n+1) )
= (N + 1) FGecos(a) + e(MHE) — (N 4+ 1)7Fe)) =
= eM T L (N 4+ 1) (cos(a) — 1) < eM T < e
[

Definition 2.5.1. The convergence abscissa of the Dirichlet series Dy(s) is defined
as
=inf{o = Re(s) : D¢(s) is convergent}.

Definition 2.5.2. The abscissa of absolute convergence is defined to be
oy =inf{o = Re(s) : Dyy(s) is convergent}.

Example 2.5.1.
i) For ((s) =Y., L we have that oy = 1.

n=1n

i) For Y >, (n—TH we have that oo = 0 and o) = 1.
Claim 2.5.2. For the abscissa we have that oy < o9 + 1.

Proof. Let s = o + it € C and 0 > 0¢. Then we know that D¢(s) is convergent and
each of its summands is bounded, that is |f(n)n~*| = |f(n)||[n"*| = |f(n)n™ 7| < K for
all o > 0y and some K constant. Therefore we have that

o0 [e o]

1
Z Z ‘na+1+e - Z F <

for any € > 0. Thus we see that D (s + 1 + €) is absolutely convergent and so oy is at
most o + 1. [

ns+1+e

Claim 2.5.3. Let the Dirichlet series D¢(s) and Dy(s) be convergent for Re(s) > oq. If
for all s with Re(s) > o the equation Ds(s) = Dy(s) holds, then we have that f(n) = g(n)
holds for all n € N.

Proof. Consider the difference Dirichlet series

Da(s) = Dy(s) Zf =Z
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We now want to show that h(n) = 0 for all n € N. Suppose that there exists some N € N
such that h(N) # 0 and take this N to be minimal. Then we get that

— h — h
Dy(s) = g SZ):OandSONS g %:O.
n=N n=N

Let € > 0 be arbitrary, then since N®*Djy(s) is uniformly convergent for all s where
Re(s) > oy there exist some M such that | " h(’;)SNS| < 5.
We have that

0= - NSh(n):h(N)+ i N*h(n)

ns ns
n=N n=N-+1
and therefore y
Nsh(n . Nsh(n
- = 3 Ay A
n=N+1 n=M+1

For the absolute value we see that

M o)

N*h(n) N*h(n) €
h < N i
< | Yo MR s NI e
n=N+1 n=M+1
because once € is fixed so are both M and N and then (%)S gets small when n €
{N +1,...M}. Thus we get that A(N) = 0 which is a contradiction. O

Remark 2.5.1. Since D¢(s) is uniformly convergent on any compact subregion of Re(s) >
oo and each partial sum ij:l fr(;:) is analytic, it follows that Dy(s) itself is analytic and

may be differentiated term by term.

2.6 Connection between arithmetic functions and Dirich-
let series

Definition 2.6.1. The Liouwville function is defined to be
1 fn=1
A(n) = b "
(=D)mtrer if no=pit - ppt
We have that \(n) is a strongly multiplicative function.
Definition 2.6.2. The von Mangoldt function is defined to be

A(n):{log(p) ifn=p"

0 else

Claim 2.6.1. The following identities hold:
i) 300, M = L if Re(s) > 1
ii) 302y T = ()% if Re(s) > 1
i) S0, 2 — ¢(s) ¢(s — 1) if Re(s) > 2
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iv) 202, G = <G if Re(s) >
v) oo, A = 25) if Re(s) >

vi) Yo, An?) = —Tj)) if Re(s) > 1
Proof.

i) We have already seen two proofs of this, one in m
ii) Note again that ((s) = D;(s) and so by claim it is enough to show that I« [ = 7.

I+I(N)=Y" I(d)](%) =3 1=1(n).

dn dn

iii) We can write

=y Ay s S~ o)

n=1 n=1 n=1 n=1
Clearly here we have that the convergence abscissa is 0y = 2, and set f(n) = % With
this choice of f we have that D,(s) = D,.f(s—1) and we want to show that D,.f(s—1) =

D¢(s —1)Dr(s —1) = Dy,y(s — 1). Now we see
n d
=S @) =315 =2 S d= o) = (o F)(n).
dn din dln
iv) Use again the function f(n) = . We have

I

n=1

To verify this we have to prove that Df(s — 1)D¢.f(s — 1) = Dy(s — 1).
fxle-fn) =) f(d) w( sto Zw = 1=1I(n).
din din

v) Since we noted that A is a strongly multiplicative function we get by claim an
Euler product representation of the form

1 1 1—# 1 1 B ¢(2s)

p ps

Here we used that (a + b)(a — b) = a — b? and therefore also (a + b) = ©=2
vi) Recall that
= —logn f(n) = logn
Di(s)Y —=——Zandso —('(s) = _ == = Diog(s).

n
n=1 n=1

We want to show that Da(s) ((s) = Dig(s), that is A * I = Sy = log. Indeed we have

that
= ZA(d) = Z log(p;) = Zaz log(p;) Zlog = logn.

dln p;tin
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Remark 2.6.1. In the last step of the proof we have just seen that Sy(n) = logn.

Claim 2.6.2. For the Liouville function we get the identity

= Su()

m2|n

Proof. Define a function g(m)

1 if m = n?
nme=n , with that we get
0 else

(e =Y = p

n=1 m=1

In the last claim we have proved that D,(s) ((s) = D,(s) and thus by claim we get
that A« I = S, = ¢. By the Mobius inversion formula we get that A = p xS\, = u *q,
which gives

2.7 Analytic continuity of Dirichlet series

Definition 2.7.1. Let U,V C C be open subsets such that U C V. Let f : U — C be
an analytic function and F :'V — C an analytic function such that F|y = f, that is
F(2) = f(z) for all z € U. In this setting we call F an analytic continuation of f.

Remark 2.7.1. Set A(n) = (=1)""! for alln > 1, then we get

Here we see that Da(s) has a convergence abscissa og = 0 while ((s) is only convergent
for Re(s) >1

Question: Does ((s), or other Dirichlet series, have an analytic continuation to the
left of the convergence half-plane?

Theorem 2.7.1 (Landau). If f : N — R is such that f(n) > 0 for all n € N and the
Dirichlet series D¢(s) has a finite convergence abscissa oy, then Dy(s) is holomorphic in
Re(s) > o¢ but can not be analytically continued past Re(s) = oq to a region including
the point s = oy.

Proof. Recall that the Dirichlet series Dy(s) is uniformly convergent for Re(s) > oy, so
we can differentiate it term by term which gives:

- ogn. o k - . f(n) log®(n
Z f 1g // Zf lg ..;D;)(S):Z(—l) f( )1g(>

ns
n=1
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Since Dy (s) is holomorphic in an open disc around o = 0y + 1 we can get a Taylor series
expansion of D(s) with center o. Then

x_ DW(o) = (—1)* f(n)log®(n = (00— 8)F f(n)lo
F(s):; fk! (S_U)k:k;z_:l( k!) S )nag( )(S_U)k:k;z_:l ngg( n)

is a power series with Dy (s) = F(s) for each point of the disc centered in ¢ with radius
one. Assume now that the power series F'(s) is convergent past the point Re(s) = oy,
that it is has a radius of convergence bigger than one. Then it also converges for some
s < 0 on the real axis and since we have that f(n) > 0 for all n we get that it is even
absolutely convergent and so all permutations of the coefficients are permitted. With
that we get that

n) e= ((c —s)logn)" X f(n Yogn _ = fn) L. <= f(n
Py = 32 10§ (0= g’ = 0] o §100) o5 S0)

n=1 k=0 ) n=1 n=1 n=1

But with this our oy would not be the convergence abscissa of Df(s) which gives a
contradiction. Therefore F'(s) can not be convergent past Re(s) = o and so Dy(s) is
not analytic to the left of Re(s) = 0y, including oy. O

Claim 2.7.1. The Riemann (-function satisfies the integral formula

C(s) = s/loo[x]x_s_ldx for Re(s) >1

Furthermore it satisfies

((s) = ! +1—S/100{}d56f07‘R6() >0

s—1 s+l

and therefore can be analytically continued to a holomorphic function in Re(s) > 0 with
a single pole at s = 1 with residue 1.

Proof. For the first integral formula we have

n=1 n=1 n=1 n=1 n=0
n n . - e
— _ = g 1 -5 — - d
> g = o ) = S JRRCRLE
o0 n+ oo n+1 oo n+1
= Zn s/ v 5 e = sZn/ v 5 e = SZ/ [z]z™* tdo =
n=1 n n=1 n n=1Y"

This works since for = € [n,n + 1) the integer part [x] = n. For the second part consider
the integral

5/ v e = s/ x %dx = / (—s+ 1Dz %de = — / (x5 do =

B S 1 1
o s—1 ps—l 15—1

S

p—00 s—1
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for Re(s) > 1. So we see that ((s) — s [~z 27 'dz = ((s) — 1 — 15 as well as

C(s) — s/loox R s/loo([x] — )z ¥ e = — 1 isjl

The integral [° - {r} 4z is absolutely convergent for Re(s) > 0 and ((s) = 1 + L -

s floo z{le dx is holomorphic for Re(s) > 0 with an exception at s = 1 because the integral
is holomorphic there. Clearly we have a simple pole at s = 1 with residue a_y =1. [

Remark 2.7.2. The integral formula in the above claim is closely connected to the
Mellin transform of [x]

(MS}(s) /f dz.

Since fol [z]z=*"1dx = 0 (the integer part is always 0) we see that
C(s)=s {M[-]}(—=s) for Re(s) >1

Claim 2.7.2. If f: N — C and g(z) = 3, ., f(n) are functions satisfying < 92 50 for
Re(s) big enough and x going to infinity and floo x5 Ydx is convergent, then

Dy(s) = s/loo g(z) 2~ \dx.

In particular for the ¢ -function of Chebyshev ¢(x) =>_ _ A(n) we get the integral
formula -

) [T,
o ) SSHd:U for Re(s) >1

Proof. Using Theorem [2.2.3| we have
’ - g(x) / “g(t)
— — () dt = dt.
@~ [ ateya =22 15 [0

If s is such that gif) — 0 as x grows and the integral is converging we get the integral
formula for the Dmchlet series.

n<x

Recall that ">, ns = —%. Now we have ¢(x) = anm A(n) = vagm log(p) <
xlog x and
1 1 1
|¢(I)| < rlogr Og‘f < - for all € > 0 and x large enough.
s i o~ xoT e
If0>1,a—1—6>0,‘% o Ethenthemtegralfl ts“ di
is convergent. =
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Chapter 3

The Prime Number Theorem

Claim 3.0.1. There exists some constant ¢ > 0 such that for the prime counting function
m(x) =3 ,<, 1 we get m(x) > clog(log z).

Proof. First note that the claim also follows immediately by Euclid’s theorem since
limg_oom(x) = 00.

Observe that for small primes we see that p; = 2 < 22", p, =3 < 22" ps =5 < 22 and
so on. Assume now that p, < 22""" holds and consider N = p1p2 - - pn — 1. We see that
ged(N, p;) = 1 for every i = 1,...,n and so the first prime p which can divide N is at least
as big as p,1, that is

n— n— 2" _1 n
Pt KPS N <ppeop, <2%92% .02 = 92422 _ 955 92"

Thus we have proved by induction that p,,; < 22" holds for every n € N. Let now m € N
be maximal such that 22" < z holds, that is 22" < z < 22",
Then we have that p,, ;1 < 22" <z and so 7(z) > m+ 1. On the other hand we see that

log(logz) < (m + 1)log(2) + log(log(2)) and so w(z) > m +1 > lolgo(g()g)x) - logl(()lgé()?)) >

clog(log z). O

Claim 3.0.2. There ezists some constant ¢ > 0 such that 7w(z) > clogx.

Proof. The idea of this proof goes back to Dressler and Erdos.

Think of all square-free integers n < x and their unique representation of the form
n= Hf:(? p;" where v; € {0,1} and p1,p2, ..., Pr(z) are all primes up to x. Therefore the
number of square-free integers up to x is at most 27,

On the other hand we have already showed that 3, ., u(n) = 75 + O(y/x) where u(n)

is one if n is square-free and zero else. Therefore there exists some ¢ > 0 such that

27(@) > ¢’z and so 7(z)log(2) > log(c) + log . O
The true growth rate of 7(x), that is m(z) ~ 7=, was already predicted by Legendre
and Gauss.

Conjecture of Gauss: 7(z) ~ Li(z) = [} @dt where Li is the so called offset
logarithmic integral.

T

Remark 3.0.1. For the logarithmic integral we get the asymptotics Li(x) ~

logz”
Proof. By applying L'Hopital’s rule we get
. 1
Li(x Togz . 1
lz'mx_woL = lzﬁ?@%_ﬂ)oll#1 = limy oo = 1.
logz logz  (logz)?  logw
Note that Li(x) — oo since log(t) < t°. O
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Remark 3.0.2. We have that (x) ~ 10290 holds if and only if for every e > 0 and some
x > N the inequalities

(1—e)

< < (1
log x sm(z) < ( +€)10gw

hold.

Let us note some historical efforts and results connected to the prime number theorem.
Around 1850 Chebyshev showed 0.9210‘;“96 <7(z) < 1.1110;6. In 1874 Mertens managed to
show Zpgx% ~ log(log z) and in 1896 de la Vallée Poussin - Hadamard got m(z) ~ ==
Around 1980 Newman had a more elegant proof of the prime number theorem using a

Tauberian Theorem, we will see Newman’s proof later on.

Theorem 3.0.1 (Chebyshev). There exist two positive constants ¢; and co such that for
large enough x we get

<7(z) <c

“ log x logz’
In order to prove this theorem we need the following lemma.
Lemma 3.0.1. The following estimates hold for the von Mangoldt function:
i) Yep M) [£] = zlogz — 2 + O(log z)
i) anm A(n) ([%] -2 [%]) = zlog(2) + O(log x).
Proof.

i) Recall that we have already seen ) din A(d) =logn and consider > _ logn.

n<x

Dlogn=3 3 Ad) =" Y Ad)=Y ADY 1=Y AW |3].

n<x n<z dn d<z dk=n<z d<zx kg% d<zx

Now we estimate ) _ logn via Euler summation formula, thus note that f(z) = logx
is a monotone increasing function and so

S fn) = / " f(t)dt + O(f(x)).

n<x

Zlogn = /j log(t)dt + O(logz) = /j[(tlog(t))’ — 1]dt + O(logz) =

n<x
=zlogz —1log(l) — (x — 1) + O(logz) = xlogx — = + O(log x)
Now we have two representations of the sum and the statement follows.
ii)
x x x x
> ([ -2[5]) = X am 7] -2 am [5] -

n<zx

=Y am) [5] -2 3 Aw) {%/2} 2 Y Aw) {%/2} _

n<x n<g S<n<z
T

i) _ _o(* T —
=zlogx —x + O(log x) 2(210g(2> 2+(’)(10gm))
=zlogz —x + O(logz) — z(logx — log(2)) + z + O(log x) =
= zlog(2) + O(log x).
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Now we can prove Theorem [3.0.1

Proof. We will explore the function 7(x) through analysis of ¢(z) = > _ A(z). There-
fore observe that m(z) =3 _ 1 and ¥(z) =3 . An) =3 ., log(p).

> " A(n) Zlog => ) log(p) =) logp) Y 1=

nse Pe as kas R
1
—Z { ogx} SZlogleogxﬁ(a:).
p<z log(p) p<w

Note now that [z] > x — 1 holds for every z and so [a] —2[4] < a—2(% — 1) =2 and
[a] — 2 [2] € Z so we get [a] — 2 [4] < 1. Therefore we get

A1z A ([7] -2 |5 ]) = log(2) + Ofloga).

This gives now xlog( )+ O(logz) <> . A(n) < m(x)logz and so there exists some
¢; > 0 such that ¢ (7) holds for x large enough.

To get the upper bound of (x) we will use the dyadic partition of the interval [1,z] in
subintervals of the form [%, 5£), that is [1,z] = [1, %) U [&, 5&5) U--- U [£, 2]. Where
k > 0 is chosen such that 2F < x < 28!, Then we get a telescopic sum of the form

soos =5 (s ()18 () = (5 ot (55:))

1=

) e\
since 7(z5%r) = 0.
Consider now the difference

m(x)logr — m < ) log (;) = log <g> (7‘(‘(1‘) -7 <§>> + 7(x)log(2) =
= log <g> (71'(1’) - <§>> +O(x) = (;) Z 14+ 0O(z Z log(p

7<p<z 7<p<m

(Z An)+2)=0 Z A(n)([ﬂ—Q[%D%—x =

%<n§x %<n§x
x x Lemma 2.1
o (s ([ -2 []) =) == o
(e (2] -2 [)) +» @)
Here we use the fact that [7] > 1 and [5-] = 0 for § < n < z and that [a] — 2[5] >
a—1—25 = —1and so we can add the summands for n < 5 to the error term.
Now since 7(z) log z—7 (£) log (%) = O(z) we get that w (%) log (%) —7 (357) log (557) =
O (%) and so
i T L
x)log:c:Z(’)(Q—k> =0 <x2§> =0(x
i=0 =0
because Y (55 < 00.
Therefore 7(z) = O (logg”x). O
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Claim 3.0.3. The statement m(x) ~ o= is equivalent to (x) ~ .

Proof. We have to show that lim,_, . (T = lim, o m(x )loﬂ In the proof of Chebyshev’s

theorem we have already seen i (z) = > _ A(n) < w(z)logz, that is 1/’( ) < n(x )8,
For any 1 < y < x we have

r(e) =)+ 3 1<a(y)+ 3 el gre v, vlo)

y<p<z y<p<z log y a log(y) log(y)
Now multiplying both sides with loix and setting y = 102;;: gives
log x 1 x log x 1 x 1
oz b(@) : . @1
T log(y) x logz — log(log z) log x — log(log x) T 1_ Ogl( og )
ogx
All put together yields
1 1 1
V) _lose e,
x x log x — log(log ) r 1 _ log(logw)

logx

and we see that RHS — lim,_, @
So we see lim,_, wgr) < limg o W(m)k’% < limg_y o Y@ and equality holds. Therefore

we get the statement. O

Theorem 3.0.2 (Mertens, 1874). The following asymptotic approzimations hold:
) e) — Jog 2+ O(1).
i) Zp<x < =log(logz) +c+ O (logm) :

Remark 3.0.3. These claims are one step closer to the Prime Number Theorem after
Chebyshev’s Theorem, they are asymptotics Zpk<m log(p) ~ log x whereas the PNT claims

Zpgg; log(p) ~ z
Proof.

i) From Lemma 3.0.1| we have an asymptotic formula for » _ A(n) [£] which is similar
to > <, log(p ), so we try to use it here. Consider

rlogz —x + Ologa) = Y A(n []—Zlog(p)[] > " log(p) {}

n<lz p<lzx pY<z
1/>2

:Zlog(p)%—z:{p}vLO > log(n) | =

p<a p<a p¥<z

1/>2

B log(p logn |
—zy —= p <Zlog >+0<Z n2>_

p<z p<z =1
= Zg—+(’)<logx21> M%—O(logx@ ’ )—i—@(m):

P log x

p<zx p<zx p<lzx
=z Z log(p) + O(x).

p<z p
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In the last step we used Theorem and we get

S L toga — o+ Ollog ) = log o+ O1),

p<w

ii) Here we are going to use i) and Theorem [2.2.3|

log(p) 1 1 log(p) v log(p) dt B
Z -2 p log 10ng p +/2 (Z p )t(log(t))Q_

p<x p<z p<z

2140 (ng) log(t) (Z 10gp(p) B 10g(t)> HOZ% —

p<t
N

T ow(t)t
=14+0 —_—.
* (log x) 9 tlog /2 tlog?(t)

Note that (log(f(t)) = Lf( ) so we have log(t)}t log (log( ))’ = (log(log(t)))’. More-
w(t

over by i) we know that w(t) = O(1) for any ¢ and so [, 263) < 0. Therefore we
get

1 o dt 1 o dt

= = log(logz) + ( 1 — log(log(2)) + / +O +/ / -
3, =ostiosa) + (1 tostton@) + [t ) +0 (1 [0l )

1
= log(logz) + c+ O <logx) :

]

3.1 Newman’s proof of the Prime Number Theorem

Theorem 3.1.1 (Prime Number Theorem). The asymptotic equivalence 1(x) ~ = holds.

The main steps in the proof of Newman are:

-1
L ((s) =TI, (1 - #) for Re(s) > 1. (Euler)

I. ¢((s) — -5 extends holomorphically to Re(s) > 0. (Riemann)

III. ¥ (z) = O(z). (Chebyshev)

IV. {(s) # 0 for Re(s) > 1 (Mertens) and —Ccl((j)) — -5 is holomorphic for Re(s) > 1.

V. [* w(i —dx is a convergent integral. (Newman)

VI. ¢(z) ~ z. (Newman)
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We will first discuss the ideas of Newman, that is we will formulate an Analytic Theorem
of Newman, its Corollary, which will assure that V holds for more general functions and
then the implication V' = V' I. Then we will specialize the argument for the function
¥ (x), which satisfies V because of I-IV. We only need to prove IV (and the statements of
Newman) as I-IIT are already shown (more or less) due to previous lectures.

Theorem 3.1.2 (Analytic Theorem of Newman). Let F(t) be a bounded complez-valued
function F : (0,00) — C which is integrable over every compact subset of (0,00). Suppose

that the Laplace transform of F(t), given by G(z fo _tht for Re(z) > 0, extends
holomorphically to Re(z) > 0. Then the zmproper integral fo t)dt converges and equals
G(0).

Corollary 3.1.1. Let f(x) be a monotone non-decreasing function defined for x >
1 satisfying f(x) = O(x). Consider the Mellin transform of f(z), given by g(s) =
sffo f(x)z=*"'dx for Re(s) > 1, and assume that g(s) — -5 is a holomorphic function
in a region containing the closed half-plane Re(s) > 1. Then we have the asymptotic

expression f(x) ~ cz.

Proof. Define the function F(t) := e 'f(e') — ¢. Then we see that F(t) is bounded for
t € (0,00) since f(e') < ke' and thus it is also integrable on every bounded subinterval

of (0,00), that is f; F(t)dt exists for all 0 < a < b < oo. Consider now the Laplace
transform of F'(¢)

Glz) = /0 T Rt = /0 Tt (e — et “= /1 T () — e dloga =
—/Oo(rc‘lf(x)— - lda:—/ flae 2z —c [ "o o =
/ Fo)o2do— & = g<z+1>—f:L(g<z+1>—M)=

z z+1 z
(<+1> . )
z—l—l g z

Thus G(2) is well defined for Re(z) > 0 and by assumption g(z + 1) — ¢ is holomorphic
for Re(Z) > 0. By the Analytic Theorem of Newman, for ¢t = log z, we have

G(O)Z/OOOF(t)dt:/O (e t_/ @) —er

that is that the integral [~ f@er converges. (Point V)

Assume now that limsup,_, fo)

> ¢, that is for infinitely many arbitrary large = we

have @ > Ac for some A > 1. Then take these infinitely many x and consider the
integral

Az —ct \ex — ct A \r —t AN —=1) ¢
f(t) Cdt>/ Md_c/ v dt—c/ Md_
12 . £2 ., £2 . £2 T

t
X—Hﬁ

)\)\_

1

=C

—ct
t2

[ f—QCtdt‘ < €. Hence
M1 t

This works since A > 1 and thus contradicts the integral f1 being convergent,

because for any ¢ > 0 and pq, us large enough we should get
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lim sup,_, ., % <ec.

Assume now that liminf, . (;) < c then there exists some p < 1 such that for infinitely

many arbitrary big z we have f(z) < pcx. Then

ﬂﬁt—t —t x — ¢t T2 (u—1t) ¢t
» e b o t x
—t
:c/'u dt <0
W t?

Again this works since u < 1 and contradicts that the integral should be convergent,
therefore lim inf, @ > c¢. So we get that lim, . @ =cand so f(x) ~ cx. O

Theorem 3.1.3 (Prime Number Theorem). The asymptotic equivalence ¥(x) ~ x holds.

Proof. We have already shown that w(z) ~ 109;1 & ¢Y(x) ~ z. By Claim we

know that for Re(s) > 1 we have —g((;)) = s 1 e +1dm that is the Mellin transform

of ¥(x) is —% Da(s). Further we have that ¢(z) = > . A(n) < > log(p) <
logz ., 1 =logan(z) <logzeyr < caw so Yh(x) is non-decreasing and ¢ (z) = O(x).

So by the Corollary |3.1.1] it is enough to show that % is holomorphically extendable

past Re(s) = 1, that is —CC/((;)) — ﬁ is holomorphic in some region D containing the

closed half plane Re(s) > 1. Recall that we have already seen (in Claim [2.7.1)) that for
Re(s) > 0 we have ((s) = 25 +1—s [~ ;f—+]}dx and so ((s) is analytically continued
from Re(s) > 1 to Re(s) > 0 with a simple pole at s = 1 with residue 1.

Therefore we have that —Ccl((j)) — %1 is holomorphic, with a single exception at s = 1, as

long as we can guarantee that ((s) # 0.

Let C = {s € C: |s—1| < ¢} and assume that in C' we have ((s) = (1 + h(s)) for

some analytic function h. Now actually h(s) = (s — 1) (1 —s [~ J;{Sﬁ}l dx) is holomorphic

for Re(s) > 0 and also bounded on compacts. Choose 6 > 0 small enough such that
|h(s)| < 1 holds.We get

W (s)
s—1

! _ 1 s
C(s) = gy mqya(1 +his) +

and so

_C’(s): s—1 (1+h(s)_h’(s)>: 1L W(s)
C(s) 14h(s)\(s=1)?% s—1 s—1 1+h(s)

By the choice of the disk C' with radius § we have 1+ h(s) # 0 in C and so — Cl((;) - L=
—1}1,52 5 is holomorphic in C aswell.
In order to apply Corollary [3.1.1f we need to assure that — ((;)) — S_Ll is holomorphic

in some region D containing Re s) > 1. For Re( ) > 1 we have the Euler product
representation ¢(s) = J,(1— - )71 as in Claim [2.4.4{for f(n) = 1. Note that each of the
factors (1 — 5)~! = psp—jl > 1, so we have that C( ) # 0 for Re(s) > 1

What is left to show is the same claim for Re(s) = 1 and s # 1. This will be the next
Lemma.

Lemma 3.1.1 (Mertens). For Re(s) =1 and s # 1 we get {(s) # 0
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Proof. First note that 3 + 4 cos(p) + cos(2¢) > 0. Indeed using cos(2a) = 2 cos?(a) — 1
we get

3+4 cos(ip)+cos(2p) = 3+4 cos(p)+(2 cos*(¢)—1) = 244 cos(p)+2 cos®(¢) = 2(1+cos(p))? > 0.

If for t # 0 we have that (1 +it) = 0, then O(s) = ((s)3C(s + it)*((s + 2it) possesses
zero at s = 1, because ((s)® has a 3-gold pole which is prevailed by the 4-fold zero of
((s+7it). Also O(s) is holomorphic around s = 1. Therefore lim;,_,; log(|0(s)| = —c0
Recall that for some z € C we have |z| = |efelleen)tilm(losn)| — |cRellos )| and so log |z| =
Re(log x). Let us now approach s = 1 from the right along the real axis, therefore let
o > 1. Thus we know that we have an Euler product for the ¢ function. Now we get

log [ (o + it)] = Re(log(¢(o + it)) = Re(log(] (1 —p~7") " ——ReE:bg p ) =

p
Z p—a zt

for some non negative a,, > 0. Here we use the series expansion of log(1—z) = — >~ 7, %
for |z] <1 and |p~?| < 1. Then we get

log |©(0)| = 3log[((a)| + 4log|((o +it)| + log |((o + 2it)| =
= 3Re(z a,n"7) + 4Re(z apn ") + Re(z an 7 =

n

. 1
O’—lt_|_§(p) o— 7,t R@ Zann o— zt

[\Dlr—t

Z ann (3 4 dnl—it + n=%%) Z a,n (3 + 4cos(tlogn) + cos(2tlogn)).

The last step works because n®* = cos(log nx)+i sin(log nx). If we now use our observation
we see that log|©(c)| > 0 which contradicts lim,_,; |©(s)| = —oo. Therefore we get
C(144dt) # 0 for any ¢ # 0. O

With this lemma we have everything we needed to show and the proof of the Prime
Number Theorem is complete. O

What is left to show is that the Analytic Theorem of Newman holds. Therefore first
recall the formulation of the Theorem:

Theorem 3.1.4 (Analytic Theorem of Newman). Let F(t) be a bounded complez-valued
function F : (0,00) — C which is integrable over every compact subset of (0,00). Suppose

that the Laplace transform of F(t), given by G(z) = [ F tht for Re(z) > 0, extends
holomorphically to Re(z) > 0. Then the zmproper integral fo t)dt converges and equals
G(0).

Proof. Without loss of generality we can assume that |F'(¢t)] < 1 for all t > 0, since else
we can just look at Fy(t) = %.

For every A > 0 define
A
Gi(z) = / F(t)e *dt,
0

which is holomorphic for every z € C because F(t) is compactly integrable and e~
holomorphic itself. Now it is enough to show that

zt iS

lim Gy(0) = lim [ F(t)dt = G(0),

A—00 A—00 0
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that is G(0) — GA(0) gets arbitrarily small for A large enough.

Recall Cauchy’s integral formula for simple closed, positively oriented curve v and f some
holomorphic function in and on « (that is, f is holomorphic in an open subset U such
that v € U). Then for any point a inside the area surrounded by 7 we have

f) .

27 z—a

fla) =

In particular if v is a curve around a = 0 then we have

O)-%/y@d

Take R to be large enough and ~ to be the boundary of the region {z € C : |z| <
R, Re(z) > —46} where § is chosen small enough such that G(z) is holomorphic on ~.
Then by Cauchy’s integral formula we get

G(0) - Gr(0) = 5 / (G(2) = Cr(2)e™ (1 + Rﬁ _
:/7+ %(G(z)—(h(z))e / _GA (1+%)%+

t / G(2)e™ (1 + RZ)d’" .

J/

I3

Here we use the notation v = {|z| = R, Re(z) > 0} and v~ = ~\y*.

On the semicircle v* we have
) A
G(2) — gr(2)] = / F(t)e*dt — / F(t)e—ztdt‘ _
0 0

< /OO ‘eiZt‘ dt = /Oo e dt = le’x’\
A A T
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for x = Re(z). Note that on the curve v+ we have 2z = R? and so

221 1 z z z zZ+z 2z

(a+—3) + +

a —_— ) = - _— = — _— = = —.
R2z z R2?2 2z 2z R? R?

Therefore we get

1 221 1 2x
| = |— — Az 1 - < -\ Az _
|| = 5 2/ (G(2) — Ga(2))e™( +R2)Zdz o / —e e Rde
1 1 1
- [ dr=—gR=>
) T IRTTR

For estimating I, notice that G,(z) is entire, that is holomorphic on all of C, so by
Cauchy’s Theorem we can change the path of integration by looking at 77 = {z € C :
|z| = R, Re(z)=0}. Using again |F(t)| <1 we get

|GA(2)] = _tht‘ /|e—zt|dt / <
1 \ —m)\
— (e 1
< x(e )< 7

since on 77 we have x < 0. This gives

1 d
- 271 2
1 e~ ™ 2z 1 1
< — —e——d d = —7R =
2m /5 || ¢ R? °= TR? = 7TR27T R

Finally notice that in the estimate for I3 we have the function G(z)(1+ ;—22)% which does

not depend on A, it is holomorphic on 47, so it is bounded on the curve. Thus on v~ we
have

22 1

G0+ )t

72 <K

for some K = K(R,0) > 0. Then we get

1 K
K/ eMdz| < —/ eMdz.
ye 2T -

I3 < o
Now for A — oo we have e’ — 0 rapidly when x < 0 and uniformly on z, therefore we

™

can assume that on v~ we have |e**| < 225. Then this gives
K 2e
L)< ———7R =
‘ﬂ—z KR ©
Thus for any ¢ > 0 we get |G(0) — GA(0)| < ¢ + 2. Choose now R > 2 then this yields
|G(0) — GA(0)] < 2¢ for large enough A and so limy_,., G5(0) = G(0). O

The following two Claims are corollaries of Corollary of Newman.

Claim 3.1.1. Let f(x) be an arithmetic function f : N — RY and consider the partial sum
Pe(x) =3, ., f(n) = O(z). Let the Dirichlet sereis Ds(s) = > 7, fn\ be holomorphic

for Re(s) > 1 and let Dy(s) — 5, for fized c, be holomorphic in some region containing
the closed half-plane Re(s) > 1. Then we have the asymptotic equivalence Ps(x) ~ cx.
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Proof. Recall that the Abel summation formula gives
—~ f(n) _ Py(z) / ‘ oy, Pr(@) / " By(t)
= — | Pi(t)(t7%)dt = dt.
;;W prill MR UIGR Rl

If P;(z) = O(x) and Re(s) > 1 then ( ) . o 0 and the integral fl t3+1 )t converges.
Thus we have an integral representatlon of the Dirichlet series for the arithmetic function
f(x), Dp(s) =s [~ Zﬁﬁ) dx which is also the Mellin transform of Py(x).

Then Dy(s) plays the role of g(s) from Corollary 3.1.1 Pf(z) = O(z) is monotone non-
decreasing, and its Mellin transform can be analytically extended past Re(s) > 1, with
the exception at s = 1, where it has a simple pole with residue c. Now with Corollary

3.1.1] it follows that P(x) ~ cz. O
B.L1] s

Claim 3.1.2. Let f(n),g(n) be arithmetic functions such that f : N — Rt and g(n) =
O(f(n)), Pr(x) =, ., f(n) = O(z). If the Dirichlet series D(s), Dy(s) are holomor-
phic for Re(s) > 1 and there exist constants ¢, such that Dy — =% and Dy — 215 are
holomorphic for Re(s) > 1 then Py(x) =Y, ., 9(n) ~ yx.

Proof. For the proof we have to consider the cases whether g is real valued or g is complex
valued. Let K > 0 such that |g(n)| < K|f(n)| = K f(n) for all n € N.

Case 1: g is real valued

Then we know that K f(n) + g(n) > 0 holds for all n € N and we consider the function
h(n) = K f(n)+g(n). Obviously h(n) > 0 and Py, (z) = K Ps(x)+ P,(z). Since |Py(x)| <
Yonenlg)| S K o f(n) = KO(z) we have Py(xz) = O(x). By assumption we have
Pi(z) = O(z) as well so we get P,(z) = O(x).

Also Dp(s) = KDy(s) + Dy(s) so Dy(S) — K% — 75 is holomorphic for Re(s) > 1.
Now from Claim we get Py(z) ~ (Kc+ ”y)x Since Py(x) ~ cz, also from the above
claim, we get that P,(x) = Py(x) — K Ps(z) ~ .

Case 2: g is complex valued

Let = a+ib then we have |z| = /2Z = v/a? + b2 and so max(|al, |b]) < Va2 + b2 = |x|.
Recall also that z + = 2a and 2 — 7 = 2:b.

Let us write g(n) = g1(n) + ig2(n) where ¢g1(n) = Re(g(n)) and go(n) = Im(g(n)) with
g1, 92 : N — R. Note that

Dyy() = £(Dy(s) + Cy(s)) Di(s) = o

Write G(s) = Dgy(s) — =25 it is holomorphic for Re(s) > 1, so is G(s) = Dy(s) — 75 =
Dy(5)— =% and also G(5) = Dy(5) — 5 = Dy(s) — ;. Therefore 3(Dy(s)+Dy(s)
is holomorphic in Re(s) > 1.

We have max(|g1(n)|,[g2(n)|) < [g(n)] < K f(n) and after Case 1 we get that Py, (x) ~
s+ )

By analogy o-(Dy(s) — Dy(s) — 1=
P,,(x) ~ 5(y — 7)x. Hence Py(x)

=21

) is holomorphic in Re(s) > 1 and again by case 1
By, () + 1By, (2) ~ ya. O

Corollary 3.1.2. For the Mébius function p(n) and the Liouville function A\(n) we have
the following ), ., p(n) = o(x) and 3, ., A(n) = o(z).

Proof. Recall Claim where we showed that the associated Dirichlet series satisfy
D,(s) = ﬁ and D, (s ) C(QS for Re(s) > 1. Both can be continued analytically past

IIH
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Re(s) =1, because ((s) # 0 at Re(s) =

Thus in Claim g(n) = p(n) or g(n) = A(n) can be —1 but |g(n)] < 1 and for

f(n)zlforallnerehavePf()—x— O(z), D () Di(s) =300 & =((s) is

holomorphic for Re(s) > 1 and C ( ) — 5, (s) — —= are holomorphic for Re(s) > 1.
(x

)

This means that v = 0 and so — 200 0, ) %w_m 0. ]

Remark 3.1.1. Actually the two statements above are equivalent to the Prime Number
Theorem.
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Chapter 4

Dirichlet’s Theorem on primes in
arithmetic progressions

Definition 4.0.1. An Arithmetic progression is a sequence {a + qn| gecd(a,q) =
1, n € N} with an initial term a and a common difference q.
For example consider the AP m = —1 mod 3 that is m = —1 + 3k.

Claim 4.0.1. There exist infinitely many primes p = —1 mod 3.

Proof. Assume that there are only finitely many primes p = —1 mod 3 py,ps, ..., PN-
Then the number P = 3pyps---py — 1 belongs to the same arithmetic Progression but
is not divisible by any of py,...,py since ged(p;, P) = 1 holds for all ¢ = 1,...N. Let

qi, .-, qx be all prime divisors of P, then at least one of them satisfies p;, = —1 mod 3
since otherwise all ¢; =1 mod 3 and so P =1 mod 3. But then we see that py,...,pn
can not be all primes which are congruent to —1 mod 3. O

Let us write now

m(x;a,q) = Z 1 where ged(a,q) = 1.
p<z
p=a mod ¢q

The probability that a prime p is in exactly one congruence class a + Z,, that is p = a
mod ¢, is ﬁ because all congruence classes, coprime with ¢, are ¢(q). As p is a prime
this means that ged(p, ¢) = 1, except for p|q which happens only for finitely many primes
with density 0. Therefore heuristically we should get

1 T

m(r;a,q) ~ — .
(#;0,9) ¢(q) log x

Later we will see this result as the Prime Number Theorem for arithmetic progressions.

4.1 Characters

When considering arithmetic progressions m = a mod ¢ we are dealing with residue
classes, that is m is congruent to an element of the reduced residue group (Z/qZ)*.

Definition 4.1.1. Let G be a finite abelian group. Then a homomorphism x : G — C*
such that x(g192) = x(g1)x(g2) for all g1,92 € G is called a character of the group
G.
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Example 4.1.1. When G = (g) is a cyclic group and x : G — C* then x(gx1) = x(g)x(1)
and therefore x(1) =1 or 0. Take the case x(1) = 1.
Then if n = ordg(g) is the order of the element g € G, we have x(g9") = x(1) = x(g)"

k k

and so x(g) = e for some k € Z. If xx(g) = e% then k = 0,1,....,n — 1 generate
exactly n different characters xo, X1, -y Xn—1-

By the fundamental theorem of finite abelian groups we have G = (g1) X (ga) X -+ X {(gs)
and each g € G has a representation of the form g = g{” oo gslls for 0 < hy < ny =
ordg(g;). Thus each character can be defined by some s-tuple (au, ..., as) such that x(g) =

27mi v . .
x(ght - ghs) = | e i M for0<oa;<mn;—1andi=1,2,...,s. This way we see that
there are exactly as many characters as the number of elements of the group.

Definition 4.1.2. Let G be the group of characters via pointwise multiplication, that is
X1, X2 € G then xix2(9) = x1(9)x2(g). Then
i) xo such that xo(g) =1 for all g € G is the identity element

i) xx(9) = xx (9) = x(9)x (9) = x(9)x(g) so the complex conjugate of X is the inverse
element.

Claim 4.1.1. We have |G| = |G].
Claim 4.1.2. The following orthogonality relations hold:

i) For every x € G

pyret , otherwise.

s , otherwise.
Xx€

Proof. 1) The case x = xo is obvious, since then we just sum over 1.
Let x # xo- Then there exist 1 # g; € G such that x(g1) # 1 and so

X(90) ) x(9) =D xlgg) = D> xlgg1) =>_x(g)-

geG geG 991€G geG

Thus (x(g91) = 1) > ,cq x(9) = 0 and since x(g1) # 1 we get > - x(g) = 0.
ii) The case g = 1 is obvious, since the sum is then again over 1.

Let g # 1, then there exist y; € G such that x1(g) # 1 and so

x1(9) > x(9) =Y xxal9) =D x(9)

x€G xe@ xeG

and as above we get > s x(g) = 0.
[

Now take G = (Z/qZ)*. We will extend the characters of G to arithmetic functions.

Definition 4.1.3. y : G — C* is a Dirichlet character modulo q if x : G — C* is
a character of G = (Z/q7Z)*, and for all n € N we have

(n) = 0 if ged(n,q) > 1
A= x(n modq) ifged(n,q)=1"
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4.2 Analytic properties of the Dirichlet L-series

Let g >2¢€Z and G = (Z/qZ)* ={a: ged(a,q) = 1}. G is a group of order (g) under
multiplication of residue classes. Let xy : G — C* be any character of the group of the
reduced residue system. We can lift it to a map x : Z — C called a Dirichlet character
modulo q by setting
x(a) if ged(a,q) =1;
(@) = { (@) (a.q)

0 otherwise.

The character x has the following properties:

(1H)=1
(ab) = x(a)x(b) for a,b € Z

1

) X
i) x
i) x(a) = x(b) if a = b mod g
iv) x(a) = 0 if ged(a, q) > 1.

Let G(q) be the set of characters modulo ¢. It can be viewed as isomorphic to the group
of characters G with the following operations: for xi,x2 € G(q) we define xix2(a) =
x1(a)xz(a) for a € Z. Unit element is the principle character modulo q

(@) 1 if ged(a,q) =1
a =
Xo 0 otherwise.

The inverse of x € G(q) is its complex conjugate Y : a — x(a). Note that y(a)x(a) =
X 'x(a) = xo(a) =1 = x(aa) = x(a)x(a) where a is the inverse element to a modulo g,
that is aa = ¢ mod q.

Then we have orthogonality relations also for the Dirichlet characters modulo q.

Claim 4.2.1. Let q € Z>y and let a run through a complete residue system modulo q.

Then
Hoy X(a):{w(Q) if X = Xo

0 otherwise
» ifa=1 mod
i) x(a) = {SO(Q) f q

0 otherwise.

x€G(q)=G

This is Claim applied for G = (Z/qZ)*.
Recall that the Dirichlet L-series is a Dirichlet series D, (s) where y is a Dirichlet
character modulo q. We denote it by

Lix,s) = Z X(n)_

nS

n=1

Claim 4.2.2. If x is not the principal character modulo q, then the Dirichlet L-series
L(x, s) is holomorphic on the half-plane Re(s) > 0.

If x = xo then L(xo,s) is holomorphic in Re(s) > 0 except for the simple pole at s = 1
with residue #, that is L(xo, s) is analytic in Re(s) > 1 and L(xo,s) — #ﬁ can be
analytically continued for Re(s) > 0.
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Proof. Let x # xo. Then

Lis) =3 X _ N~ )
’ ns ns
n=1 n=1
Let us look at the sum Zn P n? and note that Zf;% .1 = 0 by the orthogonaltiy

relations in Claim |4.1.2 and so ‘ZQ pX(n )‘ < g for all P < @. Then let s = Re(s) >0
then by [2.2.2] Abel Transformation 2 we have

Q n 1 Q Q 1 1 n
x(n) =)<Q+1)32x(n)+2(;— +1)5>;x(’€) <

ﬁ*é(%wnins) -airt @)

n=P
When s > 0 the last expression tends to zero with P — oo, that is L(y, s) converges. From
the properties of the Dirichlet series (see Claim [2.5.1)) we get that L(x, s) is holomorphic
for Re(s) > 0.
Let x = xo. In general y is strongly multiplicative, so

1
L(X?‘S):Hl_w'

P p

Then

1
Livo.s) = [T = 11 =

D ps p’fq

1 1
1;[1 -1Ja E):C(S)H(l—];)-

v plg plg

The Riemann zeta function ((s) has a pole at s = 1 but ((s) — -5 is analytically

continuable for Re(s) > 0. Let h(s) = [],,(1 — #), then h(s) is holomorphic and
h(1) = £2 by Corollary [2.1} Then

1 h(1
Ews) = 22— gopi(s) - L -
1 h h(1 1
= (C(S) — 3——1) h(S) + . 89)1 — 3(—>1 —7 551 <C(8) — 5 1) h(S)‘Szl.
Therefore L(xo,s) — @S_% is holomorphic for Re(s) > 0. O

Claim 4.2.3. At Re(s) = 1 we have L(x,s) # 0 for any Dirichlet character x € G.

Proof. Let x = xo, then we have L(xo,s) = ((s)]]
for Re(s) =

Let x # xo and assume that L(x, 1+ it) = 0 for some t € R. We will use the method of
Mertens for ((s) # 0 on Re(s) = 1. Therefore define

1 — 1) and we know that ((s) # 0

plq( ps

0(s) = L(x0,5)°L(x, s + it) L(x?, s + 2it).

Case 1: x? # Yo.
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Thus we have that y is not a real character or ¢t # 0. Then we get L(x? s + 2it) #
L(xo,s) = ((s)h(s) and by the Claim above L(x?, s+ 2it) is holomorphic for s = Re(s +
2it) > 0.

Then ((s) has a simple pole at s = 1, thus L(xo, s) = ((s)h(s) has a simple pole at s = 1
and since L(x?, s + 2it) is holomorphic in an area around s = 1 we see that 6(s) has a
zero at s = 1. Therefore lim,_,;log|0(s)| = —oc.

Recall that for z € C we have log |z| = Re(log z), so for o > 1

() - gl 2
:_ZRe(log(l_ +>> > Z (p(f))]

Here we use the series expansion of log(1 — z) = > >° | —%-. Note that x(p) = 0 if p|q
and |x(p)| = 1 otherwise. Write y(p) = e'2&X(P) and pi* = e@loe) 5o

X(p)

log |L(x, 0 + it)| = log 1-—

X(D)" _in axg x(p)—tnlog(»))
pitn '

By de Moivre’s formula we get

log|L(x, o +it) = 3 i cos(n(arg x(p) — tlog(p)))
pfgqn=1

npan

Then we get
log |0(o )| = log |L(x0,0)°L(x, 0 +it)*L(x?, o + 2it)| =

= Z Z [3cos(narg xo(p)) + 4 cos(n(arg x(p) — tlogp)) + cos(n(arg x*(p) — 2tlogp)] .

pfgqn= 1

Note that yo(p) = 1 = € and so argxo(p) = 0, therefore cos(narg xo(p)) = 1. Also

arg x2(p) = 2argx(p). Let n(argx(p) — tlogp) = a then n(argx*(p) — 2tlogp) =
2n(arg x(p) — tlogp) = 2av and we have the factor

3+4cosa+cos2a =2(1+cosa)? >0

and so log |#(o)| > 0 for any o > 1 which gives a contradiction.

Case 2: Y? = o

Thus we have x : G — R such that y(a) = £1 and ¢t = 0. Then L(x?, s + 2it) = L(xo, s)
has a pole at s = 1. Consider now the product

0 k
L(x, 5)¢(s) = Dy(s)Dr(s) = Dyur(s) = Y M.

n=1 n

If we assume that L(x, 1) = 0 then as ((s) has only a simple pole at s = 1 it follows that
L(x, s)((s) is holomorphic and therefore convergent for all s in the half-plane Re(s) > 0.
Recall the notation Sy(n) = 2, x(k) for the sum function. Since y is multiplicative,
so is Sy = x * I. Also we have S,(p") = >27_ x(p’) = 1+ 377, x(p’). Then since
X : G — R we have three possibilities:
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i) x(p) = 0 and then S, (p”) =1
ii) x(p) =1 and then S, (p") =1+v

0 if vis odd
1 if v is even.
Then surely Sy(n) > 0 and for n = k? Sy(n) = S, (k?) > 1. Consider now Dy, /(1) =

> Si‘/(ﬁn), we have

iii) x(p) = —1 and then S, (p”) =

1
— > clog VT — o0 00.

n<zx n<lx k<z
n=Fk?

This means that the Dirichlet series D,.;(s) is divergent as s = % and therefore the
abscissa of convergence is o9 > 3. Recall that x * I(n) = Sy(n) > 0 for every n € N.
Then by Landau’s Theorem we have D, is not holomorphic past s = oy for Re(s) < oy.
Therefore D,.,; should have a singularity in the region Re(s) > % This contradicts the
assumption L(x,1) = 0 and so D,,; is holomorphic for Re(s) > 0. Therefore L(x, s) #
0. O

Claim 4.2.4. For Re(s) > 1 and any Dirichlet character x € G we have

— ns L(x, s)
Proof. Take
pS S
p p
and
d L'(x.s) _d x(p)
4s o8(L06 ) = 7= o Ep: og e
_ o L N~loglp) x(p)
= Ol =2 " T "
p p®
z“g > zz* o
p k=1
¥ Z X(p log f’: x(n
p k=1
All these operations are allowed in Re(s) > 1 because log(1 — % = —% + O(p~%)
for o0 = Re(s) and the series H(s) = —>_ log(l — %) is convergent absolutely and
uniformly in any compact subset of {Re(s) > 1}. Thus H(s) is a holomorphic function
for Re(s) > 1 and ef(*) = L(x;, s) is a well defined holomorphic function as well. O
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We consider the function

m(x;a,q) = Z 1 where ged(a,q) =1

p=a “mod 1

and by a heuristic argument we expect that w(z;a,q) ~ ﬁ&. Recall that for the
proof of the Prime Number Theorem we introduced the Chebyshev’s function ¢ (x) =
Y n<s A(n). We showed that the Prime Number Theorem is equivalent to ¢(x) ~ x and

then proved that 1 (z) ~ = holds. Consider now the analogous function

Y(ria,q)= Y Aln) ged(a,q) = 1.

n<zx
n=a mod q

Lemma 4.2.1. We have the asymptotic equivalence ¥ (x;a,q) ~ PO

Proof. First note that the condition n = a mod ¢ in the definition of the function can
be rewritten as na = 1 mod g. Then for G = (Z/qZ)* by Claim part ii) we have
> yec x(na) = ¢(g) and so ﬁ > vec x(na) = 1. On the other hand if a mod ¢ with
ged(a, q) = 1 is fixed we have

1 B 1 ifn=a modgqg
— Y x(na) =3
q) — 0
x€G

ifn#a mod q.

Hence we can write

U(rsa,q) = Y A(n)ZZA(n)ﬁz Zx )>An)

n<x n<x Xeé XEG n<z
n=a mod ¢q

Recall Claim . In our case we have A : N — R* and 9(s) = >, _, A(n) = O(x).
Since we want to evaluate > _ x(n)A(n) we consider the function yA : N — C where
x(n)A(n) = O(A(n)) since [x(n)| = 1.

We know that Dy(s) =, Aéf) = CC(( )) is holomorphic for Re(s) > 1 and — C((SS) L
is holomorphic in Re(s) > 1. In order to apply Claim we need an analogous analytic
continuation of the Dirichlet series D, (s). In the last Claim we have seen that

—~ L(x,s)
and further we know that L(X, s) is holomorphic for Re(s) > 0 if x # xo ad L(x,s) # 0
for Re(s) = 1 for any x € G. Therefore for y # xo we have that —L((;‘SS)) — s

holomorphic in Re(s) > 1.
When y = xo then L(xo,s) has a simple pole at s = 1 with residue @. Then in a

small disc C' = {s € C: |s— 1] < §} we have L(xo,s) = g(s) + “O(qq)s% where ¢(s) is

holomorphic in C. Then L(xo,s) = - (%q) + h(s)) where h(s) = (s — 1)g(s) which is

s—1

holomorphic in C. Therefore we have L'(xo, s) = —(5_11)2 (# + h(s)) + % and so

CLlws) s ( 1 (w(q)+h(s))_m>: L ()

L(xo, s) @Jrh(s) (s—1)2\ ¢ s—1 s—1 %Jrh(s)'
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We can choose 6 > 0 small enough such that |h(s)| < “Dq holds on C' and hence the
second fraction is a holomorphic function in C'. Therefore —% — ; is holomorphic
for Re(s) > 1

From Claim we get that > _ xo(n)A(n) ~ z and > _ x(n)A(n) = o(x) for
X # Xo- Then

1
Y(wsa,q) = — [ D x@ Y x(m)An) +x0(@) Y xo(n)
QO(Q) < <
el n<w n<w
XFX0
LS o) + () + —
— olx)+z | =o(x) + —
(9) : w(q)
XE€G
XF#X0
So we have ¥(z;a,q) ~ %. ]

Theorem 4.2.1 (Prime Number Theorem for arithmetic progressions). For q € Z>y and
ged(a, q) = 1 we have the asymptotic formula

1 T

m(x;a,q) ~ ————
(#:0,9) ¢(q)logx

Proof. We apply Newman’s method for the Prime Number Theorem. Consider the func-

tion
L(ria,q)= > log(p).
p<lx
p=a mod q
Then we get
log(p) ars 1 ¢ —dt
m(x;a,q) = 1= = L(x;a,q —/ L(t;a,q)———= =
Ig ; o) Toga 99 J, FES Dyageaype
p=a mod q p=a mod q
£ )+/$£(t >—dt
= T, a ,a,
loge T, t(log(1))?
Now
Llxia,q)= Y logp)= D loglp)—> > log(p) =
<z <z n>2 pr<z
pzapimod q p"EZ “mod ¢ p"=a mod q
- Y Aw-Y Y - vmen-Y Y )
n<x n>2 pr<z n>2 pr<x
n=a mod g p"=a mod q p"=a mod q

If we now look at the second term we get

Z Z log(p <ZZlog longl =0 |logzx Z Zl =

n>2 pr<z n>2 p"<zx n>2 <p<logr p<, /x
p"=a mod ¢ p" <z 2*”*105(2) S

= O(log xm(v/x)logz) = O((log x)? Ve )= O(Vzlogz).




Therefore we have L(z;a,q) = ¥(x;a,q) + O(y/zlogx) and so with the Lemma above
L(z;a,9) ~ 555

e(q)”
But then we get

m(z;a,q) ~ %q)lozx +0 (lztt(lozt)ﬁ) B <p(1q) 10; O ((10556)2) '

The latter follows from [ W = Li(z) — 555 =0 ( 10%)2) : [

4.3 The error terms in the PNT and the PNT for
APs

Note that the proof of Newman, using Tauberian Theorems, does not provide information
on the error terms in the asymptotic formula for 7(z) and 7 (z;a, q).

Theorem 4.3.1. We have the asymptotics w(z) = Li(z)+ O ( e 10“) for some constant
x > 0 uniformly for x > 2.

Note that the error terms is better than O (L)Q) as V18T > e2loslosr — (Jog 1)2,

for any ¢ > 0 and large enough z. On the other side Li(z) = ; logi 5= Tos 7 +0 (@),

so a less precise formulation of the PNT is

(@) = g +O (@) |

Riemann Hypothesis (RH) All non trivial zeros of the Riemann ¢ function lie on
the line Re(s) = 1.

Theorem 4.3.2. Assume the RH, then for x > 2 we have w(z) = Li(z) + O(x2 log 7).

From log <%> > xv/logx for any ¢ > 0 and z large enough we see that the error
term under the RH is indeed stronger.

Theorem 4.3.3. 7(z;a,q) = @((q)) + Oy (ﬁ) for a given constant A > 0, where

q < (log )4, ged(a,q) = 1 and a certain constant ¢; > 0.

Generalized Riemann Hypothesis (GRH) For any Dirichlet character y modulo
g and s € C we have: if L(x,s) = 0 and Re(s) > 0 then Re(s) = 3.
Remark that for xy = xo we get the normal Riemann Hypothesis.

Theorem 4.3.4. Let q be given and assume the GRH for all L functions modulo q. Then
if ged(a,q) =1 and > 2 we get w(x;a,q) = % + O(x2 log x).
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Chapter 5

The circle method and the ternary
Goldbach’s problem

Prelude to the circle method

For a general complex valued sequence {a, }"_, we would like to demonstrate some asymp-
totic relation a,, ~ F(n) for some function F(n). We can take the power series gener-
ating function f(z) = Y 7 a,z" with the assumption that the radius of convergence is
0 < r < 1. By Cauchy’s residue theorem we can express the members of the sequence

{an} by

1, = 2mia, = j{ f(z) dz, for all n > 0,
Zn+1

where the contour integral is taken over the circle with center 0 traversed once in anti
clockwise direction.

The goal is to push the circle to » = 1 by having some insight on the singularities
of f(z) on |z| = 1. It turns out that in certain situations the roots of unity & =
27

e”s  with“small denominators”, that is s < N, for some Ny € N, give the “major
contribution”.

Remark 5.0.1. Recall that the residues of the Dirichlet series Dy (s) and Dya(s) ats =1
played a magjor role for finding the main terms in the asymptotic formulas for > _ A(n)
and ), . x(n)A(n) and thus in solving the PNT and the PNT for AP.

n<x

One constructs the set of the major arcs 9, which are arcs with centers £ with
small s and lengths chosen in such a way that two different arcs do not intersect. The
complement of N on the unit circle in C is then called the set of the minor arcs m, that
is m = SH\M.

Then, since we have chosen the major arcs so that they do not intersect each other,
we aim at
I, = Inon + I, m = Main term + o(MT).

Hardy-Littlewood (1920-1930): developed the circle method in connection to Waring’s
problem and the binary and ternary Goldbach’s problem.
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Vinogradov, 1937: modified the circle method by introducing finite trigonometric sums
instead of power series generating functions.

The modification of Vinogradov, where instead of the unit circle, one takes an interval
with length one, is the most established version by now. Let e(z) = ¢*™* for = € R. We
have that €™ = cos(2m) 4+ isin(27) = 1 and so e(z + 1) = e(z), thus e(z) is periodic with
period 1. Furthermore, for h € Z we have

! 1, if h=0;
/ e(ah)da =< ' Q’
0 0, otherwise.

Now consider a partitioning of the unit interval in the following manner. Let us have the
appropriately chosen parameters Q = Q(n) and 7 = 7(n) and set a typical major arc

< 7'} .
The set of the major arcs is then given as the union

M = U U M(a,q).

a<Q 1<a<q-1
ged(a,q)=1

a
a__
q

Maq) = {o

The set of minor arcs is defined as the complement
m= (7,1 + 7]\M.

Then if we want to integrate any periodic function f(z) with period 1 we can write

/01 f(z)dz = TlJ” f(z)dz = /mf(z)dz + /mf(z)dz

as long as M(a, ¢) NM(d’, ¢') = 0 for & # Z—:. The circle method will be illustrated in the
treatment of the famous ternary Goldbach’s problem.

5.1 The Goldbach’s problems

These conjectures were formulated in a letter to Euler in 1742.

Binary Goldbach’s problem: Every even number greater than 2 is a sum of two
primes.

Ternary Goldbach’s problem: Every odd number greater than 5 is a sum of three
primes.

The binary version is still open, while the ternary Goldbach’s problem was completely

solved recently (=~ 2013) by Helfgott. Vinogradov, using the circle method of Hardy-
Littlewood, could show not only existence but an asymptotic formula for the number of
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presentations as a sum of three primes for any odd number n > Ny, for N, large enough.
Let us consider the weighted quantity

R(n)= Y logplogpslogps.

P1,P2,P3
p1+p2+p3=n

Note that R(n) = 0 if there is not a triple py, pe, p3 which satisfies p; + ps + p3 = n. We
have the following asymptotic formula.

Theorem 5.1.1. Suppose that A > 0 is a real constant. Then we get

R(n) = %O(n)nQ +0 ( " )

log™n

co =TI (14 =) IL( - 217

pin pln

where

is a positive real constant for which there are absolute constants 0 < ¢; < C(n) < ¢y for
any odd n.

Remark 5.1.1. The method of Vinogradov (= 1939) can produce the constant Ny =

41,96 ] ]
e such that any odd n > Ny is presentable as sum of three primes. The constant

Ny was reduced many times until Helfgott reduced it to Ny = 10%". For the odd numbers
n < 10%" a computer verification of GRH yielded the ternary Goldbach’s problem for odd
7 <n<10%.

Obviously, from Theorem it follows that there exists a constant Ny such that
any odd n > Ny is a sum of three primes.

5.2 Setting up the circle method

Let us consider the sum

S(a) = S(a,n) = Zlogp -e(ap).

p<n

then

S(@)® = Z log pre(apr) Z log pae(aps) Z log pse(aps) =

pi<n p2<n p3<n
= Z log p1 log p log pse (a(p1 + p2 + p3)) -
P1,p2,P3<N

Recall the identity
1, ifh=0

1
/ e(ah)da = '
0 0, otherwise.

Then we have
1

1
R(n)= > 10gp110gp210gp3/0 e (a(pr + pa +p3—n))da=/ S(a)*e(—na)da.

P1,P2,P3 0
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Note that S(«) is periodic with period 1. Now, let for a constant B > 0 we choose the
parameters

Q = (logn)”,
o (logn)?
n n
Then
M(a,q) = {04 a—2 < 9}
q n

denotes a typical major arc and the set of the major arcs is given by the union

M = U U M(a,q).

¢<Q 1<a<q

Note that any two major arcs are disjoint. Indeed, let their centers be % and Z—:; then

the distance between them is greater than twice the half-lengths of the arcs 9M(a, ¢) and
M(a',q'), so

al

a
a ¢

_ g —dql 1
qq’ T qq

a/

; _ roon ro_ : a _ d 1 1
since ged(a,q) = ged(d,¢') = 1 and aq¢’ = a’q would imply ¢ =1 Then 5 > 5 >

29 = 27 is a consequence of n > 2Q* = 2(logn)? and thus is true for large enough n.

Let us then consider the set of minor arcs

m= (%,1%—9} \ It

n

(As an exercise it is left to show that 9 C (7,1 + 7].)

We can then write
1 147
R(n) = / S(a)de(—na)da = / S(a)3e(—na)da =

0
= / S(a)e(—na)da + / S(a)’e(—na)da = Iy + I,
m m
We remark that the choice of Q = (logn)? is dictated by an application of the Prime
Number Theorem for arithmetic progressions, where we have a good error term only if
q < (logn)? holds. In this sense the major arcs are ”sparse”’, hence the minor arcs
constitute a larger part of the unit interval and it is harder to give a good upper bound
for I, compared to other applications of the circle method with a larger parameter Q).

5.3 Treatment of the minor arcs
Our aim is to show that the contribution of I, is of smaller magnitude than n%. Let us

introduce the symbol of Vinogradov “<”: we write f(n) < g(n) if f(n) = O(g(n)). Then
the main result of this section is the following.
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Theorem 5.3.1. Let A > 0 be a positive constant. Then

2
/|S(a)|3da<< L

(logn)4”

Proof. We will need to adjust the choice of the parameter () according to A, more precisely
we will show soon that we need to have B > 2A + 10. Clearly we have

I = /m S(a)3e(—na)dal| < /m 15()Pde.

First observe that

/O |S(oz)|2da:/0 < Z logple(apl)logpge(ap2)> do =

P1,p2<N
1
= / > log(pr + p2)e(a(py — p2))da =
O prp2<n
1

= ) log(p +p2)/ e(a(py — pa))da =

p1,p2<n 0
= Z(logp)2 < lognZlogp < logniy(n) < nlogn.

p<n p<n

Here we used Chebyshev’s Theorem for the fuvntion ¢ (n).

The next crucial step is to give an upper bound of sup, ., |S ()| of the order n(log n)*~5/2.

In order to achieve this we rely on the following claim due to Vinogradov:

Claim 5.3.1 (Vinogradov). Let a € R, ged(a,q) =1, g < n, be such that

a
o — —

1
q| = ¢

q

<

Then we have ) \ .
S(a) < (logn)* (ntf5 +ns + (qn)i) .

Lemma 5.3.1 (Dirichlet’s approximation Theorem). Let o € R. Then for each real
number x > 1 there exists a rational number % with ged(a,q) =1, 1 < g < x such that

a 1
o——| < —.
q qx
Proof. 1t suffices to prove the inequality for ged(a,q) > 1 without assuming strictly
ged(a, q) = 1. Indeed, if ¢ = ¢s for s > 1, then ’oz — Z—: < q,%v < qix where a’ = as.

Let m = [z], then the m numbers 8, = aq — [aq] for ¢ = 1,2,...;m all lie in [0, 1).
Consider the m + 1 intervals

1
B =|— " r=1,2,..,m+1.
m+1 m+1
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If 8, € By then from % =a— % we get

U
T qm+1) qx

5,
q

‘a_ [CEZQ]‘ _

If B, € Byy1 then 1 — 3, <1/(m +1) and so

‘Oé_[ozq]—i-l‘:|l—ﬁq|S 1 <i.
q q gim+1)  qx

In the first case a = [ag|, and in the second case a = [ag] + 1.
If B, ¢ By U B,,;1 then one of the m — 1 intervals B, with 2 < r < m contains at

least two elements of the j, (by the pigeonhole principle), say 3, and 3, with u < v < m.
Then

1
——1 > 1By — Bu] = a(v —u) — ([av] — [au]).

Now we take ¢ = v —u and a = [aw] — [au]. Then we have

1 1 1 a
——2>a¢q—a and — > —— > a— —.
m+1 rq — (m+1)q

O

Assuming now that Claim and Lemma hold we are able to bound sup, ¢, |S()|.

Indeed, we chose
n n

1
(logn)? Q7
<

If & € m there are a and ¢ with ged(a,q) = 1, @ < ¢ < x, such that
a 1 1
a——| < —< —-
q qr q

After Claim [(.3.1] we will then have
S(a) < (logn)* (nq_% 0 4 (nq)%) <
n

< (logn)* (n(log n)”

B 4 B
2 5 2

+ni +n2n?(logn)” )<< n(logn)* .

Now from fol |S(a)]?da < nlogn and the latter estimate we get

1
/‘S(O‘)‘Sda <</ 1S()|? sup |S(a)|da < nQ(logn)‘f’*%
m 0

aem
Now take B > 10 + 2A. This proves Theorem [5.3.1 O

Remember the Claim [5.3.1] in the past proof. In order to prove Vinogradov’s Claim
we need some auxiliary Lemmas.
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Lemma 5.3.2. Let © € R and [a,b] C [1,N]. Then we have the estimate

> e(Om) <<min{N,H%H}

me(a,b]

where ||O|| = min,ez |z — O] is the distance to the nearest integer.

1

1,1], since e(z) is periodic

Proof. Without loss of generality we can assume that © € (
with period 1. Then ||©] = |O)].

Case 1: © =0

Then

Y e@m) < > 1< [ab]| <N
mela,b] meE(a,b]

Case 2: ©#0

Then we have summing of a geometric progression

e(@(b—a—I—l))—l 2
e(Em)l|| = |e(a® e(Em)| = <
> c@m)| = lewd) 3 e(Om) e L et

me[a,b me[0,b—al

Consider now

e e e
e -1=|(3)](3) -<(-3)]-
= | cos(7O) + isin(mO) — cos(—7wO) — isin(—7wO)| = 2|sin(7O)| > |O].
This proves the Lemma. O]

Lemma 5.3.3. Let L>1,n>1, g > 1 be given and o € R be such that
1
7

for ged(a, q) = 1.

Then we have

Z min { ol } (ng~" + L+ q)log(2Lq).
I<L
Proof. Let us write a = ¢ + (. Then ’a -2

[1, L] into parts of length ¢, that is we Write l=hqg+r Wlth 1<r<qgand0<h< %.
Then

= [B] < &. We also partition the interval

al = (34-5) (hq—irr):ah—ir%—l-h(ﬁ-ir?”ﬁ and HOCZHIH%‘HWB"'TB

)

We get

U= Zmln{ ||ozl||} Z me{hg—i— "%+hq5+rﬁ

I<L O<h<L r=1
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Let us mention that we have ||z|| = |z| when |z| < 3 and ‘Hx“ — HyH‘ < Jlz+y| <
[l + Myl

Denote the contribution to the sum U for h = 0,r < % by Uy so that U = Uy + Uj.
Then for h = 0,1 < r < £ we have |rj] < g1 —

is= i and ¢ { ra implies that ||%/| > %.
In this case
ra ra ra ra 1
—+hqﬁ+r6‘=”—+rﬁ” 2 H— =Bl = |||l = 5,
q q q q 2q
andalso% ra Zz—lq,sothat % —%qzé %
en we have
-1 “1 _
ra 1 ra ra
e (|2)-5) <5 <« = ¥ -
AL r<g 1 gemsy vy 1A

m#0  ra=m (mod q)

-1
m 1
- P E i< <o
—2<m<g q 1<r<d 1§m§gm
m##0 r=ma (mod q)

For the remaining summands in U; we have hqg +r > (h + 1)g. Indeed, if h = 0 and
r > % this holds with constant % When h > 1 we have hqg +r > %q. Then

U, < Z Zmin{m, }

OShSA r=1
q
Let us consider any interval I with length %. Then for a fixed h the relation

%—thﬁ—krﬁ

%+rﬂ+hqﬁ (mod 1) € I

has at most O(1) solutions r € [1, ¢]. Indeed, if r,r" are two such solutions, then

ra r'a 1

—+7’5———7’/ﬁ‘§—-

q q q
Ifs:r—r’thenog]3|<qand\sﬁ|§é,so

1 1

sa 1 ﬂ_sﬁ‘g_

q q q q

2
As this is possible only for 0 < HﬂH < — we have finite choices of s (mod ¢), and thus
q q
of r’, once r has been fixed.

1
Now we choose [ = I, = F, st } with 0 < s < ¢ — 1. We group the O(1) r’s
q (g

such that r is a solution of (/) together. We note that when s + 1 < £ this means that
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€l ie.

%+hq5+rﬁ

’%mqﬁwﬂ

S
’2_'
q

If s 41 > £ then for the solution of (I) we get

s+1 qg—s—1
q q

%+hqﬁ+rﬂ

-

Thus we can consider the summation only for 1 < s < % and get

U1<<ZZ%+Zﬁ

o<h<L s=1 0<h<L
- —q - —q

where in the last sum, for s = 0, we rather bounded by , also there only O(1)

n
(h+1)q
r’s satisfy (Io).

Then

1
U < quogq—l— z Z 7 < Llog(q) + glog(L).

h<L 1<h<L
—4q - —9q

Putting things together we get

U< |U| +|Uh] < qlogq—i—LlogQ%—glogL < (ng~ '+ L+ q)log(2Lq).

We also need the following Lemma, which is a corollary of Vaughan’s identity.

Lemma 5.3.4. Let U > 1, V > 1, such that UV < x. Then for any arithmetic function
f we have the estimate

> f(n)A(n) < (logz)Ty + T,

U<n<lzx

where

=) max > fkD)

I<UV w<k<Z

L= S S AGm)b(k)f(mk)

X x
U<m<$ V<k< 2

and b(k) denotes an arithmetic function, depending only on V and satisfying |b(k)| <
T(k).

Proof. This is a Corollary of Vaughan’s identity, see for example p. 194-196 in Briidern’s
“Einfiihrung in die analytische Zahlentheorie” [I] (Satz 6.1.2). O

Now we can finally prove Claim [5.3.1]
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Proof. Recall that S(a) = >, _, A(k)e(ak). Then

= Ak)e(ak)+ Y Ak)e(ak) < U+ > Alk)e(ak)

k<U U<k<n U<k<n

where we used Chebyshev’s Theorem for the first sum. For the second sum we will apply
Lemma with x = n, f(k) =e(ak) and U = V. We will choose later the parameter
U < n in a suitable way.
Then

S(a) < U + (logn)Ty + T,

where

Z max Z (akl)

I<U? w<lk<D ”

Ty = Z Z A(m)b(k)e(akm)|.

U<m< U<k< > o

For the inner sum of 7} we immediately apply Lemma [5.3.2}

3" e(alk) <<min{%,||al||_1}

w<k<y

n<y min{%, H@m*l} .

I<U?

and therefore

In order to estimate the sum T, we first exchange the order of summation. Then from
U<k< 2wegetU < k< §,sinceU <m < ¢ and > < . Then we split the
interval [U ﬂ} into dyadic intervals K < k < 2K where K = 2"U and K < . Clearly
log K =vlog2+loglU and v < logn. Then we have

Z b(k) Z A(m)e(amk)| < (logn) max T(K)

U<K<§{
U<k:§% U<m§%

with

T(K)=| Y bk) Y Alm)e(amk)|.

K<k<2K U<m<?

Recall the Cauchy-Schwarz inequality | (z,y) |* < ||z||* - ||y||>. Then
TR < S BEP Y | Y Amle(amk)
K<k<2K K<k<2K |U<m<?%

By Lemma we know that |b(k)| < 7(k), and we also use without proof the estimate

ZT ) < z(log 2).

k<z
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(Recall that in Claim we showed that ), 7(k) < zlogz.) Then we get

T(K) < K(log K)* > > A(my)A(m)e(ak(my —ms)).

K<k<2K U<mi,ma<}

The terms with my; = my give

Z Z A(m)? < Z (log %)2 . % < K(logn)?- % < n(logn)?.

K<k<2K U<m<? K<k<2K

For the other terms we have

Z Z A(my)A(mso)e(ak(m; —my)) <
K<k<2K U<mi,ma<}
mi1#Ema

< Z A(mq)A(ms)

U<mi,ma<
mi#me

<(logn)® Y min{K, |a(m; —ms)| "}

n
U<m2<m1§?

Z e(ak(m; —my))| <

n K<k<2K

where we again used Lemma [5.3.2]

Further, put [ = m; — my. When U < my <my < 5 then 1 </ < £ and for any [
the equation [ = m; — my has at most % solutions. Then, since K < 7 we can write the

last sum as
. n -1
me {7, ||l ad ]| } .
I<n

Putting together the pieces up to now we have

T(K)* < K(log K)* | n(logn)?* + (logn)? Z min {%, ||al||_1} <
<n

5 5 5 Ly -1
< Kn(logn)’ + n(logn)” 4+ n(logn) Z mln{ K |l ad|| } :

n
I<n

Thus both 77 and T'(K), i.e Ts, got reduced to estimating a sum of the type treated in
Lemma If we have the same condition for existence of a good rational approximation
of a like in Claim [5.3.1, Lemma then gives

T(K)* < Kn(logn)® + n(logn)® log (2q%> <nq_1 + % + q) <
< Kn(logn)® + (n*¢ ' + n* K~ + ng)(log n)°®.
Then

1

T(K) < (Kn)z(logn)? + (nq_% +nKT7 4 (nq)_5> (logn)®.

Using the condition U < K < % we get K3 < U3 and K3 < n%U_%, SO

N|=

T, < (logn) max, T(K) < (logn)*(nU™% +ng~2 +nU"7 + (ng)?) <

=U

< (logn)* (nU~% +ng~% + (ng)?).
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Similarily, we apply Lemma to the sum Tj to get

T < Z min {%, HalH_l} < log (2U2q) (ng '+ U +q).

I<U?
Now we choose U = n5. Then U2 = n5 and log (2U2%q) < logn because ¢ < n. Then
Ty < (logn)(ng™" +ns + q)

Ty < (logn)*(n'"5 +ng~2 + (ng)?).
Noticing that for ¢ < n we have ¢ < (nq)%, we finally get

N

S(a) < ns + (logn)*(ng™* + ns + q) + (log n)4(n§ tng e+ (nq)?)
< (logn)* (n% +ngE+ (qn)%) .
L]

Let us note here that we defined S(a) = S(a,n) =3 _, logp - e(ap) but we proved
Claim for 5*(ar) = 37, A(k)e(ak). However, since

§*(a) = S(a) + ) _ log(p)e(ap”) = S(a) + %

pP<n
B>2

where

1
13| < Z Zlogpé Z Zl<<10gn Z 1:g2n<<nélogn.

1 1 log 1
2<B<1es p<n? B<TES p<n? plogn

One of the terms on the RHS of Claim is of magnitude (log n)4n%, so having proven
S*(a) < RHS gives also S(a) < RHS.

5.4 Treatment of the major arcs

Now recall that we have already seen some error terms for the Prime number theorem
and the Prime number theorem for arithmetic progressions. We will need the following
version which is a corollary of the famous Siegel-Walfisz Theorem (Corollary 11.21 in [3]).

Theorem 5.4.1 (Siegel-Walfisz). Let A > 0 and q < (logz)?, ged(a,q) = 1. Then there
exists a constant ¢ > 0 such that

o —cy/logx
0(x;a,q) = § logp = 2@ + Oy (e Vios),
p<z plg
p=a mod q

Definition 5.4.1. The Ramanujan’s sum is defined as

g ah
cq(h) = E e (—) .
a=1 q
ng(a7q):1

o7



The following identity holds.
Lemma 5.4.1. The Ramanujan’s sum satisfies

q
p (gcd(mh))

cq(h) = ¢(q)
©(q ¢<m>

Proof. First note that for h € Z we have

zq:e(@> ~Jg, ifh=0 (mod q);
— q - 0, otherwise.
The first case is trivial. In the second case we have a geometric progression
h
h h —1)h R\ € (q—) —1
() (ose () e (50) = () i
q q q q) o (g) 1

1 ah
;€<7) _%q: Z; )4 1<5<3
ged(a.q)=d ged(§.4)=1
= D2 eg ) = 3 calh) (= e, (1)

dlq dlq

Now recall the Mébius inversion formula f = % .Sy and also note taht for any d|qg we

will have S, (h) =d if h =0 mod ¢, and 0 otherwise. Then

ch)= > u(%) Sea(h) = Y u(%) d.
d| ged(g;h)

dlq
h=0 mod ¢q

In particular, ¢,(h) is real-valued and it is multiplicative regarding ¢, when h is fixed.
Also ¢4(h) = ¢4(ged(a, q)). Then it is enough to verify the statement of the Lemma only

for prime powers, that is
q

cq(h) = (gcd(q, h)) ¥ (W)

holds for ¢ = p* and k > 1.
Let p®|h but p®*' { h (denoted by p?||h). Then gcd(h, q) = ged(p®hy, p*) = pminidk}

o8



Case 1: k < 3 Then ¢, (h) = cx(p*) and

(") =) (%) d = p(p*) = (q)-
d|p*

We used that Sy(n) = n and by Mébius inversion ¢(n) = p* Sy(n) = 3, 1 (2)d. In
1

q
ged(q,h) p

this case
Case 2: k= +1 Then ged(q, h) = p? and

o () = %;M (deJrl) d=pu(p)p’ = u(p)sp(&—ij)l) =K (QCd(qq, h)) 0 (%)

We used that @ < p & p’ < dthat is d = p”, all the remaining summands with
B+1
I <pT) factors are zero.

Case 3: k > 8+ 2 Again ged(q, h) = p? and in the sum
o
cpe(h) = Zu <E> d
d|p?

P

k k
all the factors with p are 0, since % > 5 > p?. Thus we again have
p

©(q)

() = 0 = () — 22
¥ (gcd(q,h))

]

After the estimate of S(a) at the minor arcs in Claim it is now time to estimate
it on the major arcs.

Claim 5.4.1. Let B = a — % and T(B) = >0 _e(fm) with 1 < a < q < Q such that
ged(a, q) = 1. Then for any a € M(a, q) there exists a constant ¢ > 0 such that

S(a) w(q)T(ﬁ)JrO( ).

Proof. Consider first

Then we have

() -£(1) § o

r=1 p<x
p=r mod q
q (a ) q a
= Z el-r|0(x;rq) + Z e (—r> Z log p
r= q r=1 q p<z
ged(r,q)=1 ged(r,q)>2 p=r mod q
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Note that in the second sum if ged(r,q) = d then p = r mod ¢ yields d|p and
since d > 2 we should have d = p. But then in the second summation there is
only one term for each p dividing ¢ in the inner sum and the whole contribution is
O(w(q)logz) < log qlogx. Here w(q) denotes the number of prime divisors of ¢ and we
use the trivial bound w(q) < log gq.

Now we can apply the Theorem of Siegel-Walfisz for estimating 6(z; 7, q).

s (gx) _ i e (gr> <i + O(xe‘cm)) + O(log zlog q) =

= ©(q)
ged(r,q)=¢
T ! a T
- el =r | + O(qxe—c\/logx) — c (CL) 4 O(xe—c\/logx)j
(q) ; (q ) wlq)
ged(r,q)=q

since ¢ < (logz)? < (logn)? = Q, and we consider z < n. Also, the constant c in the
error terms might vary in the different instances. Clearly if ged(a, q) = 1 then —2

ged(ag) 4
and by the above Lemma we have ¢,(a) = p(g). So we get

S (E,x> = @x + O(zemcvios ™), (5.1)
q ¢(q)
Something more, for all x < n we have
S (g,x) = Mx + O(ne~cvieem), (5.2)
q ©(q)
Indeed, if z < y/n then this is trivial. If \/n <z < n we have
1 1 th T n
eiogn © gofiogr S olge & gevion

So (5.2) follows from (/5.1).
We return to estimating S(«) at a = ¢ —|— B. By partial summation |D we get

(3o0) g ()

P>

o (2 /zlog (5 i

p<lz

s (2) o [ 55

— ¢(Bn) (%n " 0<necM)) — 2rip / ' (ﬂz)x " (’)(nec‘/m)> e(Br)dr =

,u_) <ne(ﬁn — 27?25/ xe(fr) dm) + (9( (1+n|B))e _C\/@> i

Recall that T'(5 Z (Bk) and again by summation by parts we get
k<n

1(8) = ne(on) ~ 2ip [ lole(o)is
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and so n|3| < (logn)B. We get

(logn)”
n

Then we use that || <7 =

S (g + ﬁ) = %T(ﬁ) +0 (6 [n{x}e(ﬁm)dx) + O(neVosm)
= %T(ﬁ) + O (n6_5@> ,
which proves the Claim. O

Now we are able to prove the estimate on the major arcs.

Theorem 5.4.2. Suppose that A is a positive constant and B > 2A. Then
1
/ S(a)*e(—an)da = §C'(n)n2 + O(n*(logn)~*)
m

where

cin)=J[a+@-DH][a-@-1).

pin pln
Proof. First, by Claim [5.4.1] we have

a (1) o eviogny ) D s (s, ez
s (q i 5) (w(q)m) Lo >> PO+ O )

)
w(q)?
When a € M(a, g) we have a = ¢ + 3 and

because

T(ﬁ)‘ < n by a trivial estimate.

/mt(a,q)s(a)ge(—oén)da _

_ M) (—ﬂn) /m . T(8)%e(—pBn)da + O ( /m . n3ecme(—an)da> =

v(@)? \ ¢
- 5<(qq))3e (—gn) /_ T(B8)%e(—pn)dS + O(n?e~cVIe™)
where we used that |5 < 7 = (lognn)B.

Now integrating over all major arcs 0 we get

/zmS(a) e(—an)da = qz;g ; /sm( S(a)*e(—an)da =

a,q)
~ ged(a,g)=1
q T
a
:Z Z u(q)ge(——n)/ T(B)*e(—Bn)dB + O( 2n26_c\/m)
= = v qa ) )~
~ ged(a,g)=1
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since

> Z 1<Zq—1—|—2+ +Q= w«@?

= 2
= gcd(aq) 1

Then we can write, using the appropriate notation,

T

I = C*(n.Q) / T(8)%e(—Br)dB + O(ne*VoEm).

—T

Recall Lemma : Since for 3 € (—3,3) we have ||8]| = |3], we will get

1 1
TOI< 51 =5

/ T(B)e(—pn)dp = / ﬂndﬁ+0</ (8 3dﬁ>

i J(n)+ O (/ dﬂ) _ () + O(2) = J(n) + O(n2Q™2).

Thus

33
Then we have
Ip = C*(n,Q)J(n) + O (ng 2n2Q2> + O (n*(logn) 7).

q<Q

1—e

= o(p(n)) and so ¢(n)~! <« n~!. Therefore

D elg) <D g Si e <« 1.

q<Q q<Q q=1
Then the second error term is absorbed by the last one and we have

Im = C*(n,Q)J(n) + O (n*(logn) 7).
We also used that Q?n2e=¢V'e" < n2(logn)~25. We note that

Recall that we have already seen that n
we have

s = [Tz Y 1

1
2 1<mi,ma,m3z<n
mi+ma+mz=n

which follows from the orthogonality relation

/é e(ah)da = {1’ h=0
_ 0, heZ\{0}.

But
S o= Y = Y eme)
1<m;<n 1<m;<n 1<m3<n—2
mi1+me+mz=n mi+me=n—ms3
=(n=1 3 1= 3 m=
1<msz<n—2 1<m3z<n-—2
1 1
=n-1)(n-2)— §(n —2)(n—1) = §(n —1)(n—2).
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We already showed that |C*(n, Q)| < 1, thus we can proceed by writing
1
Iy = 50*(72, Q)n* + O(n*(logn)2P).
Finally, let us complete the singular series by introducing

C*(n) :g Eq: e (—gn)

a=1
ged(a,q)=1

1(q)
©(q)?

Clearly

C*(n,Q)=C"(n) + 0O (Z S0<q)2> .
>Q
As p(q)? < ¢7*9 we have
S o< Y < <@,
>Q >Q

Then )
C*(n,Q) = C*(n) + O(Q™2)

and

Iy = %C*(n)n2 + O(nQQ’%) +0(n*Q?) = %nZC*(n) + O(nQQ*%)

1
= §n20*(n) +0 <n2(log n)~
< (logn)~ the error term would be of the

|

|ty

Now if we choose B such that (logn)~
desired shape.

The only thing left to check is that C*(n) = C'(n). Notice that

a=1

is the Ramanujan’s sum. So

Then

o =T1 (0 ) (- )
(G 0 5) e



One easily sees that C'(n) > 1, and C(n) = 0 when n is even. This proves the
Theorem. [

Combining the estimates of the minor and major arcs from Theorem and The-
orem we get the desired asymptotic formula for the quantity R(n), thus we prove
Theorem [5.1.1]

5.5 Other applications of the circle method

5.5.1 Exceptional set for the binary Goldbach’s problem
Recall that for the ternary Goldbach’s problem we showed that the sum

R(n)= > logpilogp;logps

P1,p2,P3
p1+p2+p3=n

satisfies the asymptotic relation

R(n) = %(J(n)n2 +0 (ﬁ)

for any constant A > 0 and 1 < C'(n) < oo is the singular series

0w =3 ;‘((j)é ¢o(n).

It is conjectured that in the binary Goldbach’s problem the corresponding weighted sum

Ry(n) = > logpilogps

p1,p2
p1t+p2=n

satisfies the asymptotic relation

Ro(n) = nCa(n) + © (L)

(logn)4

for any constant A > 0 and the corresponding singular series

Cy(n) =

Question: Why can’t the circle method handle the binary Goldbach’s problem?

1(q)*
w(Q)ZCq(n)'

In the ternary case we used that for the set of minor arcs m and S(«) = Z log p-e(ap)
p<n
we have

/ 1S(a)|Pda = Z(logp)2 < nlogn
m p<n

and .
sup |S(a)| < n(logn)*=.

acm
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Then we saw in Theorem |5.3.1| that || < where I, denotes as usual the

(log )4
integral over the minor arcs. This suffices, since the main term of R(n) is of magnitude
n?. However, if we follow the same idea for the binary Goldbach’s problem, we would get

/m |S(a)|da < n

and )
n

/m S(a)?e(—na)da

which is a problem in the binary case since there we expect a main term of magnitude n.
Actually, we can show that over the major arcs

< {logn)

/ S(a)’e(—na)da = nCy(n) + o(n).
m

Combining the estimates over the major and minor arcs only provides an upper bound
O (”—2) for Ry(n) and does not guarantee Ra(n) > 0.

{Tog )7

Still, the circle method can be used to prove the following second moment version of
the binary problem.

Theorem 5.5.1. Let A > 0 be any constant. Then

TL3

(logn)4”

S IRa(m) = mCa(m)? <

Using this theorem one can give a non-trivial upper bound of the exceptional set of
even numbers which are not presentable as the sum of two primes.

Corollary 5.5.1. Let E(n) be the number of even numbers m not exceeding n for which
m is not the sum of two primes. Then

n
(logn)A”

E(n) <

Proof. Note that trivially F(n) < [%} so the corollary gives a non-trivial improvement.

For each m, counted by E(n), we have Ry(m) = 0 and so

m~ 2| Ry(m) — mCy(m)|> = Cy(m)* > 1.

Hence
E(n) < i m 2| Ry(m) — mCy(m)|* =
m=1
=02 [Rylm) — mCa(m)f? + O (/ dt ) <"
— ; (logt)4 (logn)4
by the Abel transformation. O
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5.5.2 Waring’s problem

Theorem 5.5.2. For any n > 2 there exists k = k(n) such that every N € N can be
presented as a sum of at most k n-th powers of positive integers, i.e. the Diophantine
equation

.1'711 4+ .+ xz =N
has a solution for x; € N.

Theorem 5.5.3 (Jacobi, 1834). For any n € N let R(n) denote the number of solutions
of

2 2 2 2

Rin)=8 Y d

dn
d#Z0 mod 4

with x; € Z. Then

Theorem 5.5.4. Let n > 2 and k > 2" + 1. Then there are 6 = §(k,n) > 0, ¢; =
ci(k,n) >0, o = co(k,n) > 0 independent of N, such that if Iy, denotes the number of
k-tuples (x1,...,7,) € N¥ satisfying

[B?—F---—l—.ZZZN,
we have the asymptotic formula

(1+ 1)
) = Wl vty o (),

L)

where ¢ < Cpp(N) < co, and I'(a) is the gamma function.

Set-up of the circle method Take

N'=10m
Then
a
M(a,q) ={a:|la——| <1} EJJT:U U M(a, q)
4<Q 1<a<q—1
ged(a,q)=1
and

m=[r,1+7]\ M.
The condition k£ > 2"+1 plays a major role, it guarantees that the singular series C ,,(N)

is absolutely convergent.

In general the circle method provides asymptotic formulae for additive Diophantine
problems only if the number of variables is large enough, still, it provides heuristics what
to expect for a smaller number of variables as well.
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