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Chapter 1

Introduction

This is an introductory course in analytic number theory for graduate students. The first
main focus of the course is presenting the Newman’s proof of the Prime number theorem.
The material is based mostly on the chapters 4, 5, 6 from [2]. The second main topic is
application of the circle method in the ternary Goldbach’s problem. The used literature
for the circle method is mostly [1], also [5] and [6].

Some of the exercise problems are from [4]; few results are borrowed from [3], which
is a fundamental reference for the subject.

Let us present two proofs of one classical result. The second proof of Euler presents
one of the first instances of application of analytic methods in number theory.

Theorem 1.0.1. There are infinitely many prime numbers.

Euclid’s proof. Assume there are only finitely many primes. Denote them by p1, ..., pk
and define N = p1 · · · pk + 1. Then there does not exist a pi for i = 1, ..., k such that pi
is a divisor of N . Therefore N is either prime itself or contains a prime factor differing
from p1, ...pk. This contradicts the assumption and therefore the theorem holds.

Euler’s proof (1737). Consider the harmonic series
∞∑
n=1

1

ns
for s > 1. We see that for

s = 1
2k∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2k
> 1 +

k

2

by taking 2i elements together and estimating them with the smallest one, e.g. 1
3

+ 1
4
>

21
4

= 1
2
. But now we have

∞∑
n=1

1

n
= lim

k→∞

2k∑
n=1

1

n
> lim

k→∞

(
1 +

k

2

)
→∞.

On the other hand we know that by the main theorem of arithmetic every integer has a
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unique representation as a factor of prime powers and then

∞∑
n=1

1

ns
=

(
1 +

1

2s
+

1

22s
+ · · ·

)(
1 +

1

3s
+

1

32s
+ · · ·

)
· · ·

=
∏
p∈P

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p∈P

1

1− 1
ps

Now, if there were only finitely many primes, then when s→ 1 the product
∏

p∈P

(
1− 1

ps

)−1

converges to, say, c, but then we should also have
∑

n≥1
1
n

= c, which is a contradic-
tion.
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Chapter 2

Arithmetic functions

2.1 Basic properties

Definition 2.1.1.

i) A function f : N→ C is said to be arithmetic (or number theoretic).

ii) A function f is said to be multiplicative if f is not the zero function and for coprime
m,n ∈ N we have f(mn) = f(m)f(n).

Some examples for multiplicative functions are:

• The Möbius-function µ(n) =


1 if n = 1

0 if a square is a divisor of n

(−1)k if n = p1 · · · pk

• The Euler ϕ function ϕ(n) =
∑

1≤k≤n
gcd(n,k)=1

1

• The number of divisors function τ(n) =
∑

d|n 1

• The sum of divisors function σ(n) =
∑

d|n d

• The prime counting function π(n) =
∑

p≤n 1

Definition 2.1.2. The Sum function of an arithmetic function f is defined to be
Sf (n) =

∑
d|n f(d).

Lemma 2.1.1. Let f be a multiplicative function and n = pα1
1 · · · p

αk
k . Then

a) Sf (n) =
∑

d|n f(d) = (1 + f(p1) + · · ·+ f(pα1
1 )) · · · (1 + f(pk) + · · ·+ f(pαkk ))

b) Sµf (n) =
∑

d|n µ(d)f(d) =

{
(1− f(p1)) · · · (1− f(pk)) if n > 1

1 if n = 1

Proof.
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a)

RHS =
∏
pi

1≤i≤k

∑
0≤βi≤αi

f(pβii ) =
∑

0≤βi≤αi

∏
pi

1≤i≤k

f(pβii ) =
∑

0≤βi≤αi

f(pβ11 ) · · · f(pβkk ) =

=
∑

0≤βi≤αi

f(pβ1
1 · · · p

βk
k ) =

∑
d|n

f(d) = Sf (n)

b) Follows by a)

Corollary. Let again n = pα1
1 · · · p

αk
k . Then

i) σ(n) =
∑

d|n d = (1 + p1 + · · · + pα1
1 ) · · · (1 + pk + · · · + pαkk ) =

p
α1+1
1 −1

p1−1
· · · p

αk+1

k −1

pk−1
is

multiplicative. To see this we use f(d) = d.

ii) τ(n) =
∑

d|n 1 = (1 + · · ·+ 1) · · · (1 + · · ·+ 1) = (α1 + 1) · · · (αk + 1) is multiplicative.

To see this we use f(d) = 1.

iii) Sµ(n) =
∑

d|n µ(d) =

{
0 if n > 1

1 if n=1
,this follows by Lemma 2.1.1 b).

Lemma 2.1.2 (Vinogradov’s lemma). Let S be a finite set, G a commutative group
written additively f and g both functions from S to N or both from S to G. Then we have

∑
s∈S

f(s)=1

g(s) =
∞∑
m=1

µ(m)
∑
s∈S
m|f(s)

g(s).

Proof.

LHS =
∑
s∈S

f(s)=1

g(s)
iii)
=
∑
s∈S

g(s)
∑
d|f(s)

µ(d) =
∞∑
m=1

µ(m)
∑
s∈S
m|f(s)

g(s)

Theorem 2.1.1 (Möbius inversion formula). Let g be an arithmetic function, then it can
be expressed in terms of its sum function.

g(n) =
∑
d|n

µ(d)Sg

(n
d

)
=
∑
d|n

µ(d)
∑
l|n
d

g(l).

Proof. Define f(s) = n
s

thus we have f(s) = 1 if and only if n = s and S = {k ∈ N|n
k
∈ N}.

Then we get

g(n) =
∑
s∈S

f(s)=1

g(s) =
∞∑
m=1

µ(m)
∑
s∈S
m|f(s)

g(s) =
∑
m|n

µ(m)
∑
s∈S
s| n
m

g(s)

Definition 2.1.3. The Dirichlet product (or convolution) of two functions f, g is
defined to be f ∗ g =

∑
d|n f(d)g(n

d
).

Corollary. Let again n = pα1
1 · · · p

αk
k . Then
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i) ϕ(n) = n(1− 1
p1

) · · · (1− 1
pk

) = (pα1
1 − pα1−1

1 ) · · · (pαkk − p
αk−1
k )

ii) ϕ is a multiplicative function

iii) Sϕ(n) =
∑

d|n ϕ(d) = n

Proof.

i) Define the functions f(s) = gcd(s, n) and g(s) = 1 and set S = {1, 2, ..., n}. Then we
have ∑

s∈S
f(s)=1

g(s) =
∑

1≤s≤n
gcd(s,n)=1

1 = ϕ(n) =
∞∑
m=1

µ(m)
∑

1≤s≤n
m| gcd(s,n)

1 =

∑
m|n

µ(m)
∑

1≤s≤n
m|s

1 =
∑
m|n

µ(m)
n

m
= n

∑
m|n

µ(m)

m
= n(1− 1

p1

) · · · (1− 1

pk
)

by using Lemma 2.1.1 part b) because the function µ(m)
m

is multiplicative.

ii) By the representation we found in i) multiplicativity follows immediately.

iii) Since ϕ is multiplicative we can again use Lemma 2.1.1 and we get that

Sϕ(n) = (1 + ϕ(p1) + · · ·+ ϕ(pα1
1 )) · · · (1 + ϕ(pk) + · · ·+ ϕ(pαkk )) =

= (1 + p1 − 1 + p2
1 − p1 + · · ·+ pα1

1 − pα1−1
1 ) · · ·

· · · (1 + pk − 1 + p2
k − pk + · · ·+ pαkk − p

αk−1
1 ) = pα1

1 · · · p
αk
k = n.

Lemma 2.1.3. If f is a multiplicative function and limpk→∞ f(pk) = 0 then also limn→∞ f(n) =
0 where p runs through the primes.

Proof. Let n = pα1
1 · · · p

αk
k =

∏
p∈P p

ν(p,n) the canonical representation of n as factors of

prime powers. Then f(n) = f(
∏

p∈P p
ν(p,n)) =

∏
p∈P f(pν(p,n)) by multiplicativity of f.

Now for each ε > 0 there is some constant c such that for all powers pk ≥ c we have
that |f(pk)| < ε. If n is in such a fashion that every prime power is smaller than some
constant c it follows that n < cc, thus for every n > cc there is at least one prime factor
such that pν(p,n) > c and therefore f(pν(p,n)) gets arbitrarily small and so f(n) itself also
gets small.
More formally one would split the prime powers into three sets, one where pν(p,n) is smaller
than some B, one where it is in between B and C and one where it is bigger than C. We
know that there is some A such that |f(pν(p,n))| < A for all values of pν(p,n) and we choose
B in a way that |f(pν(p,n))| < 1 holds for all values in B, and C such that |f(pν(p,n))| < ε
holds for all values in C. This then gives |f(n)| < ABε→ 0.

Definition 2.1.4.

Landau symbols: Let f, g, h be functions then we say that

f(x) = g(x) + O(h(x)) if there exist some x0 such that for all x ≥ x0 we have |f(x) −
g(x)| ≤ c|h(x)| for some c > 0.

f(x) = g(x) + o(h(x)) if limx→∞
f(x)−g(x)

h(x)
→ 0
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Two functions f, g are called asymptotically equal, written f(x) ∼ g(x), if limx→∞
f(x)
g(x)

=
1.

Example 2.1.1.

sin(x) = O(1) because | sin(x)| ≤ 1.

sin(x) = x+O(x3) as x→∞ because sin(x) =
∑∞

n=1(−1)n−1 x2n−1

(2n−1)!
.

sinh(x) = ex−e−x
2
∼ ex

2
.

π(x) ∼ x
log x

.

Now we want to use Lemma 2.1.3 to get some direct estimates of arithmetic functions.

Claim 2.1.1. We have that ϕ(n) = O(n) and for all ε > 0 we get n1−ε = o(ϕ(n)).

Proof. By the definition of the ϕ function we have ϕ(n) =
∑

1≤k≤n
gcd(k,n)=1

1 ≤ n and therefore

ϕ(n) = O(n) holds.
For the second claim let ε > 0 be arbitrary and consider the function f(n) = n1−ε

ϕ(n)
. This

way we get f(pm) = pm(1−ε)

pm−pm−1 = p−mε

1− 1
p

≤ 2p−mε. So clearly for every growing prime power

we have limpm→∞ f(pm) = 0 and thus by Lemma 2.1.3 also limn→∞ f(n) = 0, which is
what we wanted to show.

Claim 2.1.2. We have n = O(σ(n)) and on the other hand for all ε > 0 that σ(n) =
o(n1+ε).

Proof. By definition we get that σ(n) =
∑

d|n d ≥ n+ 1 and thus n = O(σ(n)).

For the second part consider again a function f(n) = σ(n)
n1+ε . This way we get f(pm) =

pm+1−1
p−1

1
pm(1+ε) =

1− 1
pm+1

pmε(1− 1
p

)
≤ 2 1

pmε
and applying Lemma 2.1.3 gives the desired result.

Claim 2.1.3. A better upper bound is given by σ(n) = O(n log n).

This time we truly use analytic tools comparing the sum to a corresponding integral
to avoid perturbations. Dirichlet himself compared 1

N

∑N
n=1 f(n) to 1

T

∫ T
0
f(t)dt.

Proof.

σ(n) =
∑
m|n

n

m
= n

∑
m|n

1

m
≤ n

∑
m≤n

1

m
= n+ n

n∑
m=2

1

m
=

= n+ n
n∑

m=2

1

m

∫ m

m−1

1dt ≤ n+ n
n∑

m=2

∫ m

m−1

1

t
dt =

= n+ n
m∑
m=2

(log(m)− log(m− 1)) = n+ n log n.

Since n log n is the dominating factor we get the desired result. This works because 1
m

is
smaller than or equal to the 1

t
for t running from m− 1 to m.
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2.2 Abel transformation

Remark 2.2.1 (Integration by parts). For f, g functions we get
∫ b
a
f(x) dg(x) = f(b)g(b)−

f(a)g(a)−
∫ b
a
g(x) df(x).

Proof. We know that (f(x)g(x))′ = f ′(x)g(x) + g′(x)f(x) and therefore
∫ b
a
f(x) dg(x) =∫ b

a
(f(x)g(x))′−

∫ b
a
g(x) df(x) and by the fundamental theorem of calculus the statement

follows.

Theorem 2.2.1 (Abel Transformation 1). Let f, g be arithmetic functions (or even only
sequences). Then for 1 ≤ P ≤ Q we have that

Q∑
n=P

f(n)(g(n)− g(n− 1)) = f(Q+ 1)g(Q)− f(P )g(P − 1)−
Q∑

n=P

g(n)(f(n+ 1)− f(n)).

Proof.

Q∑
n=P

f(n)(g(n)− g(n− 1)) =

Q∑
n=P

f(n)g(n)−
Q∑

n=P

f(n)g(n− 1) =

=

Q∑
n=P

f(n)g(n)−
Q−1∑

n=P−1

f(n+ 1)g(n) =

=

Q−1∑
n=P

(f(n)− f(n+ 1))g(n) + f(Q)g(Q)− f(P )g(P − 1) =

=

Q∑
n=P

(f(n)− f(n+ 1))g(n)+

+ f(Q) g(Q)− f(P )g(P − 1)− f(Q)g(Q) + f(Q+ 1)g(Q) =

= f(Q+ 1)g(Q)− f(P )g(P − 1)−
Q∑

n=P

g(n)(f(n+ 1)− f(n))

Theorem 2.2.2 (Abel Transformation 2). Define a function g(n) =
∑n

m=P h(m) for
some function h and set g(P − 1) = 0. Then we get

Q∑
n=P

f(n)h(n) = f(Q+ 1)

Q∑
n=P

h(n)−
Q∑

n=P

(f(n+ 1)− f(n))
n∑

m=P

h(m).

Proof. Follows directly by applying Theorem 2.2.1.

Theorem 2.2.3 (Abel Transformation 3). Let f be continuously differentiable on [1,∞)

and h be an arithmetic function. Define g(x) =
∑[x]

m=1 h(m), then we have

[x]∑
n=1

f(n)h(n) = f(x)g(x)−
∫ x

1

g(t)f ′(t)dt.

Here [x] denotes the integer part of x and {x} is the fractional part of x.
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Proof. Apply Theorem 2.2.2 with P = 1 and Q = [x] and use the fact that f(n)− f(n+

1) = −
∫ n+1

n
f ′(t)dt.

[x]∑
n=1

f(n)h(n) = f([x] + 1)

[x]∑
n=1

h(n) +

[x]∑
n=1

(f(n)− f(n+ 1))
n∑

m=1

h(m) =

f([x] + 1)g(x) + S.

S = −
[x]∑
n=1

(∫ n+1

n

f ′(t)dt

)
g(n) = −

[x]∑
n=1

∫ n+1

n

f ′(t)g(t)dt =

= −
∫ [x]+1

1

g(t)f ′(t)dt = −
∫ x

1

g(t)f ′(t)dt−
∫ [x]+1

x

g(t)f ′(t)dt =

= −
∫ x

1

g(t)f ′(t)dt− g([x])

∫ [x]+1

x

f ′(t)dt =

= −
∫ x

1

g(t)f ′(t)dt− g([x])(f([x] + 1)− f(x)) =

= −
∫ x

1

g(t)f ′(t)dt− g(x)f([x] + 1) + f(x)g(x).

Therefore the statement follows.

Remark 2.2.2. We can extend arithmetic functions g : N → C to g : [1,∞) → C via

g(x) = g([x]). Then instead of
∑[x]

n=1 one writes
∑

n≤x and we have again the Abel
summation formula∑

n≤x

f(n)h(n) = f(x)g(x)−
∫ x

1

g(t)f ′(t)dt

for g(x) =
∑

m≤x h(m).

Theorem 2.2.4 (Euler summation formula). Let a ∈ N and f : [a,∞) → C be a
continuously differentiable function. Then we have∑

a≤n≤x

f(n) =

∫ x

a

f(t)dt+R

with the remainder term of the form

R =

∫ x

a

{t}f ′(t)dt+ f(a)− {x}f(x).

In particular if f is monotone and f ≥ 0 we have

R =

{
O(f(x)) if f is incresing

O(f(a)) if f is decreasing

10



Proof. Recall that we can write the fractional part of x as {x} = x − [x] and Theorem
2.2.3 applied to g(x) =

∑
m≤x h(m) gives

∑
n≤x

f(n)h(n) = f(x)g(x)−
∫ x

1

g(t)f ′(t)dt.

Define now h(m) =

{
0 if m = 1, 2, ..., a− 1

1 if m ≥ a
thus g(t) =

{
0 if t ≤ a− 1

[t]− a+ 1 m ≥ a
.

Therefore we get

∑
n≤x

f(n)h(n) =
x∑

n=a

f(n) = f(x)([x]− a+ 1)−
∫ x

a

([t]− a+ 1)f ′(t)dt =

= [x]f(x)− (a− 1)f(x)−
∫ x

a

[t]f ′(t)dt+ (a− 1)

∫ x

a

f ′(t)dt =

= [x]f(x)− (a− 1)f(x)−
∫ x

a

[t]f ′(t)dt+ (a− 1)(f(x)− f(a)) =

= [x]f(x)− (a− 1)f(a)−
∫ x

a

[t]f ′(t)dt.

Now integration by party gives
∫ x
a
f(t)dt = xf(x)− af(a)−

∫ x
a
tf ′(t)dt, and we arrive at

x∑
n=a

f(n)−
∫ x

a

f(t)dt = ([x]− x)f(x) + f(a)−
∫ x

a

([t]− t)f ′(t)dt =

=

∫ x

a

{t}f ′(t)dt+ f(a)− {x}f(x) = R

Now we get that |
∫ x
a
{t}f ′(t)dt| ≤

∫ x
a
|{t}f ′(t)|dt ≤

∫ x
a
|f ′(t)|dt = |

∫ x
a
f ′(t)dt| = |f(x) −

f(a)| because we consider f to be monotone, which implies that f ′ does not change its
sign.
In conclusion this yields |R| ≤ |f(x)− f(a)|+ |f(x)|+ |f(a)| and by triangular inequality
R = O(|f(x)|+ |f(a)|). Finally a case distinction gives

R =

{
O(f(x)) if f is incresing

O(f(a)) if f is decreasing
.

Claim 2.2.1. For P,Q ∈ N witch P < Q and s > 1 ∈ R we get

Q∑
n=P

1

ns
=

1

s− 1

(
1

P s−1
− 1

Qs−1

)
+O

(
1

ps

)
.

In particular

∞∑
n=1

1

ns
=

1

s− 1
+O(1) and

∞∑
n=N

1

ns
=

1

s− 1

1

N s−1
+O

(
1

N s

)
.
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Proof. For s > 1 the function f(t) = t−s is monotonically decreasing and f(t) > 0 for all
t > 0. Then by Theorem 2.2.4 we get

Q∑
n=P

f(n) =

∫ Q

P

f(t)dt+R where R = O(f(P )).

Therefore we have

Q∑
n=P

1

ns
=

∫ Q

P

t−sdt+O(P−s) = − 1

s− 1
(Q−(s−1) − P−(s−1)) +O(P−s) =

1

s− 1

(
1

P s−1
− 1

Qs−1

)
+O

(
1

P s

)
.

The special cases P = 1, Q =∞ and P = N,Q =∞ follow directly.

Claim 2.2.2. We have
N∑
n=1

1

n
= log(N) + γ +O

(
1

N

)
where

γ = 1−
∫ ∞

1

{t}
t2
dt = lim

N→∞

(
N∑
n=1

1

n
− log(N)

)
.

denotes the Euler-Mascheroni constant.

Proof. Set f(t) = 1
t

and apply Theorem 2.2.4. Then this yields

N∑
n=1

1

n
=

∫ N

1

1

t
dt+ f(1)− {N}f(N) +

∫ N

1

{t}f ′(t)dt =

=

∫ N

1

1

t
dt+ 1− {N}

N
−
∫ N

1

{t}
t2
dt =

= log(N) + 1−
∫ ∞

1

{t}
t2
dt+

∫ ∞
N

{t}
t2
dt− {N}

N
.

Now we have that∫ ∞
N

{t}
t2
dt ≤

∫ ∞
N

1

t2
dt =

1

N
and so

∞∑
n=1

1

n
= log(N) + γ +O

(
1

N

)
.

Remark 2.2.3. The Euler-Mascheroni constant γ ∼ 0.5772156 is conjectured to be
irrational, but it is still open. It even is not known if it is algebraic or transcendental.

2.3 Average estimates of arithmetic functions

Recall that we have already shown that ϕ(n) = O(n) and for all ε > 0 we have n1−ε =
O(ϕ(n)). Even though the ϕ function itself is not behaving nicely we will see that
averaging has a smoothing effect on the estimates.
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Claim 2.3.1.

i) 1
N

∑N
n=1 ϕ(n) = 3

π2N +O(log(N))

ii) 1
N

∑N
n=1

ϕ(n)
n

= 6
π2 +O

(
log2(N)
N

)
.

Proof.

i) Here we use that
∑

d|n ϕ(d) = Sϕ(n) = n and the Möbius-inversion formula which gives

ϕ(n) =
∑

d|n µ(d)Sϕ(n
d
) =

∑
d|n µ(d)n

d
. This way we get

N∑
n=1

ϕ(n) =
N∑
n=1

∑
d|n

µ(d)
n

d
=
∑
k

∑
d

kd=n

kµ(d) =
N∑
d=1

µ(d)
∑
kd≤N

k =

=
N∑
d=1

µ(d)
∑
k≤N

d

k =
N∑
d=1

µ(d)

[
N
d

]
(
[
N
d

]
+ 1)

2
=

=
1

2

N∑
d=1

µ(d)

(
N

d
−
{
N

d

})(
N

d
−
{
N

d

}
+ 1

)
=

=
1

2

N∑
d=1

µ(d)

(
N2

d2
− 2

N

d

{
N

d

}
+

{
N

d

}2

+
N

d
−
{
N

d

})
=

=
N2

2

N∑
d=1

µ(d)

d2︸ ︷︷ ︸
Σ1

+
N

2

N∑
d=1

µ(d)

d

(
1− 2

{
N

d

})
︸ ︷︷ ︸

Σ2

+
1

2

N∑
d=1

µ(d)

{
N

d

}({
N

d

}
− 1

)
︸ ︷︷ ︸

Σ3

.

By the last Claim we get that
∑N

m=1
1
m

= log(N) + γ + O( 1
N

) and with that Σ2 =

O(
∑N

d=1
1
d
) = O(log(N)). For the last part we obviously get Σ3 = O(

∑N
d=1 1) = O(N).

An estimate for Σ1 goes as follows

Σ1 =
N∑
m=1

µ(m)

m2
=

∞∑
m=1

µ(m)

m2
−

∞∑
m=N+1

µ(m)

m2
.

Here
∑∞

m=N+1
µ(m)
m2 is absolutely convergent because |µ(m)

m2 | ≤ 1
m2 and thus

∞∑
m=N+1

µ(m)

m2
= O

(
∞∑

m=N+1

1

m2

)
= O

(
1

2− 1

1

(N + 1)2−1
+O

(
1

(N + 1)2

))
=

= O
(

1

N

)
+O

(
1

N2

)
= O

(
1

N

)
.

This follows again by one of the above Claims with s = 2 and now
Σ1 =

∑∞
m=1

µ(m)
m2 +O( 1

N
).

In order to find an estimate for the sum we multiply ζ(s) =
∑∞

k=1
1
ks

with the infinite

series
∑∞

m=1
µ(m)
ms

, that is

∞∑
k=1

1

ks

∞∑
m=1

µ(m)

ms
=
∑
k≥1

∑
m≥1

µ(m)

(km)s
=
∞∑
n=1

∑
d|n

µ(d)

ns
=

=
∞∑
n=1

1

ns

∑
d|n

µ(d) = 1.

13



Now we have that
∑∞

m=1
µ(m)
ms

= 1
ζ(s)

for every s > 1. In our case we have s = 2 and

ζ(2) = π2

6
, so it follows that

Σ1 =
6

π2
+O

(
1

N

)
.

Plugging together this yields

N∑
n=1

ϕ(n) =
N2

2

(
6

π2
+O

(
1

N

))
+O(N log(N)) =

3

π2
N2 +O(N log(N))

and
1

N

N∑
n=1

ϕ(n) =
3

π2
N +O(log(N)).

ii) Applying Theorem 2.2.3 to g(x) =
∑

m≤x h(m) we get

∑
n≤x

f(n)h(n) = f(x)g(x)−
∫ x

1

g(t)f ′(t)dt.

By setting f(n) = 1
n

and h(n) = ϕ(n) this yields

N∑
m=1

ϕ(n)

n
= f(N)g(N)−

∫ N

1

g(t)f ′(t)dt =
1

N

N∑
n=1

ϕ(n) +

∫ N

1

(
t∑

n=1

ϕ(n)

)
1

t2
dt =

=
3

π2
N +O(log(N)) +

∫ N

1

(
3

π2
t2 +O(t log(t))

)
1

t2
dt =

=
3

π2
N +

3

π2
(N − 1) +O(log(N)) +O

(∫ N

1

log(t)d log(t)

)
=

=
6

π2
N +O(log(N)) +O

(
(log(N))2 − (log(1))2

)
=

6

π2
N +O(log2(N)).

Therefore
1

N

N∑
n=1

ϕ(n)

n
=

6

π2
+O

(
log2(N)

N

)
∼ 6

π2
.

2.4 Density of k-free and square-free numbers

Definition 2.4.1. A natural number n ∈ N is called k-free if there is no m > 1 ∈ N
such that mk is a divisor of n, that is that no k-th power is a divisor of n. Square-free
is the special case k = 2. Define a function

µk(n) =

{
1 if n is k-free

0 else
.

Remark 2.4.1. Let n be a natural number such that n = hkl where l is k-free and h ≥ 1.
If mk is a divisor of n then it is also a divisor of hk and thus m itself is a divisor of h.
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The other way around if m is a divisor of h then clearly also mk is a divisor of hk. With
that we have ∑

mk|h

µ(m) =
∑
m|h

µ(m) =

{
1 if h = 1

0 if h > 1
.

Therefore µk(n) =
∑

mk|n µ(m).

Definition 2.4.2. The natural density of a set A ⊂ N is defined to be #{n≤N |n∈A}
N

→ α
as N →∞. Clearly here we have 0 ≤ α ≤ 1.

Claim 2.4.1. We have

1

N

N∑
n=1

µk(n) =
1

ζ(k)
+O

(
N

1
k
−1
)
.

That is that de density of the k-free numbers equals 1
ζ(k)

, therefore in particular the density

of the square-free numbers equals 6
π2 .

Proof.

1

N

N∑
n=1

µk(n) =
1

N

∑
k≤N

∑
mk|n

µ(m) =
1

N

∑
m,l

∑
mkl≤N

µ(m) =
1

N

∑
m≤N

1
k

µ(m)
∑
l≤ N

mk

1 =

=
1

N

∑
m≤N

1
k

µ(m)

[
N

mk

]
=

1

N

∑
m≤N

1
k

µ(m)

(
N

mk
−
{
N

mk

})
=

=
∞∑
m=1

µ(m)

mk
−
∑

m>N
1
k

µ(m)

mk
+

1

N
O

 ∑
m≤N

1
k

1

 =

=
1

ζ(k)
+O

 ∑
m>N

1
k

1

mk

+O
(
N

1
k
−1
)

=

=
1

ζ(k)
+O

(
1

k − 1

1

N
1
k

(k−1)

)
+O

(
N

1
k
−1
)

=
1

ζ(k)
+O

(
N

1
k
−1
)
.

Claim 2.4.2. For the Dirichlet divisor problem we get that

1

N

N∑
n=1

τ(n) = log(N) + (2γ − 1) +O(N−
1
2 ).

Here we are going to use the so called Dirichlet hyperbola method to count the
lattice points under the hyperbola xy = N in order to get the sum of the divisors.

Proof. First recall that
∑N

n=1 τ(n) =
∑N

n=1

∑
mk=n 1 and observe that this summands

can be represented by integer points under the hyperbola xy = N . A further observation
(dating back to Dirichlet) is, that the square with coordinated (

√
N,
√
N) divides the
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area under the hyperbola in two parts with equally many integer points, here denoted by
A ∪B and B ∪ C (see figure below). Thus it follows that we can express the sum as

N∑
n=1

τ(n) = 2

√
N∑

m=1

∑
k≤N

m

1− [
√
N ]2 = 2

√
N∑

n=1

[
N

n

]
− [
√
N ]2 =

= 2

√
N∑

n=1

(
N

n
−
{
N

n

})
− (
√
N − {

√
N})2 =

= 2N

√
N∑

n=1

1

n
− 2

√
N∑

n=1

{
N

n

}
− (N − 2

√
N{
√
N}+ {

√
N}2) =

= 2N(log([
√
N ] + γ +O

(
1√
N

)
+O

(√
N
)
−N + 2

√
NO(1) +O(1) =

= 2N log(
√
N − {

√
N}) + 2Nγ +O

(√
N
)
−N.

Now we claim that log(
√
N−{

√
N}) = log(

√
N)+O( 1√

N
), and indeed by the mean value

theorem there exists some c ∈ (
√
N − {

√
N},
√
N) such that

(log x)′c =
1

c
=

log(
√
N)− log(

√
N − {

√
N})

{
√
N}

and therefore

log(
√
N − {

√
N}) = log(

√
N)− {

√
N}
c

.

Since 1
c
< 1√

N−{
√
N} <

2√
N

holds for large enough N we see that 1
c

= O( 1√
N

). In conclusion

we get that

N∑
n=1

τ(n) = 2N(log(
√
N +O

(
1√
N

)
+N(2γ − 1) +O

(√
N
)

=

= N log(N) + (2γ − 1)N +O
(√

N
)
.
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Definition 2.4.3. The Dirichlet series of an arithmetic function f at some point
s ∈ C is defined to be

Df (s) =
∞∑
n=1

f(n)

ns
.

Claim 2.4.3. If the Dirichlet series Df (s) and Dg(s) are absolutely convergent then we
have the identity

Df (s)Dg(s) = Df∗g(s).

Proof.

Df (s)Dg(s) =
∞∑
m=1

f(m)

ms

∞∑
k=1

g(k)

ks
=

∞∑
m=1

∞∑
k=1

f(m)g(k)

(mk)s
=

=
∞∑
n=1

∑
m,k
mk=n

f(m)g(k)

ns
=
∞∑
n=1

1

ns

∑
m|n

f(n)g(
n

m
) =

∞∑
n=1

f ∗ g(n)

ns
.

Corollary 2.4.1. We have that

∞∑
m=1

µ(m)

ms
=

1

ζ(s)
for s > 1.

We have already seen a proof of this statement in Claim 2.3.1, but here we show it
again using the Dirichlet product.

Proof. Define the function I(n) = 1 for all n ∈ N, then we have that ζ(s) =
∑∞

n=1
1
ns

=
DI(s). Now we use the Möbius-inversion formula µ ∗ Sf = f and get that

µ ∗ I = µ ∗ Se = e =

{
1 if n = 1

0 if n > 1

because Se(n) =
∑

d|n e(
n
d
) = 1 = I(n). Therefore we get

DI(s)Dµ(s) = DI∗µ(s) = De(s) =
∞∑
n=1

e(n)

ns
= 1

and with that ζ(s)Dµ(s) = 1 concluding the proof.

Claim 2.4.4. Assume that Df (s) is absolutely convergent. If f is a multiplicative function
then we get

Df (s) =
∏
p∈P

∑
ν≥0

f(pν)

pνs
.

If f is even strongly multiplicative, that is f(mn) = f(m)f(n) for all m,n then we get
the Euler product representation

Df (s) =
∏
p∈P

1

1− f(p)
ps

.
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Proof. First note that
∑

ν≥0
f(pν)
pνs

is absolutely convergent for any prime p as a sub-series

of
∑∞

n=1
f(n)
ns

. Therefore ∏
p≤k

∑
ν≥0

f(pν)

pνs
=

∑
n

p|n⇒p≤k

f(n)

ns
.

Let k →∞ then ∏
p

∑
ν≥0

f(pν)

pνs
=
∞∑
n=1

f(n)

ns
= Df (S).

If f is strongly multiplicative then f(pk) = f(p)k and so∑
ν≥0

f(pν)

pνs
=
∑
ν≥0

(
f(p)

ps

)ν
=

1

1− f(p)
ps

because |f(p)
ps
| < 1 since else the series would not be convergent.

2.5 Analytic properties of the Dirichlet series

Claim 2.5.1. If the Dirichlet series Df (s) =
∑∞

n=1
f(n)
ns

converges for some s0 ∈ C then
it converges uniformly for every s ∈ C for which −α ≤ arg(s− s0) ≤ α for any α < π

2
.

Let us first recall the definition of uniform convergence. Let S be a set and
fn : S → C a sequence of functions. We say that {fn} converges uniformly to a limit f if
we have that for every ε > 0 there exists some index N ∈ N such that for every x ∈ S and
n ≥ N |fn(x)− f(x)| < ε. Therefore we see that the series Df (s) =

∑∞
n=1

f(n)
ns

converges

uniformly if the sequence {Df,m(s)}∞m=1 = {
∑m

n=1
f(n)
ns
}∞m=1 converges uniformly for every

s ∈ C.

Proof. Without loss of generality we can assume s0 = 0 because else we can transform
the series by Df (s0) = D f(n)

ns0
(0). Since Df (0) is convergent by assumption we get that the

partial sums from some point on get arbitrarily small, that is for every ε > 0 and fixed
α < π

2
there is some index K depending on ε and α such that |

∑N
n=M f(n)| < εcos(α)

whenever N ≥M ≥ K.
We want to show that for every s ∈ C with |arg(s)| < α we have that |

∑N
n=M

f(n)
ns
| < ε

and use Theorem 2.2.2 for that matter.∣∣∣∣∣
N∑

n=M

f(n)

ns

∣∣∣∣∣ =

∣∣∣∣∣(N + 1)−s
N∑

n=M

f(n) +
N∑

n=M

(n−s − (n+ 1)−s)
n∑

m=M

f(m)

∣∣∣∣∣ ≤
≤ |(N + 1)−s|

∣∣∣∣∣
N∑

n=M

f(n)

∣∣∣∣∣+
N∑

n=M

|n−s − (n+ 1)−s|

∣∣∣∣∣
n∑

m=M

f(m)

∣∣∣∣∣ .
Recall now the de Moivre’s formula. Let x ∈ R then we have that eix = cos(x)+i sin(x)
and for s ∈ C we have that xs = xσxit = xσelog xit = xσ(cos(t log x + i sin(t log x). Since
the absolute value of the latter part is 1 we get that |xs| = |xσ| = |xRe(s)|.
Now we use this fact and the estimate for the series in 0 and get that∣∣∣∣∣

N∑
n=M

f(n)

ns

∣∣∣∣∣ ≤ (N + 1)−Re(s)ε cos(α) + ε cos(α)
N∑

n=M

|n−s − (n+ 1)−s|.
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As an estimate for the summands we get that∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣ = |s|
∣∣∣∣∫ n+1

n

1

ts+1
dt

∣∣∣∣ ≤ |s| ∫ n+1

n

1

|ts+1|
dt = |s|

∫ n+1

n

t−Re(s)−1dt =

=
|s|

Re(s)
(n−Re(s) − (n+ 1)−Re(s)) ≤ 1

cos(α)
(n−Re(s) − (n+ 1)−Re(s)).

This last inequality follows because for |arg(s)| < α we have that cos(arg(s)) = Re(s)
|s| ≥ α

and therefore |s|
Re(s)

≤ 1
cos(α)

.
Plugging things together yields∣∣∣∣∣

N∑
n=M

f(n)

ns

∣∣∣∣∣ ≤ (N + 1)−Re(s)ε cos(α) +
ε cos(α)

cos(α)

N∑
n=M

(n−Re(s) − (n+ 1)−Re(s)) =

= (N + 1)−Re(s)ε cos(α) + ε(M−Re(s) − (N + 1)−Re(s)) =

= εM−Re(s) + ε(N + 1)−Re(s)(cos(α)− 1) ≤ εM−Re(s) ≤ ε.

Definition 2.5.1. The convergence abscissa of the Dirichlet series Df (s) is defined
as

σ0 = inf{σ = Re(s) : Df (s) is convergent}.

Definition 2.5.2. The abscissa of absolute convergence is defined to be

σ′0 = inf{σ = Re(s) : D|f |(s) is convergent}.

Example 2.5.1.

i) For ζ(s) =
∑∞

n=1
1
ns

we have that σ0 = 1.

ii) For
∑∞

n=1
(−1)n−1

ns
we have that σ0 = 0 and σ′0 = 1.

Claim 2.5.2. For the abscissa we have that σ′0 ≤ σ0 + 1.

Proof. Let s = σ + it ∈ C and σ > σ0. Then we know that Df (s) is convergent and
each of its summands is bounded, that is |f(n)n−s| = |f(n)||n−s| = |f(n)n−σ| ≤ K for
all σ > σ0 and some K constant. Therefore we have that

∞∑
n=1

∣∣∣∣ f(n)

ns+1+ε

∣∣∣∣ =
∞∑
n=1

|f(n)|
|nσ+1+ε|

≤ K

∞∑
n=1

1

n1+ε
<∞

for any ε > 0. Thus we see that D|f |(s + 1 + ε) is absolutely convergent and so σ′0 is at
most σ + 1.

Claim 2.5.3. Let the Dirichlet series Df (s) and Dg(s) be convergent for Re(s) > σ0. If
for all s with Re(s) > σ0 the equation Df (s) = Dg(s) holds, then we have that f(n) = g(n)
holds for all n ∈ N.

Proof. Consider the difference Dirichlet series

Dh(s) = Df (s)−Dg(s) =
∞∑
n=1

f(n)− g(n)

ns
=
∞∑
n=1

h(n)

ns
= 0.
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We now want to show that h(n) = 0 for all n ∈ N. Suppose that there exists some N ∈ N
such that h(N) 6= 0 and take this N to be minimal. Then we get that

Dh(s) =
∞∑
n=N

h(n)

ns
= 0 and so N s

∞∑
n=N

h(n)

ns
= 0.

Let ε > 0 be arbitrary, then since N sDh(s) is uniformly convergent for all s where

Re(s) > σ0 there exist some M such that |
∑∞

n=M+1
h(n)Ns

ns
| < ε

2
.

We have that

0 =
∞∑
n=N

N sh(n)

ns
= h(N) +

∞∑
n=N+1

N sh(n)

ns

and therefore

−h(N) =
M∑

n=N+1

N sh(n)

ns
+

∞∑
n=M+1

N sh(n)

ns
.

For the absolute value we see that

|h(N)| ≤

∣∣∣∣∣
M∑

n=N+1

N sh(n)

ns

∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=M+1

N sh(n)

ns

∣∣∣∣∣ < 2
ε

2
= ε

because once ε is fixed so are both M and N and then
(
N
n

)s
gets small when n ∈

{N + 1, ...M}. Thus we get that h(N) = 0 which is a contradiction.

Remark 2.5.1. Since Df (s) is uniformly convergent on any compact subregion of Re(s) >

σ0 and each partial sum
∑N

n=1
f(n)
ns

is analytic, it follows that Df (s) itself is analytic and
may be differentiated term by term.

2.6 Connection between arithmetic functions and Dirich-

let series

Definition 2.6.1. The Liouville function is defined to be

λ(n) =

{
1 if n = 1

(−1)α1+···+αk if n = pα1
1 · · · p

αk
k

.

We have that λ(n) is a strongly multiplicative function.

Definition 2.6.2. The von Mangoldt function is defined to be

Λ(n) =

{
log(p) if n = pα

0 else
.

Claim 2.6.1. The following identities hold:

i)
∑∞

n=1
µ(n)
ns

= 1
ζ(s)

if Re(s) > 1

ii)
∑∞

n=1
τ(n)
ns

= ζ(s)2 if Re(s) > 1

iii)
∑∞

n=1
σ(n)
ns

= ζ(s) ζ(s− 1) if Re(s) > 2
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iv)
∑∞

n=1
ϕ(n)
ns

= ζ(s−1)
ζ(s)

if Re(s) > 2

v)
∑∞

n=1
λ(n)
ns

= ζ(2s)
ζ(s)

if Re(s) > 1

vi)
∑∞

n=1
Λ(n)
ns

= − ζ′(s)
ζ(s)

if Re(s) > 1.

Proof.

i) We have already seen two proofs of this, one in 2.3.1.

ii) Note again that ζ(s) = DI(s) and so by claim 2.4.3 it is enough to show that I ∗ I = τ .

I ∗ I(N) =
∑
d|n

I(d)I(
n

d
) =

∑
d|n

1 = τ(n).

iii) We can write

Dσ(s) =
∞∑
n=1

σ(n)

ns
=
∞∑
n=1

σ(n)/n

ns−1

?
=
∞∑
n=1

1/n

ns−1

∞∑
n=1

1

ns−1
= ζ(s) ζ(s− 1).

Clearly here we have that the convergence abscissa is σ0 = 2, and set f(n) = 1
n
. With

this choice of f we have that Dσ(s) = Dσ·f (s−1) and we want to show that Dσ·f (s−1) =
Df (s− 1)DI(s− 1) = Df∗I(s− 1). Now we see

f ∗ I(n) =
∑
d|n

I(d)f(
n

d
) =

∑
d|n

1
d

n
=

1

n

∑
d|n

d =
1

n
σ(n) = (σ · f)(n).

iv) Use again the function f(n) = 1
n
. We have

∞∑
n=1

1/n

ns−1

∞∑
n=1

ϕ(n)/n

ns−1

?
=
∞∑
n=1

1

ns−1
.

To verify this we have to prove that Df (s− 1)Dϕ·f (s− 1) = DI(s− 1).

f ∗ (ϕ · f)(n) =
∑
d|n

f(d) ϕ(
n

d
) f(

n

d
) =

∑
d|n

1

d
ϕ(
n

d
)
d

n
=

1

n

∑
d|n

ϕ(d) =
1

n
n = 1 = I(n).

v) Since we noted that λ is a strongly multiplicative function we get by claim 2.4.4 an
Euler product representation of the form

Dλ(s) =
∏
p

1

1− λ(p)
ps

=
∏
p

1

1 + 1
ps

=
∏
p

1− 1
ps

1− 1
p2s

=
∏
p

1

1− 1
p2s

(∏
p

1

1− 1
ps

)−1

=
ζ(2s)

ζ(s)
.

Here we used that (a+ b)(a− b) = a2 − b2 and therefore also (a+ b) = a2−b2
a−b .

vi) Recall that

D′f (s)
∞∑
n=1

− log n f(n)

ns
and so − ζ ′(s) =

∞∑
n=1

log n

ns
= Dlog(s).

We want to show that DΛ(s) ζ(s) = Dlog(s), that is Λ ∗ I = SΛ = log. Indeed we have
that

SΛ(n) =
∑
d|n

Λ(d) =
∑
p
αi
i |n

log(pi) =
k∑
i=1

αi log(pi) =
k∑
i=1

log(pαii ) = log n.
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Remark 2.6.1. In the last step of the proof we have just seen that SΛ(n) = log n.

Claim 2.6.2. For the Liouville function we get the identity

λ(n) =
∑
m2|n

µ
( n

m2

)
.

Proof. Define a function q(m) =

{
1 if m = n2

0 else
, with that we get

ζ(2s) =
∞∑
n=1

1

n2s
=

∞∑
m=1

q(m)

ms
= Dq(s).

In the last claim we have proved that Dλ(s) ζ(s) = Dq(s) and thus by claim 2.5.3 we get
that λ ∗ I = Sλ = q. By the Möbius inversion formula we get that λ = µ ∗ Sλ = µ ∗ q,
which gives

λ(n) =
∑
d|n

µ(
n

d
) q(d) =

∑
m2|n

µ
( n

m2

)
.

2.7 Analytic continuity of Dirichlet series

Definition 2.7.1. Let U, V ⊂ C be open subsets such that U ⊂ V . Let f : U → C be
an analytic function and F : V → C an analytic function such that F |U = f , that is
F (z) = f(z) for all z ∈ U . In this setting we call F an analytic continuation of f.

Remark 2.7.1. Set A(n) = (−1)n−1 for all n ≥ 1, then we get

(1− 21−s)ζ(s) = (1− 21−s)
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · · − 2

(
1

2s
+

1

4s
+ · · ·

)
=

= 1− 1

2s
+

1

3s
− 1

4s
· · · =

∞∑
n=1

(−1)n−1

ns
= DA(s).

Here we see that DA(s) has a convergence abscissa σ0 = 0 while ζ(s) is only convergent
for Re(s) > 1.

Question: Does ζ(s), or other Dirichlet series, have an analytic continuation to the
left of the convergence half-plane?

Theorem 2.7.1 (Landau). If f : N → R is such that f(n) ≥ 0 for all n ∈ N and the
Dirichlet series Df (s) has a finite convergence abscissa σ0, then Df (s) is holomorphic in
Re(s) > σ0 but can not be analytically continued past Re(s) = σ0 to a region including
the point s = σ0.

Proof. Recall that the Dirichlet series Df (s) is uniformly convergent for Re(s) > σ0, so
we can differentiate it term by term which gives:

D′f (s) =
∞∑
n=1

−f(n) log n

ns
; D′′f (s) =

∞∑
n=1

f(n) log2(n)

ns
; ...; D

(k)
f (s) =

∞∑
n=1

(−1)k
f(n) logk(n)

ns
.
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Since Df (s) is holomorphic in an open disc around σ = σ0 + 1 we can get a Taylor series
expansion of Df (s) with center σ. Then

F (s) =
∞∑
k=0

D
(k)
f (σ)

k!
(s−σ)k =

∞∑
k=0

∞∑
n=1

(−1)k

k!

f(n) logk(n)

nσ
(s−σ)k =

∞∑
k=0

∞∑
n=1

(σ − s)k

k!

f(n) logk(n)

nσ

is a power series with Df (s) = F (s) for each point of the disc centered in σ with radius
one. Assume now that the power series F (s) is convergent past the point Re(s) = σ0,
that it is has a radius of convergence bigger than one. Then it also converges for some
s < σ0 on the real axis and since we have that f(n) ≥ 0 for all n we get that it is even
absolutely convergent and so all permutations of the coefficients are permitted. With
that we get that

F (s) =
∑
n=1

f(n)

nσ

∞∑
k=0

((σ − s) log n)k

k!
=
∞∑
n=1

f(n)

nσ
e(σ−s) logn =

∞∑
n=1

f(n)

nσ
nσ−s =

∞∑
n=1

f(n)

ns
= Df (s).

But with this our σ0 would not be the convergence abscissa of Df (s) which gives a
contradiction. Therefore F (s) can not be convergent past Re(s) = σ0 and so Df (s) is
not analytic to the left of Re(s) = σ0, including σ0.

Claim 2.7.1. The Riemann ζ-function satisfies the integral formula

ζ(s) = s

∫ ∞
1

[x]x−s−1dx for Re(s) > 1.

Furthermore it satisfies

ζ(s) =
1

s− 1
+ 1− s

∫ ∞
1

{x}
xs+1

dx for Re(s) > 0

and therefore can be analytically continued to a holomorphic function in Re(s) > 0 with
a single pole at s = 1 with residue 1.

Proof. For the first integral formula we have

ζ(s) =
∞∑
n=1

1

ns
=
∞∑
n=1

n− (n− 1)

ns
=
∞∑
n=1

n

ns
−
∞∑
n=1

n− 1

ns
=
∞∑
n=1

n

ns
−
∞∑
n=0

n

(n+ 1)s
=

=
∞∑
n=1

n

ns
−
∞∑
n=1

n

(n+ 1)s
=
∞∑
n=1

n(n−s − (n+ 1)−s) =
∞∑
n=1

n(−
∫ n+1

n

(x−s)′dx) =

=
∞∑
n=1

n s

∫ n+1

n

x−s−1dx = s

∞∑
n=1

n

∫ n+1

n

x−s−1dx = s
∞∑
n=1

∫ n+1

n

[x]x−s−1dx =

= s

∫ ∞
1

[x]x−s−1dx.

This works since for x ∈ [n, n+ 1) the integer part [x] = n. For the second part consider
the integral

s

∫ ∞
1

x x−s−1dx = s

∫ ∞
1

x−sdx =
s

−s+ 1

∫ ∞
1

(−s+ 1)x−sdx = − s

s− 1

∫ ∞
1

(x−s+1)′dx =

= − s

s− 1

(
1

ps−1
− 1

1s−1

) ∣∣∣
p→∞

=
s

s− 1
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for Re(s) > 1. So we see that ζ(s)− s
∫∞

1
x x−s−1dx = ζ(s)− 1− 1

s−1
as well as

ζ(s)− s
∫ ∞

1

x x−s−1dx = s

∫ ∞
1

([x]− x)x−s−1dx = −s
∫ ∞

1

{x}
xs+1

dx.

The integral
∫∞

1
{x}
xs+1dx is absolutely convergent for Re(s) > 0 and ζ(s) = 1 + 1

s−1
−

s
∫∞

1
{x}
xs+1dx is holomorphic for Re(s) > 0 with an exception at s = 1 because the integral

is holomorphic there. Clearly we have a simple pole at s = 1 with residue a−1 = 1.

Remark 2.7.2. The integral formula in the above claim is closely connected to the
Mellin transform of [x]

{Mf}(s) =

∫ ∞
0

f(x) xs−1dx.

Since
∫ 1

0
[x]x−s−1dx = 0 (the integer part is always 0) we see that

ζ(s) = s {M[ · ]}(−s) for Re(s) > 1.

Claim 2.7.2. If f : N→ C and g(x) =
∑

n≤x f(n) are functions satisfying g(x)
xs
→ 0 for

Re(s) big enough and x going to infinity and
∫∞

1
g(x) x−s−1dx is convergent, then

Df (s) = s

∫ ∞
1

g(x) x−s−1dx.

In particular for the ψ-function of Chebyshev ψ(x) =
∑

n≤x Λ(n) we get the integral
formula

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

ss+1
dx for Re(s) > 1.

Proof. Using Theorem 2.2.3 we have∑
n≤x

f(n)

ns
=

1

xs
g(x)−

∫ x

1

g(t)(t−s)′dt =
g(x)

xs
+ s

∫ x

1

g(t)

ts+1
dt.

If s is such that g(x)
xs
→ 0 as x grows and the integral is converging we get the integral

formula for the Dirichlet series.
Recall that

∑∞
n=1

Λ(n)
ns

= − ζ′(s)
ζ(s)

. Now we have ψ(x) =
∑

n≤x Λ(n) =
∑

pν≤x log(p) ≤
x log x and

|ψ(x)

xs
| ≤ x log x

xσ
=

log x

xσ−1
≤ 1

xσ−1−ε for all ε > 0 and x large enough.

If σ > 1 , σ−1− ε > 0, |ψ(x)
xs
| → 0 as x grows and |ψ(t)

ts+1 | ≤ 1
tσ−ε

then the integral
∫∞

1
ψ(t)
ts+1dt

is convergent.
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Chapter 3

The Prime Number Theorem

Claim 3.0.1. There exists some constant c > 0 such that for the prime counting function
π(x) =

∑
p≤x 1 we get π(x) ≥ c log(log x).

Proof. First note that the claim also follows immediately by Euclid’s theorem since
limx→∞π(x) =∞.
Observe that for small primes we see that p1 = 2 ≤ 220 , p2 = 3 ≤ 221 , p3 = 5 ≤ 222 and
so on. Assume now that pn ≤ 22n−1

holds and consider N = p1p2 · · · pn − 1. We see that
gcd(N, pi) = 1 for every i = 1, ..., n and so the first prime p which can divide N is at least
as big as pn+1, that is

pn+1 ≤ p ≤ N < p1 · · · pn ≤ 220221 · · · 22n−1

= 220+21+···2n−1

= 2
2n−1
2−1 < 22n .

Thus we have proved by induction that pn+1 < 22n holds for every n ∈ N. Let now m ∈ N
be maximal such that 22m ≤ x holds, that is 22m ≤ x < 22m+1

.
Then we have that pm+1 ≤ 22m ≤ x and so π(x) ≥ m+ 1. On the other hand we see that

log(log x) < (m + 1) log(2) + log(log(2)) and so π(x) ≥ m + 1 > log(log x)
log(2)

− log(log(2))
log(2)

≥
c log(log x).

Claim 3.0.2. There exists some constant c > 0 such that π(x) ≥ c log x.

Proof. The idea of this proof goes back to Dressler and Erdös.
Think of all square-free integers n ≤ x and their unique representation of the form
n =

∏π(x)
i=1 p

νi
i where νi ∈ {0, 1} and p1, p2, ..., pπ(x) are all primes up to x. Therefore the

number of square-free integers up to x is at most 2π(x).
On the other hand we have already showed that

∑
n≤x µ(n) = x

ζ(2)
+O(

√
x) where µ(n)

is one if n is square-free and zero else. Therefore there exists some c′ > 0 such that
2π(x) > c′x and so π(x) log(2) > log(c′) + log x.

The true growth rate of π(x), that is π(x) ∼ x
log x

, was already predicted by Legendre
and Gauss.

Conjecture of Gauss: π(x) ∼ Li(x) =
∫ x

2
1

log(t)
dt where Li is the so called offset

logarithmic integral.

Remark 3.0.1. For the logarithmic integral we get the asymptotics Li(x) ∼ x
log x

.

Proof. By applying L’Hôpital’s rule we get

limx→∞
Li(x)

x
log x

= limx→∞

1
log x

1
log x
− 1

(log x)2

= limx→∞
1

1− 1
log x

= 1.

Note that Li(x)→∞ since log(t) < tα.
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Remark 3.0.2. We have that π(x) ∼ x
log x

holds if and only if for every ε > 0 and some
x ≥ N the inequalities

(1− ε) x

log x
≤ π(x) ≤ (1 + ε)

x

log x

hold.

Let us note some historical efforts and results connected to the prime number theorem.
Around 1850 Chebyshev showed 0.92 x

log x
≤ π(x) ≤ 1.11 x

log x
. In 1874 Mertens managed to

show
∑

p≤x
1
p
∼ log(log x) and in 1896 de la Vallée Poussin - Hadamard got π(x) ∼ x

log x
.

Around 1980 Newman had a more elegant proof of the prime number theorem using a
Tauberian Theorem, we will see Newman’s proof later on.

Theorem 3.0.1 (Chebyshev). There exist two positive constants c1 and c2 such that for
large enough x we get

c1
x

log x
≤ π(x) ≤ c2

x

log x
.

In order to prove this theorem we need the following lemma.

Lemma 3.0.1. The following estimates hold for the von Mangoldt function:

i)
∑

n≤x Λ(n)
[
x
n

]
= x log x− x+O(log x)

ii)
∑

n≤x Λ(n)
([

x
n

]
− 2

[
x
2n

])
= x log(2) +O(log x).

Proof.

i) Recall that we have already seen
∑

d|n Λ(d) = log n and consider
∑

n≤x log n.∑
n≤x

log n =
∑
n≤x

∑
d|n

Λ(d) =
∑
d≤x

∑
dk=n≤x

Λ(d) =
∑
d≤x

Λ(d)
∑
k≤x

d

1 =
∑
d≤x

Λ(d)
[x
d

]
.

Now we estimate
∑

n≤x log n via Euler summation formula, thus note that f(x) = log x
is a monotone increasing function and so∑

n≤x

f(n) =

∫ x

1

f(t)dt+O(f(x)).

∑
n≤x

log n =

∫ x

1

log(t)dt+O(log x) =

∫ x

1

[(t log(t))′ − 1]dt+O(log x) =

= x log x− 1 log(1)− (x− 1) +O(log x) = x log x− x+O(log x)

Now we have two representations of the sum and the statement follows.

ii) ∑
n≤x

Λ(n)
([x
n

]
− 2

[ x
2n

])
=
∑
n≤x

Λ(n)
[x
n

]
− 2

∑
n≤x

Λ(n)
[ x

2n

]
=

=
∑
n≤x

Λ(n)
[x
n

]
− 2

∑
n≤x

2

Λ(n)

[
x/2

n

]
− 2

∑
x
2
<n≤x

Λ(n)

[
x/2

n

]
=

i)
= x log x− x+O(log x)− 2

(x
2

log
(x

2

)
− x

2
+O(log x)

)
=

= x log x− x+O(log x)− x(log x− log(2)) + x+O(log x) =

= x log(2) +O(log x).
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Now we can prove Theorem 3.0.1.

Proof. We will explore the function π(x) through analysis of ψ(x) =
∑

n≤x Λ(x). There-
fore observe that π(x) =

∑
p≤x 1 and ψ(x) =

∑
n≤x Λ(n) =

∑
pα≤x log(p).∑

n≤x

Λ(n) =
∑
pα≤x

log(p) =
∑
p≤x

∑
α≤ log x

log(p)

log(p) =
∑
p≤x

log(p)
∑

α≤[ log x
log(p) ]

1 =

=
∑
p≤x

log(p)

[
log x

log(p)

]
≤
∑
p≤x

log x = log xπ(x).

Note now that [x] > x − 1 holds for every x and so [a] − 2
[
a
2

]
< a − 2(a

2
− 1) = 2 and

[a]− 2
[
a
2

]
∈ Z so we get [a]− 2

[
a
2

]
≤ 1. Therefore we get∑

n≤x

Λ(n) · 1 ≥
∑
n≤x

Λ(n)
([x
n

]
− 2

[ x
2n

])
Lemma 2.1 ii)

= x log(2) +O(log x).

This gives now x log(2) + O(log x) ≤
∑

n≤x Λ(n) ≤ π(x) log x and so there exists some
c1 > 0 such that c1

x
log x
≤ π(x) holds for x large enough.

To get the upper bound of π(x) we will use the dyadic partition of the interval [1, x] in
subintervals of the form

[
x
2k
, x

2k−1

)
, that is [1, x] = [1, x

2k
)∪
[
x
2k
, x

2k−1

)
∪ · · · ∪ [x

2
, x]. Where

k > 0 is chosen such that 2k ≤ x < 2k+1. Then we get a telescopic sum of the form

π(x) log x =
k∑
i=0

(
π
( x

2k

)
log
( x

2k

)
− π

( x

2k+1

)
log
( x

2k+1

))
,

since π( x
2k+1 ) = 0.

Consider now the difference

π(x) log x− π
(x

2

)
log
(x

2

)
= log

(x
2

)(
π(x)− π

(x
2

))
+ π(x) log(2) =

= log
(x

2

)(
π(x)− π

(x
2

))
+O(x) = log

(x
2

) ∑
x
2
<p≤x

1 +O(x) = O(
∑
x
2
<p≤x

log(p) + x) =

= O(
∑

x
2
<n≤x

Λ(n) + x) = O

 ∑
x
2
<n≤x

Λ(n)
([x
n

]
− 2

[ x
2n

])
+ x

 =

= O

(∑
n≤x

Λ(n)
([x
n

]
− 2

[ x
2n

])
+ x

)
Lemma 2.1

= O(x).

Here we use the fact that [x
n
] ≥ 1 and [ x

2n
] = 0 for x

2
< n ≤ x and that [a] − 2[a

2
] >

a− 1− 2a
2

= −1 and so we can add the summands for n < x
2

to the error term.
Now since π(x) log x−π

(
x
2

)
log
(
x
2

)
= O(x) we get that π

(
x
2k

)
log
(
x
2k

)
−π
(

x
2k+1

)
log
(

x
2k+1

)
=

O
(
x
2k

)
and so

π(x) log x =
k∑
i=0

O
( x

2k

)
= O

(
x

k∑
i=0

1

2k

)
= O(x)

because
∑∞

i=0
1
2k
<∞.

Therefore π(x) = O
(

x
log x

)
.
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Claim 3.0.3. The statement π(x) ∼ x
log x

is equivalent to ψ(x) ∼ x.

Proof. We have to show that limx→∞
ψ(x)
x

= limx→∞ π(x) log x
x

. In the proof of Chebyshev’s

theorem we have already seen ψ(x) =
∑

n≤x Λ(n) ≤ π(x) log x, that is ψ(x)
x
≤ π(x) log x

x
.

For any 1 < y < x we have

π(x) = π(y) +
∑
y<p≤x

1 ≤ π(y) +
∑
y<p≤x

log(p)

log(y)

Chebyshev

≤ c2
y

log(y)
+

ψ(x)

log(y)
.

Now multiplying both sides with log x
x

and setting y = x
log x

gives

π(x)
log x

x
≤ c2

1

log(y)
+
ψ(x)

x

log x

log x− log(log x)
= c2

1

log x− log(log x)
+
ψ(x)

x

1

1− log(log x)
log x

.

All put together yields

ψ(x)

x
≤ π(x)

log x

x
≤ c2

1

log x− log(log x)
+
ψ(x)

x

1

1− log(log x)
log x

and we see that RHS → limx→∞
ψ(x)
x

.

So we see limx→∞
ψ(x)
x
≤ limx→∞ π(x) log x

x
≤ limx→∞

ψ(x)
x

and equality holds. Therefore
we get the statement.

Theorem 3.0.2 (Mertens, 1874). The following asymptotic approximations hold:

i)
∑

p≤x
log(p)
p

= log x+O(1).

ii)
∑

p≤x
1
p

= log(log x) + c+O
(

1
log x

)
.

Remark 3.0.3. These claims are one step closer to the Prime Number Theorem after
Chebyshev’s Theorem, they are asymptotics

∑
pk≤x

log(p)
p
∼ log x whereas the PNT claims∑

p≤x log(p) ∼ x.

Proof.

i) From Lemma 3.0.1 we have an asymptotic formula for
∑

n≤x Λ(n)
[
x
n

]
which is similar

to
∑

n≤x log(p)x
p

so we try to use it here. Consider

x log x− x+O(log x) =
∑
n≤x

Λ(n)
[x
n

]
=
∑
p≤x

log(p)

[
x

p

]
+
∑
pν≤x
ν≥2

log(p)

[
x

pν

]
=

=
∑
p≤x

log(p)
x

p
−
∑
p≤x

{
x

p

}
+O

∑
pν≤x
ν≥2

log(p)
x

pν

 =

= x
∑
p≤x

log(p)

p
+O

(∑
p≤x

log(p)

)
+O

(
x

∞∑
n=1

log n

n2

)
=

= x
∑
p≤x

log(p)

p
+O

(
log x

∑
p≤x

1

)
+O(x) = x

∑
p≤x

log(p)

p
+O

(
log xc2

x

log x

)
+O(x) =

= x
∑
p≤x

log(p)

p
+O(x).
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In the last step we used Theorem 3.0.1 and we get∑
p≤x

log(p)

p
=

1

x
(x log x− x+O(log x)) = log x+O(1).

ii) Here we are going to use i) and Theorem 2.2.3.

∑
p≤x

1

p
=
∑
p≤x

log(p)

p

1

log(p)
=

1

log x

∑
p≤x

log(p)

p
+

∫ x

2

(∑
p≤t

log(p)

p

)
dt

t(log(t))2
=

i)
= 1 +O

(
1

log x

)
+

∫ x

2

log(t) +

(∑
p≤t

log(p)

p
− log(t)

)
︸ ︷︷ ︸

ω(t)

 dt

t log2(t)
=

= 1 +O
(

1

log x

)
+

∫ x

2

dt

t log(t)
+

∫ x

2

ω(t)t

t log2(t)
.

Note that (log(f(t))′ = 1
f(t)

f ′(t) so we have 1
log(t)

1
t

= 1
log(t)

(log(t))′ = (log(log(t)))′. More-

over by i) we know that ω(t) = O(1) for any t and so
∫∞

2
ω(t)dt

t log2(t)
< ∞. Therefore we

get∑
p≤x

1

p
= log(log x) +

(
1− log(log(2)) +

∫ ∞
2

ω(t)
dt

t log2(t)

)
+O

(
1

log x
+

∫ ∞
x

|ω(t)| dt

t log2(t)

)
=

= log(log x) + c+O
(

1

log x

)
.

3.1 Newman’s proof of the Prime Number Theorem

Theorem 3.1.1 (Prime Number Theorem). The asymptotic equivalence ψ(x) ∼ x holds.

The main steps in the proof of Newman are:

I. ζ(s) =
∏

p

(
1− 1

ps

)−1

for Re(s) > 1. (Euler)

II. ζ(s)− 1
s−1

extends holomorphically to Re(s) > 0. (Riemann)

III. ψ(x) = O(x). (Chebyshev)

IV. ζ(s) 6= 0 for Re(s) ≥ 1 (Mertens) and − ζ′(s)
ζ(s)
− 1

s−1
is holomorphic for Re(s) ≥ 1.

V.
∫∞

1
ψ(x)−x
x2

dx is a convergent integral. (Newman)

VI. ψ(x) ∼ x. (Newman)
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We will first discuss the ideas of Newman, that is we will formulate an Analytic Theorem
of Newman, its Corollary, which will assure that V holds for more general functions and
then the implication V ⇒ V I. Then we will specialize the argument for the function
ψ(x), which satisfies V because of I-IV. We only need to prove IV (and the statements of
Newman) as I-III are already shown (more or less) due to previous lectures.

Theorem 3.1.2 (Analytic Theorem of Newman). Let F (t) be a bounded complex-valued
function F : (0,∞)→ C which is integrable over every compact subset of (0,∞). Suppose
that the Laplace transform of F (t), given by G(z) =

∫∞
0
F (t)e−ztdt for Re(z) > 0, extends

holomorphically to Re(z) ≥ 0. Then the improper integral
∫∞

0
F (t)dt converges and equals

G(0).

Corollary 3.1.1. Let f(x) be a monotone non-decreasing function defined for x ≥
1 satisfying f(x) = O(x). Consider the Mellin transform of f(x), given by g(s) =
s
∫∞

1
f(x)x−s−1dx for Re(s) > 1, and assume that g(s) − c

s−1
is a holomorphic function

in a region containing the closed half-plane Re(s) ≥ 1. Then we have the asymptotic
expression f(x) ∼ cx.

Proof. Define the function F (t) := e−tf(et) − c. Then we see that F (t) is bounded for
t ∈ (0,∞) since f(et) ≤ ket and thus it is also integrable on every bounded subinterval

of (0,∞), that is
∫ b
a
F (t)dt exists for all 0 < a ≤ b < ∞. Consider now the Laplace

transform of F (t)

G(z) =

∫ ∞
0

F (t)e−ztdt =

∫ ∞
0

(e−tf(et)− c)e−ztdt e
t=x
=

∫ ∞
1

(x−1f(x)− c)x−zd log x =

=

∫ ∞
1

(x−1f(x)− c)x−z−1dx =

∫ ∞
1

f(x)x−z−2dx− c
∫ ∞

1

x−z−1dx =

=

∫ ∞
1

f(x)x−z−2dx− c

z
=

1

z + 1
g(z + 1)− c

z
=

1

z + 1

(
g(z + 1)− c(z + 1)

z

)
=

=
1

z + 1

(
g(z + 1)− c

z
− c
)
.

Thus G(z) is well defined for Re(z) > 0 and by assumption g(z + 1)− c
z

is holomorphic
for Re(Z) ≥ 0. By the Analytic Theorem of Newman, for t = log x, we have

G(0) =

∫ ∞
0

F (t)dt =

∫ ∞
0

(e−tf(et)− c)t =

∫ ∞
1

f(x)− cx
x2

dx

that is that the integral
∫∞

1
f(x)−cx

x2
converges. (Point V)

Assume now that lim supx→∞
f(x)
x

> c, that is for infinitely many arbitrary large x we

have f(x)
x

> λc for some λ > 1. Then take these infinitely many x and consider the
integral∫ λx

x

f(t)− ct
t2

dt ≥
∫ λx

x

λcx− ct
t2

dt = c

∫ λx

x

λx− t
t2

dt = c

∫ λx

x

x2(λ− t
x
)

t2
d
t

x

t
λ
→t
=

= c

∫ λ

1

λ− t
t2

dt > 0.

This works since λ > 1 and thus contradicts the integral
∫∞

1
f(t)−ct
t2

being convergent,

because for any ε > 0 and µ1, µ2 large enough we should get
∣∣∣∫ µ2µ1 f(t)−ct

t2
dt
∣∣∣ < ε. Hence
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lim supx→∞
f(x)
x
≤ c.

Assume now that lim infx→∞
f(x)
x
< c then there exists some µ < 1 such that for infinitely

many arbitrary big x we have f(x) < µcx. Then∫ x

µx

f(t)− ct
t2

dt <

∫ x

µx

f(x)− ct
t2

dt <

∫ x

µx

µcx− ct
t2

dt = c

∫ x

µx

x2(µ− t
x
)

t2
d
t

x
=

= c

∫ 1

µ

µ− t
t2

dt < 0

Again this works since µ < 1 and contradicts that the integral should be convergent,
therefore lim infx→∞

f(x)
x
≥ c. So we get that limx→∞

f(x)
x

= c and so f(x) ∼ cx.

Theorem 3.1.3 (Prime Number Theorem). The asymptotic equivalence ψ(x) ∼ x holds.

Proof. We have already shown that π(x) ∼ x
log x

⇔ ψ(x) ∼ x. By Claim 2.6.1 we

know that for Re(s) > 1 we have − ζ′(s)
ζ(s)

= s
∫∞

1
ψ(x)
xs+1dx, that is the Mellin transform

of ψ(x) is − ζ′(s)
ζ(s)

= DΛ(s). Further we have that ψ(x) =
∑

n≤x Λ(n) ≤
∑

p≤x log(p) ≤
log x

∑
p≤x 1 = log xπ(x) ≤ log xc2

x
log x
≤ c2x so ψ(x) is non-decreasing and ψ(x) = O(x).

So by the Corollary 3.1.1 it is enough to show that − ζ′(s)
ζ(s)

is holomorphically extendable

past Re(s) = 1, that is − ζ′(s)
ζ(s)
− 1

s−1
is holomorphic in some region D containing the

closed half plane Re(s) ≥ 1. Recall that we have already seen (in Claim 2.7.1) that for

Re(s) > 0 we have ζ(s) = 1
s−1

+ 1 − s
∫∞

1
{x}
xs+1dx and so ζ(s) is analytically continued

from Re(s) > 1 to Re(s) > 0 with a simple pole at s = 1 with residue 1.

Therefore we have that − ζ′(s)
ζ(s)
− 1

s−1
is holomorphic, with a single exception at s = 1, as

long as we can guarantee that ζ(s) 6= 0.
Let C = {s ∈ C : |s − 1| < δ} and assume that in C we have ζ(s) = 1

s−1
(1 + h(s)) for

some analytic function h. Now actually h(s) = (s− 1)
(

1− s
∫∞

1
{x}
xs+1dx

)
is holomorphic

for Re(s) > 0 and also bounded on compacts. Choose δ > 0 small enough such that
|h(s)| < 1 holds.We get

ζ ′(s) = − 1

(s− 1)2
(1 + h(s)) +

h′(s)

s− 1

and so

−ζ
′(s)

ζ(s)
=

s− 1

1 + h(s)

(
1 + h(s)

(s− 1)2
− h′(s)

s− 1

)
=

1

s− 1
− h′(s)

1 + h(s)
.

By the choice of the disk C with radius δ we have 1+h(s) 6= 0 in C and so − ζ′(s)
ζ(s)
− 1

s−1
=

− h′(s)
1+h(s)

is holomorphic in C aswell.

In order to apply Corollary 3.1.1 we need to assure that − ζ′(s)
ζ(s)
− 1

s−1
is holomorphic

in some region D containing Re(s) ≥ 1. For Re(s) > 1 we have the Euler product
representation ζ(s) =

∏
p(1−

1
ps

)−1 as in Claim 2.4.4 for f(n) = 1. Note that each of the

factors (1− 1
ps

)−1 = ps

ps−1
> 1, so we have that ζ(s) 6= 0 for Re(s) > 1.

What is left to show is the same claim for Re(s) = 1 and s 6= 1. This will be the next
Lemma.

Lemma 3.1.1 (Mertens). For Re(s) = 1 and s 6= 1 we get ζ(s) 6= 0.

31



Proof. First note that 3 + 4 cos(ϕ) + cos(2ϕ) ≥ 0. Indeed using cos(2α) = 2 cos2(α)− 1
we get

3+4 cos(ϕ)+cos(2ϕ) = 3+4 cos(ϕ)+(2 cos2(ϕ)−1) = 2+4 cos(ϕ)+2 cos2(ϕ) = 2(1+cos(ϕ))2 ≥ 0.

If for t 6= 0 we have that ζ(1 + it) = 0, then Θ(s) = ζ(s)3ζ(s + it)4ζ(s + 2it) possesses
zero at s = 1, because ζ(s)3 has a 3-gold pole which is prevailed by the 4-fold zero of
ζ(s+ it). Also Θ(s) is holomorphic around s = 1. Therefore lims→1 log(|Θ(s)| = −∞.
Recall that for some x ∈ C we have |x| =

∣∣eRe(log x)+iIm(log x)
∣∣ =

∣∣eRe(log x)
∣∣ and so log |x| =

Re(log x). Let us now approach s = 1 from the right along the real axis, therefore let
σ > 1. Thus we know that we have an Euler product for the ζ function. Now we get

log |ζ(σ + it)| = Re(log(ζ(σ + it)) = Re(log(
∏
p

(1− p−σ−it)−1)) = −Re(
∑
p

log(1− p−σ−it)) =

= Re(
∑
p

p−σ−it +
1

2
(p2)−σ−it +

1

3
(p3)−σ−it + · · · ) = Re(

∑
n

ann
−σ−it)

for some non negative an ≥ 0. Here we use the series expansion of log(1−x) = −
∑∞

k=1
xk

k

for |x| < 1 and |p−σ| < 1. Then we get

log |Θ(σ)| = 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| =

= 3Re(
∑
n

ann
−σ) + 4Re(

∑
n

ann
−σ−it) +Re(

∑
n

ann
−σ−2it) =

= Re(
∑
n

ann
−σ(3 + 4n[−it+ n−2it)) =

∑
n

ann
−σ(3 + 4 cos(t log n) + cos(2t log n)).

The last step works because nix = cos(log nx)+i sin(log nx). If we now use our observation
we see that log |Θ(σ)| ≥ 0 which contradicts lims→1 |Θ(s)| = −∞. Therefore we get
ζ(1 + it) 6= 0 for any t 6= 0.

With this lemma we have everything we needed to show and the proof of the Prime
Number Theorem is complete.

What is left to show is that the Analytic Theorem of Newman holds. Therefore first
recall the formulation of the Theorem:

Theorem 3.1.4 (Analytic Theorem of Newman). Let F (t) be a bounded complex-valued
function F : (0,∞)→ C which is integrable over every compact subset of (0,∞). Suppose
that the Laplace transform of F (t), given by G(z) =

∫∞
0
F (t)e−ztdt for Re(z) > 0, extends

holomorphically to Re(z) ≥ 0. Then the improper integral
∫∞

0
F (t)dt converges and equals

G(0).

Proof. Without loss of generality we can assume that |F (t)| ≤ 1 for all t > 0, since else

we can just look at F1(t) = F (t)
B

.
For every λ > 0 define

Gλ(z) =

∫ λ

0

F (t)e−ztdt,

which is holomorphic for every z ∈ C because F (t) is compactly integrable and e−zt is
holomorphic itself. Now it is enough to show that

lim
λ→∞

Gλ(0) = lim
λ→∞

∫ λ

0

F (t)dt = G(0),
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that is G(0)−Gλ(0) gets arbitrarily small for λ large enough.
Recall Cauchy’s integral formula for simple closed, positively oriented curve γ and f some
holomorphic function in and on γ (that is, f is holomorphic in an open subset U such
that γ ∈ U). Then for any point a inside the area surrounded by γ we have

f(a) =
1

2πi

∮
γ

f(z)

z − a
dz.

In particular if γ is a curve around a = 0 then we have

f(0) =
1

2πi

∫
γ

f(z)

z
dz.

Take R to be large enough and γ to be the boundary of the region {z ∈ C : |z| ≤
R, Re(z) ≥ −δ} where δ is chosen small enough such that G(z) is holomorphic on γ.
Then by Cauchy’s integral formula we get

G(0)−Gλ(0) =
1

2πi

∫
γ

(G(z)−Gλ(z))eλz(1 +
z2

R2
)
dz

z
=

=

∫
γ+

1

2πi
(G(z)−Gλ(z))eλz(1 +

z2

R2
)
dz

z︸ ︷︷ ︸
I1

−
∫
γ−

1

2πi
Gλ(z)eλz(1 +

z2

R2
)
dz

z︸ ︷︷ ︸
I2

+

+

∫
γ−
G(z)eλz(1 +

z2

R2
)
dz

z︸ ︷︷ ︸
I3

.

Here we use the notation γ+ = {|z| = R, Re(z) > 0} and γ− = γ\γ+.

On the semicircle γ+ we have

|G(z)− gλ(z)| =
∣∣∣∣∫ ∞

0

F (t)e−ztdt−
∫ λ

0

F (t)e−ztdt

∣∣∣∣ =

∣∣∣∣∫ ∞
λ

F (t)e−ztdt

∣∣∣∣ ≤
≤
∫ ∞
λ

∣∣e−zt∣∣ dt =

∫ ∞
λ

e−xtdt =
1

x
e−xλ
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for x = Re(z). Note that on the curve γ+ we have zz̄ = R2 and so

(a+
z2

R2
)
1

z
=

1

z
+

z

R2
=

z̄

zz̄
+

z

zz̄
=
z̄ + z

R2
=

2x

R2
.

Therefore we get

|I1| =
∣∣∣∣ 1

2πi

∫
γ+

(G(z)−Gλ(z))eλz(1 +
z2

R2
)
1

z
dz

∣∣∣∣ ≤ 1

2π

∫
γ+

1

x
e−λxeλx

2x

R2
dz =

=
1

πR2

∫
γ+
dz =

1

πR2
πR =

1

R
.

For estimating I2 notice that Gλ(z) is entire, that is holomorphic on all of C, so by
Cauchy’s Theorem we can change the path of integration by looking at γ1 = {z ∈ C :
|z| = R, Re(z) = 0}. Using again |F (t)| ≤ 1 we get

|Gλ(z)| =
∣∣∣∣∫ λ

0

F (t)e−ztdt

∣∣∣∣ ≤ ∫ λ

0

|e−zt|dt =

∫ λ

0

e−xtdt <

< −1

x
(e−xλ − 1) <

e−xλ

|x|

since on γ1 we have x < 0. This gives

|I2| =
∣∣∣∣∫
γ̄1

1

2πi
Gλ(z)eλz(1 +

z2

R2
)
dz

z

∣∣∣∣ ≤ 1

2π

∫
γ̄1

|Gλ(z)|eλx2|x|
R2

dz <

<
1

2π

∫
γ̄1

e−xλ

|x|
eλx

2|x|
R2

dz =
1

πR2

∫
γ̄1

dz =
1

πR2
πR =

1

R
.

Finally notice that in the estimate for I3 we have the function G(z)(1 + z2

R2 )1
z

which does
not depend on λ, it is holomorphic on γ−, so it is bounded on the curve. Thus on γ− we
have ∣∣∣∣G(z)(1 +

z2

R2
)
1

z

∣∣∣∣ ≤ K

for some K = K(R, δ) > 0. Then we get

I3 ≤
1

2π

∣∣∣∣K ∫
γ−
eλzdz

∣∣∣∣ ≤ K

2π

∫
γ−
eλxdz.

Now for λ → ∞ we have eλx → 0 rapidly when x < 0 and uniformly on x, therefore we
can assume that on γ− we have |eλx| < 2ε

KR
. Then this gives

|I3| ≤
K

2π

2ε

KR
πR = ε.

Thus for any ε > 0 we get |G(0) − Gλ(0)| < ε + 2
R
. Choose now R > 2

ε
then this yields

|G(0)−Gλ(0)| < 2ε for large enough λ and so limλ→∞Gλ(0) = G(0).

The following two Claims are corollaries of Corollary 3.1.1 of Newman.

Claim 3.1.1. Let f(x) be an arithmetic function f : N→ R+ and consider the partial sum

Pf (x) =
∑

n≤x f(n) = O(x). Let the Dirichlet sereis Df (s) =
∑∞

n=1
f(n)
ns

be holomorphic
for Re(s) > 1 and let Df (s)− c

s−1
, for fixed c, be holomorphic in some region containing

the closed half-plane Re(s) ≥ 1. Then we have the asymptotic equivalence Pf (x) ∼ cx.
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Proof. Recall that the Abel summation formula gives

x∑
n=1

f(n)

ns
=
Pf (x)

xs
−
∫ x

1

Pf (t)(t
−s)′dt =

Pf (x)

xs
+ s

∫ x

1

Pf (t)

ts+1
dt.

If Pf (x) = O(x) and Re(s) > 1 then
Pf (x)

xs
→x→∞ 0 and the integral

∫∞
1

Pf (t)

ts+1 dt converges.
Thus we have an integral representation of the Dirichlet series for the arithmetic function

f(x), Df (s) = s
∫∞

1

Pf (x)

xs+1 dx which is also the Mellin transform of Pf (x).
Then Df (s) plays the role of g(s) from Corollary 3.1.1, Pf (x) = O(x) is monotone non-
decreasing, and its Mellin transform can be analytically extended past Re(s) ≥ 1, with
the exception at s = 1, where it has a simple pole with residue c. Now with Corollary
3.1.1 it follows that Pf (x) ∼ cx.

Claim 3.1.2. Let f(n), g(n) be arithmetic functions such that f : N → R+ and g(n) =
O(f(n)), Pf (x) =

∑
n≤x f(n) = O(x). If the Dirichlet series Df (s), Dg(s) are holomor-

phic for Re(s) > 1 and there exist constants c, γ such that Df − c
s−1

and Dg − γ
s−1

are
holomorphic for Re(s) ≥ 1 then Pg(x) =

∑
n≤x g(n) ∼ γx.

Proof. For the proof we have to consider the cases whether g is real valued or g is complex
valued. Let K > 0 such that |g(n)| ≤ K|f(n)| = Kf(n) for all n ∈ N.
Case 1: g is real valued
Then we know that Kf(n) + g(n) ≥ 0 holds for all n ∈ N and we consider the function
h(n) = Kf(n) + g(n). Obviously h(n) ≥ 0 and Ph(x) = KPf (x) +Pg(x). Since |Pg(x)| ≤∑

n≤x |g(n)| ≤ K
∑

n≤x f(n) = KO(x) we have Pg(x) = O(x). By assumption we have
Pf (x) = O(x) as well so we get Ph(x) = O(x).
Also Dh(s) = KDf (s) +Dg(s) so Dh(S)−K c

s−1
− γ

s−1
is holomorphic for Re(s) ≥ 1.

Now from Claim 3.1.1 we get Ph(x) ∼ (Kc+ γ)x. Since Pf (x) ∼ cx, also from the above
claim, we get that Pg(x) = Ph(x)−KPf (x) ∼ γx.
Case 2: g is complex valued
Let x = a+ ib then we have |x| =

√
xx̄ =

√
a2 + b2 and so max(|a|, |b|) ≤

√
a2 + b2 = |x|.

Recall also that x+ x̄ = 2a and x− x̄ = 2ib.
Let us write g(n) = g1(n) + ig2(n) where g1(n) = Re(g(n)) and g2(n) = Im(g(n)) with
g1, g2 : N→ R. Note that

Dg1(s) =
1

2
(Dg(s) +Gḡ(s)) Dg2(s) =

1

2i
(Dg(s)−Dḡ(s)).

Write G(s) = Dg(s) − γ
s−1

it is holomorphic for Re(s) ≥ 1, so is G(s) = Dg(s) − γ̄
s̄−1

=

Dḡ(s̄)− γ̄
s̄−1

and also G(s̄) = Dg(s̄)− γ̄
s−1

= Dḡ(s)− γ̄
s−1

. Therefore 1
2
(Dg(s)+Dḡ(s)− γ+γ̄

s−1
)

is holomorphic in Re(s) ≥ 1.
We have max(|g1(n)|, |g2(n)|) ≤ |g(n)| ≤ Kf(n) and after Case 1 we get that Pg1(x) ∼
1
2
(γ + γ̄)x.

By analogy 1
2i

(Dg(s) − Dḡ(s) − γ−γ̄
s−1

) is holomorphic in Re(s) ≥ 1 and again by case 1

Pg2(x) ∼ 1
2i

(γ − γ̄)x. Hence Pg(x) = Pg1(x) + iPg2(x) ∼ γx.

Corollary 3.1.2. For the Möbius function µ(n) and the Liouville function λ(n) we have
the following

∑
n≤x µ(n) = o(x) and

∑
n≤x λ(n) = o(x).

Proof. Recall Claim 2.6.1 where we showed that the associated Dirichlet series satisfy
Dµ(s) = 1

ζ(s)
and Dλ(s) = ζ(2s)

ζ(s)
for Re(s) > 1. Both can be continued analytically past
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Re(s) = 1, because ζ(s) 6= 0 at Re(s) = 1.
Thus in Claim 3.1.2 g(n) = µ(n) or g(n) = λ(n) can be −1 but |g(n)| ≤ 1 and for
f(n) = 1 for all n ∈ N we have Pf (x) = x = O(x), Df (s) = D1(s) =

∑∞
n=1

1
ns

= ζ(s) is
holomorphic for Re(s) > 1 and ζ(s) − 1

s−1
, Dg(s) − 0

s−1
are holomorphic for Re(s) ≥ 1.

This means that γ = 0 and so Pµ(x)

x
→x→∞ 0, Pλ(x)

x
→x→∞ 0.

Remark 3.1.1. Actually the two statements above are equivalent to the Prime Number
Theorem.
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Chapter 4

Dirichlet’s Theorem on primes in
arithmetic progressions

Definition 4.0.1. An Arithmetic progression is a sequence {a + qn| gcd(a, q) =
1, n ∈ N} with an initial term a and a common difference q.
For example consider the AP m ≡ −1 mod 3 that is m = −1 + 3k.

Claim 4.0.1. There exist infinitely many primes p ≡ −1 mod 3.

Proof. Assume that there are only finitely many primes p ≡ −1 mod 3 p1, p2, ..., pN .
Then the number P = 3p1p2 · · · pN − 1 belongs to the same arithmetic Progression but
is not divisible by any of p1, ..., pN since gcd(pi, P ) = 1 holds for all i = 1, ...N . Let
q1, ..., qk be all prime divisors of P , then at least one of them satisfies pi ≡ −1 mod 3
since otherwise all qj ≡ 1 mod 3 and so P ≡ 1 mod 3. But then we see that p1, ..., pN
can not be all primes which are congruent to −1 mod 3.

Let us write now

π(x; a, q) =
∑
p≤x

p≡a mod q

1 where gcd(a, q) = 1.

The probability that a prime p is in exactly one congruence class a + Zq, that is p ≡ a
mod q, is 1

ϕ(q)
because all congruence classes, coprime with q, are ϕ(q). As p is a prime

this means that gcd(p, q) = 1, except for p|q which happens only for finitely many primes
with density 0. Therefore heuristically we should get

π(x; a, q) ∼ 1

ϕ(q)

x

log x
.

Later we will see this result as the Prime Number Theorem for arithmetic progressions.

4.1 Characters

When considering arithmetic progressions m ≡ a mod q we are dealing with residue
classes, that is m is congruent to an element of the reduced residue group (Z/qZ)∗.

Definition 4.1.1. Let G be a finite abelian group. Then a homomorphism χ : G → C∗
such that χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G is called a character of the group
G.
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Example 4.1.1. When G = 〈g〉 is a cyclic group and χ : G→ C∗ then χ(g∗1) = χ(g)χ(1)
and therefore χ(1) = 1 or 0. Take the case χ(1) = 1.
Then if n = ordG(g) is the order of the element g ∈ G, we have χ(gn) = χ(1) = χ(g)n

and so χ(g) = e
2πik
n for some k ∈ Z. If χk(g) = e

2πik
n then k = 0, 1, ..., n − 1 generate

exactly n different characters χ0, χ1, ..., χn−1.
By the fundamental theorem of finite abelian groups we have G = 〈g1〉 × 〈g2〉 × · · · × 〈gs〉
and each g ∈ G has a representation of the form g = gh11 · · · gs1hs for 0 ≤ hi ≤ ni =
ordG(gi). Thus each character can be defined by some s-tuple (α1, ..., αs) such that χ(g) =

χ(gh11 · · · ghss ) =
∏s

i=1 e
2πi
ni
hiαi for 0 ≤ αi ≤ ni − 1 and i = 1, 2, ..., s. This way we see that

there are exactly as many characters as the number of elements of the group.

Definition 4.1.2. Let Ĝ be the group of characters via pointwise multiplication, that is
χ1, χ2 ∈ Ĝ then χ1χ2(g) = χ1(g)χ2(g). Then

i) χ0 such that χ0(g) = 1 for all g ∈ G is the identity element

ii) χχ(g) = χχ−1(g) = χ(g)χ−1(g) = χ(g)χ(ḡ) so the complex conjugate of χ is the inverse
element.

Claim 4.1.1. We have |Ĝ| = |G|.

Claim 4.1.2. The following orthogonality relations hold:

i) For every χ ∈ Ĝ ∑
g∈G

χ(g) =

{
|G| , if χ = χ0

0 , otherwise.

ii) ∑
χ∈Ĝ

χ(g) =

{
|Ĝ| , if g = 1,

0 , otherwise.

Proof. i) The case χ = χ0 is obvious, since then we just sum over 1.
Let χ 6= χ0. Then there exist 1 6= g1 ∈ G such that χ(g1) 6= 1 and so

χ(g1)
∑
g∈G

χ(g) =
∑
g∈G

χ(gg1) =
∑
gg1∈G

χ(gg1) =
∑
g∈G

χ(g).

Thus (χ(g1)− 1)
∑

g∈G χ(g) = 0 and since χ(g1) 6= 1 we get
∑

g∈G χ(g) = 0.
ii) The case g = 1 is obvious, since the sum is then again over 1.

Let g 6= 1, then there exist χ1 ∈ Ĝ such that χ1(g) 6= 1 and so

χ1(g)
∑
χ∈Ĝ

χ(g) =
∑
χ∈Ĝ

χχ1(g) =
∑
χ∈Ĝ

χ(g)

and as above we get
∑

χ∈Ĝ χ(g) = 0.

Now take G = (Z/qZ)∗. We will extend the characters of G to arithmetic functions.

Definition 4.1.3. χ : G → C∗ is a Dirichlet character modulo q if χ : G → C∗ is
a character of G = (Z/qZ)∗, and for all n ∈ N we have

χ(n) =

{
0 if gcd(n, q) > 1

χ(n mod q) if gcd(n, q) = 1
.
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4.2 Analytic properties of the Dirichlet L-series

Let q ≥ 2 ∈ Z and G = (Z/qZ)∗ = {ā : gcd(a, q) = 1}. G is a group of order ϕ(q) under
multiplication of residue classes. Let χ̃ : G → C∗ be any character of the group of the
reduced residue system. We can lift it to a map χ : Z→ C called a Dirichlet character
modulo q by setting

χ(a) =

{
χ̃(ā) if gcd(a, q) = 1;

0 otherwise.

The character χ has the following properties:

i) χ(1) = 1

ii) χ(ab) = χ(a)χ(b) for a, b ∈ Z

iii) χ(a) = χ(b) if a ≡ b mod q

iv) χ(a) = 0 if gcd(a, q) > 1.

Let G(q) be the set of characters modulo q. It can be viewed as isomorphic to the group
of characters Ĝ with the following operations: for χ1, χ2 ∈ G(q) we define χ1χ2(a) =
χ1(a)χ2(a) for a ∈ Z. Unit element is the principle character modulo q

χ0(a) =

{
1 if gcd(a, q) = 1

0 otherwise.

The inverse of χ ∈ G(q) is its complex conjugate χ̄ : a 7→ χ(a). Note that χ̄(a)χ(a) =
χ−1χ(a) = χ0(a) = 1 = χ(āa) = χ(ā)χ(a) where ā is the inverse element to a modulo q,
that is āa ≡ q mod q.
Then we have orthogonality relations also for the Dirichlet characters modulo q.

Claim 4.2.1. Let q ∈ Z≥2 and let a run through a complete residue system modulo q.
Then

i)
∑

a mod q

χ(a) =

{
ϕ(q) if χ = χ0

0 otherwise

ii)
∑

χ∈G(q)=Ĝ

χ(a) =

{
ϕ(q) if a ≡ 1 mod q

0 otherwise.

This is Claim 4.1.2 applied for G = (Z/qZ)∗.
Recall that the Dirichlet L-series is a Dirichlet series Dχ(s) where χ is a Dirichlet
character modulo q. We denote it by

L(χ, s) =
∞∑
n=1

χ(n)

ns
.

Claim 4.2.2. If χ is not the principal character modulo q, then the Dirichlet L-series
L(χ, s) is holomorphic on the half-plane Re(s) > 0.
If χ = χ0 then L(χ0, s) is holomorphic in Re(s) > 0 except for the simple pole at s = 1

with residue ϕ(q)
q

, that is L(χ0, s) is analytic in Re(s) > 1 and L(χ0, s) − ϕ(q)
q

1
s−1

can be

analytically continued for Re(s) > 0.
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Proof. Let χ 6= χ0. Then

L(χ, s) =
∞∑
n=1

χ(n)

ns
=

P−1∑
n=1

χ(n)

ns
+
∞∑
n=P

χ(n)

ns
.

Let us look at the sum
∑Q

n=P
χ(n)
ns

and note that
∑P+q

n=P+1 = 0 by the orthogonaltiy

relations in Claim 4.1.2 and so
∣∣∣∑Q

n=P χ(n)
∣∣∣ ≤ q for all P < Q. Then let s = Re(s) > 0

then by 2.2.2 Abel Transformation 2 we have∣∣∣∣∣
Q∑

n=P

χ(n)

ns

∣∣∣∣∣ =

∣∣∣∣∣ 1

(Q+ 1)s

Q∑
n=P

χ(n) +

Q∑
n=P

(
1

ns
− 1

(n+ 1)s

) n∑
k=P

χ(k)

∣∣∣∣∣ ≤
q

(Q+ 1)s
+ q

Q∑
n=P

(
1

ns
− 1

(n+ 1)s

)
=

q

(Q+ 1)s
+ q

(
1

ps
− 1

(Q+ 1)s

)
=

q

ps

When s > 0 the last expression tends to zero with P →∞, that is L(χ, s) converges. From
the properties of the Dirichlet series (see Claim 2.5.1) we get that L(χ, s) is holomorphic
for Re(s) > 0.
Let χ = χ0. In general χ is strongly multiplicative, so

L(χ, s) =
∏
p

1

1− χ(p)
ps

.

Then

L(χ0, s) =
∏
p

1

1− χ0(p)
ps

=
∏
p - q

1

1− 1
ps

=
∏
p

1

1− 1
ps

∏
p|q

(1− 1

ps
) = ζ(s)

∏
p|q

(1− 1

ps
).

The Riemann zeta function ζ(s) has a pole at s = 1 but ζ(s) − 1
s−1

is analytically

continuable for Re(s) > 0. Let h(s) =
∏

p|q(1 −
1
ps

), then h(s) is holomorphic and

h(1) = ϕ(q)
q

by Corollary 2.1. Then

L(χ0, s)−
ϕ(q)

q

1

s− 1
= ζ(s)h(s)− h(1)

s− 1
=

=

(
ζ(s)− 1

s− 1

)
h(S) +

h(s)

s− 1
− h(1)

s− 1
→s→1

(
ζ(s)− 1

s− 1

)
h(s)|s=1.

Therefore L(χ0, s)− ϕ(q)
q

1
s−1

is holomorphic for Re(s) > 0.

Claim 4.2.3. At Re(s) = 1 we have L(χ, s) 6= 0 for any Dirichlet character χ ∈ Ĝ.

Proof. Let χ = χ0, then we have L(χ0, s) = ζ(s)
∏

p|q(1−
1
ps

) and we know that ζ(s) 6= 0

for Re(s) = 1.
Let χ 6= χ0 and assume that L(χ, 1 + it) = 0 for some t ∈ R. We will use the method of
Mertens for ζ(s) 6= 0 on Re(s) = 1. Therefore define

θ(s) = L(χ0, s)
3L(χ, s+ it)4L(χ2, s+ 2it).

Case 1: χ2 6= χ0.
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Thus we have that χ is not a real character or t 6= 0. Then we get L(χ2, s + 2it) 6=
L(χ0, s) = ζ(s)h(s) and by the Claim above L(χ2, s+ 2it) is holomorphic for s = Re(s+
2it) > 0.
Then ζ(s) has a simple pole at s = 1, thus L(χ0, s) = ζ(s)h(s) has a simple pole at s = 1
and since L(χ2, s + 2it) is holomorphic in an area around s = 1 we see that θ(s) has a
zero at s = 1. Therefore lims→1 log |θ(s)| = −∞.
Recall that for x ∈ C we have log |x| = Re(log x), so for σ > 1

log |L(χ, σ + it)| = log

∣∣∣∣∣∏
(

1− χ(p)

pσ+it

)−1
∣∣∣∣∣ = −

∑
p

log

∣∣∣∣1− χ(p)

pσ+it

∣∣∣∣ =

= −
∑
p

Re

(
log

(
1− χ(p)

pσ+it

))
=
∑
p

Re

[
∞∑
n=1

1

n

(
χ(p)

pσ+it

)n]
.

Here we use the series expansion of log(1 − x) =
∑∞

n=1−
xn

n
. Note that χ(p) = 0 if p|q

and |χ(p)| = 1 otherwise. Write χ(p) = ei argχ(p) and pix = eix log(p) so

χ(p)n

pitn
= ei(n argχ(p)−tn log(p)).

By de Moivre’s formula we get

log |L(χ, σ + it)| =
∑
p - q

∞∑
n=1

cos(n(argχ(p)− t log(p)))

npσn
.

Then we get

log |θ(σ)| = log |L(χ0, σ)3L(χ, σ + it)4L(χ2, σ + 2it)| =

=
∑
p - q

∞∑
n=1

1

npσn
[
3 cos(n argχ0(p)) + 4 cos(n(argχ(p)− t log p)) + cos(n(argχ2(p)− 2t log p)

]
.

Note that χ0(p) = 1 = e0 and so argχ0(p) = 0, therefore cos(n argχ0(p)) = 1. Also
argχ2(p) = 2 argχ(p). Let n(argχ(p) − t log p) = α then n(argχ2(p) − 2t log p) =
2n(argχ(p)− t log p) = 2α and we have the factor

3 + 4 cosα + cos 2α = 2(1 + cosα)2 ≥ 0

and so log |θ(σ)| ≥ 0 for any σ > 1 which gives a contradiction.
Case 2: χ2 = χ0

Thus we have χ : G→ R such that χ(a) = ±1 and t = 0. Then L(χ2, s+ 2it) = L(χ0, s)
has a pole at s = 1. Consider now the product

L(χ, s)ζ(s) = Dχ(s)DI(s) = Dχ∗I(s) =
∞∑
n=1

∑
k|n χ(k)

ns
.

If we assume that L(χ, 1) = 0 then as ζ(s) has only a simple pole at s = 1 it follows that
L(χ, s)ζ(s) is holomorphic and therefore convergent for all s in the half-plane Re(s) > 0.
Recall the notation Sχ(n) =

∑
k|n χ(k) for the sum function. Since χ is multiplicative,

so is Sχ = χ ∗ I. Also we have Sχ(pν) =
∑ν

j=0 χ(pj) = 1 +
∑ν

j=1 χ(pj). Then since
χ : G→ R we have three possibilities:
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i) χ(p) = 0 and then Sχ(pν) = 1

ii) χ(p) = 1 and then Sχ(pν) = 1 + ν

iii) χ(p) = −1 and then Sχ(pν) =

{
0 if ν is odd

1 if ν is even.

Then surely Sχ(n) ≥ 0 and for n = k2 Sχ(n) = Sχ(k2) ≥ 1. Consider now Dχ∗I(
1
2
) =∑∞

n=1
Sχ(n)√

n
, we have

∑
n≤x

Sχ(n)√
n
≥
∑
n≤x
n=k2

1√
n

=
∑
k≤
√
x

1

k
≥ c log

√
x→x→∞ ∞.

This means that the Dirichlet series Dχ∗I(s) is divergent as s = 1
2

and therefore the
abscissa of convergence is σ0 ≥ 1

2
. Recall that χ ∗ I(n) = Sχ(n) ≥ 0 for every n ∈ N.

Then by Landau’s Theorem we have Dχ∗I is not holomorphic past s = σ0 for Re(s) < σ0.
Therefore Dχ∗I should have a singularity in the region Re(s) ≥ 1

2
. This contradicts the

assumption L(χ, 1) = 0 and so Dχ∗I is holomorphic for Re(s) > 0. Therefore L(χ, s) 6=
0.

Claim 4.2.4. For Re(s) > 1 and any Dirichlet character χ ∈ Ĝ we have

∞∑
n=1

χ(n)Λ(n)

ns
= −L

′(χ, s)

L(χ, s)
.

Proof. Take

log(L(χ, s)) = log

(∏
p

(
1− χ(p)

ps

)−1
)

= −
∑
p

log

(
1− χ(p)

ps

)
and

− d

ds
log(L(χ, s)) =

L′(χ, s)

L(χ, s)
=

d

ds

(
−
∑
p

log

(
1− χ(p)

ps

))
=

=
∑
p

−χ(p)(− log(p)p−s)
1

1− χ(p)
ps

=
∑
p

log(p)

ps
χ(p)

1− χ(p)
ps

=

=
∑
p

log(p)

ps

∞∑
ν=0

χ(p)ν+1

psν
=
∑
p

∞∑
k=1

χ(p)k log(p)

psk
=

=
∑
p

∞∑
k=1

χ(pk) log(p)

psk
=
∞∑
n=1

χ(n)Λ(n)

ns
.

All these operations are allowed in Re(s) > 1 because log(1 − χ(p)
ps

= −χ(p)
ps

+ O(p−2σ)

for σ = Re(s) and the series H(s) = −
∑

p log(1 − χ(p)
ps

) is convergent absolutely and

uniformly in any compact subset of {Re(s) > 1}. Thus H(s) is a holomorphic function
for Re(s) > 1 and eH(s) = L(χ, s) is a well defined holomorphic function as well.
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We consider the function

π(x; a, q) =
∑
p≤x

p≡a mod 1

1 where gcd(a, q) = 1

and by a heuristic argument we expect that π(x; a, q) ∼ 1
ϕ(q)

x
log x

. Recall that for the

proof of the Prime Number Theorem we introduced the Chebyshev’s function ψ(x) =∑
n≤x Λ(n). We showed that the Prime Number Theorem is equivalent to ψ(x) ∼ x and

then proved that ψ(x) ∼ x holds. Consider now the analogous function

ψ(x; a, q) =
∑
n≤x

n≡a mod q

Λ(n) gcd(a, q) = 1.

Lemma 4.2.1. We have the asymptotic equivalence ψ(x; a, q) ∼ 1
ϕ(q)

x.

Proof. First note that the condition n ≡ a mod q in the definition of the function can
be rewritten as nā ≡ 1 mod q. Then for G = (Z/qZ)∗ by Claim 4.2.1 part ii) we have∑

χ∈Ĝ χ(nā) = ϕ(q) and so 1
ϕ(q)

∑
χ∈Ĝ χ(nā) = 1. On the other hand if a mod q with

gcd(a, q) = 1 is fixed we have

1

ϕ(q)

∑
χ∈Ĝ

χ(nā) =

{
1 if n ≡ a mod q

0 if n 6≡ a mod q.

Hence we can write

ψ(x; a, q) =
∑
n≤x

n≡a mod q

Λ(n) =
∑
n≤x

Λ(n)
1

ϕ(q)

∑
χ∈Ĝ

χ(nā) =
1

ϕ(q)

∑
χ∈Ĝ

χ(ā)
∑
n≤x

Λ(n)χ(n).

Recall Claim 3.1.2. In our case we have Λ : N → R+ and ψ(s) =
∑

n≤x Λ(n) = O(x).
Since we want to evaluate

∑
n≤x χ(n)Λ(n) we consider the function χΛ : N → C where

χ(n)Λ(n) = O(Λ(n)) since |χ(n)| = 1.

We know that DΛ(s) =
∑∞

n=1
Λ(n)
ns

= − ζ′(s)
ζ(s)

is holomorphic for Re(s) > 1 and − ζ′(s)
ζ(s)
− 1

s−1

is holomorphic in Re(s) ≥ 1. In order to apply Claim 3.1.2 we need an analogous analytic
continuation of the Dirichlet series DχΛ(s). In the last Claim we have seen that

DχΛ(s) =
∞∑
n=1

χ(n)Λ(n)

ns
= −L

′(χ, s)

L(χ, s)

and further we know that L(χ, s) is holomorphic for Re(s) > 0 if χ 6= χ0 ad L(χ, s) 6= 0

for Re(s) = 1 for any χ ∈ Ĝ. Therefore for χ 6= χ0 we have that −L′(χ,s)
L(χ,s)

− 0
s−1

is

holomorphic in Re(s) ≥ 1.

When χ = χ0 then L(χ0, s) has a simple pole at s = 1 with residue ϕ(q)
q

. Then in a

small disc C = {s ∈ C : |s − 1| < δ} we have L(χ0, s) = g(s) + ϕ(q)
q

1
s−1

where g(s) is

holomorphic in C. Then L(χ0, s) = 1
s−1

(
ϕ(q)
q

+ h(s)
)

where h(s) = (s− 1)g(s) which is

holomorphic in C. Therefore we have L′(χ0, s) = − 1
(s−1)2

(
ϕ(q)
q

+ h(s)
)

+ h′(s)
s−1

and so

−L(χ0, s)

L(χ0, s)
=

s− 1
ϕ(q)
q

+ h(s)

(
1

(s− 1)2

(
ϕ(q)

q
+ h(s)

)
− h′(s)

s− 1

)
=

1

s− 1
− h′(s)

ϕ(q)
q

+ h(s)
.
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We can choose δ > 0 small enough such that |h(s)| < ϕ(q)
q

holds on C and hence the

second fraction is a holomorphic function in C. Therefore −L′(χ0,s)
L(χ0,s)

− 1
s−1

is holomorphic

for Re(s) ≥ 1.
From Claim 3.1.2 we get that

∑
n≤x χ0(n)Λ(n) ∼ x and

∑
n≤x χ(n)Λ(n) = o(x) for

χ 6= χ0. Then

ψ(x; a, q) =
1

ϕ(q)

∑
χ∈Ĝ
χ 6=χ0

χ(ā)
∑
n≤x

χ(n)Λ(n) + χ0(ā)
∑
n≤x

χ0(n)Λ(n)



∼ 1

ϕ(q)

∑
χ∈Ĝ
χ 6=χ0

o(x) + x

 = o(x) +
x

ϕ(q)
.

So we have ψ(x; a, q) ∼ x
ϕ(q)

.

Theorem 4.2.1 (Prime Number Theorem for arithmetic progressions). For q ∈ Z≥2 and
gcd(a, q) = 1 we have the asymptotic formula

π(x; a, q) ∼ 1

ϕ(q)

x

log x
.

Proof. We apply Newman’s method for the Prime Number Theorem. Consider the func-
tion

L(x; a, q) =
∑
p≤x

p≡a mod q

log(p).

Then we get

π(x; a, q) =
∑
p≤x

p≡a mod q

1 =
∑
p≤x

p≡a mod q

log(p)

log(p)
AT3
=

1

log x
L(x; a, q)−

∫ x

2

L(t; a, q)
−dt

t(log(t))2
=

=
1

log x
L(x; a, q) +

∫ x

2

L(t; a, q)
dt

t(log(t))2
.

Now

L(x; a, q) =
∑
p≤x

p≡a mod q

log(p) =
∑
pn≤x

pn≡a mod q

log(p)−
∑
n≥2

∑
pn≤x

pn≡a mod q

log(p) =

=
∑
n≤x

n≡a mod q

Λ(n)−
∑
n≥2

∑
pn≤x

pn≡a mod q

log(p) = ψ(x; a, q)−
∑
n≥2

∑
pn≤x

pn≡a mod q

log(p)

If we now look at the second term we get

∑
n≥2

∑
pn≤x

pn≡a mod q

log(p) ≤
∑
n≥2

∑
pn≤x

log(p) = O

log x
∑
n≥2
pn≤x

1

 = O

log x
∑

2≤n≤ log x
log(2)

∑
p≤
√
x

1

 =

= O(log xπ(
√
x) log x) = O((log x)2

√
x

log(
√
x)

) = O(
√
x log x).
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Therefore we have L(x; a, q) = ψ(x; a, q) + O(
√
x log x) and so with the Lemma above

L(x; a, q) ∼ x
ϕ(q)

.
But then we get

π(x; a, q) ∼ 1

ϕ(q)

x

log x
+O

(∫ x

2

t
dt

t(log(t))2

)
=

1

ϕ(q)

x

log x
+O

(
x

(log x)2

)
.

The latter follows from
∫ x

2
dt

(log(t))2
= Li(x)− x

log x
= O

(
x

(log x)2

)
.

4.3 The error terms in the PNT and the PNT for

APs

Note that the proof of Newman, using Tauberian Theorems, does not provide information
on the error terms in the asymptotic formula for π(x) and π(x; a, q).

Theorem 4.3.1. We have the asymptotics π(x) = Li(x)+O
(

x
ec
√
log x

)
for some constant

x > 0 uniformly for x ≥ 2.

Note that the error terms is better than O
(

x
(log x)2

)
as ec

√
log x > e2 log log x = (log x)2.

for any c > 0 and large enough x. On the other side Li(x) =
∫ x

2
dt

log(t)
= x

log x
+O

(
x

(log x)2

)
,

so a less precise formulation of the PNT is

π(x) =
x

log x
+O

(
x

(log x)2

)
.

Riemann Hypothesis (RH) All non trivial zeros of the Riemann ζ function lie on
the line Re(s) = 1

2
.

Theorem 4.3.2. Assume the RH, then for x ≥ 2 we have π(x) = Li(x) +O(x
1
2 log x).

From log
( √

x
log x

)
> x
√

log x for any c > 0 and x large enough we see that the error

term under the RH is indeed stronger.

Theorem 4.3.3. π(x; a, q) = Li(x)
ϕ(q)

+ OA
(

x

ec1
√
log x

)
for a given constant A > 0, where

q ≤ (log x)A, gcd(a, q) = 1 and a certain constant c1 > 0.

Generalized Riemann Hypothesis (GRH) For any Dirichlet character χ modulo
q and s ∈ C we have: if L(χ, s) = 0 and Re(s) > 0 then Re(s) = 1

2
.

Remark that for χ = χ0 we get the normal Riemann Hypothesis.

Theorem 4.3.4. Let q be given and assume the GRH for all L functions modulo q. Then
if gcd(a, q) = 1 and x ≥ 2 we get π(x; a, q) = Li(x)

ϕ(q)
+O(x

1
2 log x).
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Chapter 5

The circle method and the ternary
Goldbach’s problem

Prelude to the circle method

For a general complex valued sequence {an}mn=0 we would like to demonstrate some asymp-
totic relation an ∼ F (n) for some function F (n). We can take the power series gener-
ating function f(z) =

∑∞
n=0 anz

n with the assumption that the radius of convergence is
0 < r < 1. By Cauchy’s residue theorem we can express the members of the sequence
{an} by

In = 2πian =

∮
f(z)

zn+1
dz, for all n ≥ 0,

where the contour integral is taken over the circle with center 0 traversed once in anti
clockwise direction.

The goal is to push the circle to r = 1 by having some insight on the singularities
of f(z) on |z| = 1. It turns out that in certain situations the roots of unity ξrs =

e
2πir
s with“small denominators”, that is s < N0 for some N0 ∈ N, give the “major

contribution”.

Remark 5.0.1. Recall that the residues of the Dirichlet series DΛ(s) and DχΛ(s) at s = 1
played a major role for finding the main terms in the asymptotic formulas for

∑
n≤x Λ(n)

and
∑

n≤x χ(n)Λ(n) and thus in solving the PNT and the PNT for AP.

One constructs the set of the major arcs M, which are arcs with centers ξrs with
small s and lengths chosen in such a way that two different arcs do not intersect. The
complement of M on the unit circle in C is then called the set of the minor arcs m, that
is m = S1\M.

Then, since we have chosen the major arcs so that they do not intersect each other,
we aim at

In = In,M + In,m = Main term + o(MT ).

Hardy-Littlewood (1920-1930): developed the circle method in connection to Waring’s
problem and the binary and ternary Goldbach’s problem.
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Vinogradov, 1937: modified the circle method by introducing finite trigonometric sums
instead of power series generating functions.

The modification of Vinogradov, where instead of the unit circle, one takes an interval
with length one, is the most established version by now. Let e(z) = e2πiz for z ∈ R. We
have that e2πi = cos(2π) + i sin(2π) = 1 and so e(z+ 1) = e(z), thus e(z) is periodic with
period 1. Furthermore, for h ∈ Z we have∫ 1

0

e(αh)dα =

{
1, if h = 0;

0, otherwise.

Now consider a partitioning of the unit interval in the following manner. Let us have the
appropriately chosen parameters Q = Q(n) and τ = τ(n) and set a typical major arc

M(a, q) =

{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ τ

}
.

The set of the major arcs is then given as the union

M =
⋃
q≤Q

⋃
1≤a≤q−1
gcd(a,q)=1

M(a, q).

The set of minor arcs is defined as the complement

m = (τ, 1 + τ ]\M.

Then if we want to integrate any periodic function f(z) with period 1 we can write∫ 1

0

f(z)dz =

∫ 1+τ

τ

f(z)dz =

∫
M

f(z)dz +

∫
m

f(z)dz

as long as M(a, q)∩M(a′, q′) = ∅ for a
q
6= a′

q′
. The circle method will be illustrated in the

treatment of the famous ternary Goldbach’s problem.

5.1 The Goldbach’s problems

These conjectures were formulated in a letter to Euler in 1742.

Binary Goldbach’s problem: Every even number greater than 2 is a sum of two
primes.

Ternary Goldbach’s problem: Every odd number greater than 5 is a sum of three
primes.

The binary version is still open, while the ternary Goldbach’s problem was completely
solved recently (≈ 2013) by Helfgott. Vinogradov, using the circle method of Hardy-
Littlewood, could show not only existence but an asymptotic formula for the number of
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presentations as a sum of three primes for any odd number n > N0, for N0 large enough.
Let us consider the weighted quantity

R(n) =
∑

p1,p2,p3
p1+p2+p3=n

log p1 log p2 log p3.

Note that R(n) = 0 if there is not a triple p1, p2, p3 which satisfies p1 + p2 + p3 = n. We
have the following asymptotic formula.

Theorem 5.1.1. Suppose that A > 0 is a real constant. Then we get

R(n) =
1

2
C(n)n2 +O

(
n2

logA n

)
where

C(n) =
∏
p - n

(
1 +

1

(p− 1)3)

)∏
p|n

(
1− 1

(p− 1)2

)
is a positive real constant for which there are absolute constants 0 < c1 < C(n) < c2 for
any odd n.

Remark 5.1.1. The method of Vinogradov (≈ 1939) can produce the constant N0 =

ee
e41,96

such that any odd n ≥ N0 is presentable as sum of three primes. The constant
N0 was reduced many times until Helfgott reduced it to N0 = 1027. For the odd numbers
n < 1027 a computer verification of GRH yielded the ternary Goldbach’s problem for odd
7 ≤ n < 1027.

Obviously, from Theorem 5.1.1 it follows that there exists a constant N0 such that
any odd n > N0 is a sum of three primes.

5.2 Setting up the circle method

Let us consider the sum

S(α) = S(α, n) =
∑
p≤n

log p · e(αp).

then

S(α)3 =
∑
p1≤n

log p1e(αp1)
∑
p2≤n

log p2e(αp2)
∑
p3≤n

log p3e(αp3) =

=
∑

p1,p2,p3≤n

log p1 log p2 log p3e (α(p1 + p2 + p3)) .

Recall the identity ∫ 1

0

e(αh)dα =

{
1, if h = 0

0, otherwise.

Then we have

R(n) =
∑

p1,p2,p3

log p1 log p2 log p3

∫ 1

0

e (α(p1 + p2 + p3 − n)) dα =

∫ 1

0

S(α)3e(−nα)dα.
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Note that S(α) is periodic with period 1. Now, let for a constant B > 0 we choose the
parameters

Q = (log n)B,

τ =
a

n
=

(log n)B

n
.

Then

M(a, q) =

{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ Q

n

}
denotes a typical major arc and the set of the major arcs is given by the union

M =
⋃
q≤Q

⋃
1≤a≤q

gcd(a,q)=1

M(a, q).

Note that any two major arcs are disjoint. Indeed, let their centers be a
q

and a′

q′
; then

the distance between them is greater than twice the half-lengths of the arcs M(a, q) and
M(a′, q′), so ∣∣∣∣aa − a′

q′

∣∣∣∣ =
|aq′ − a′q|

qq′
≥ 1

qq′

since gcd(a, q) = gcd(a′, q′) = 1 and aq′ = a′q would imply a
q

= a′

q′
. Then 1

qq′
≥ 1

Q2 ≥
2Q
n

= 2τ is a consequence of n ≥ 2Q3 = 2(log n)B and thus is true for large enough n.
Let us then consider the set of minor arcs

m =

(
Q

n
, 1 +

Q

n

]
\M.

(As an exercise it is left to show that M ⊂ (τ, 1 + τ ].)

We can then write

R(n) =

∫ 1

0

S(α)3e(−nα)dα =

∫ 1+τ

τ

S(α)3e(−nα)dα =

=

∫
M

S(α)3e(−nα)dα +

∫
m

S(α)3e(−nα)dα = IM + Im.

We remark that the choice of Q = (log n)B is dictated by an application of the Prime
Number Theorem for arithmetic progressions, where we have a good error term only if
q ≤ (log n)B holds. In this sense the major arcs are ”sparse”, hence the minor arcs
constitute a larger part of the unit interval and it is harder to give a good upper bound
for Im compared to other applications of the circle method with a larger parameter Q.

5.3 Treatment of the minor arcs

Our aim is to show that the contribution of Im is of smaller magnitude than n2. Let us
introduce the symbol of Vinogradov “�”: we write f(n)� g(n) if f(n) = O(g(n)). Then
the main result of this section is the following.
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Theorem 5.3.1. Let A > 0 be a positive constant. Then∫
m

|S(α)|3dα� n2

(log n)A
.

Proof. We will need to adjust the choice of the parameterQ according to A, more precisely
we will show soon that we need to have B ≥ 2A+ 10. Clearly we have

|Im| =
∣∣∣∣∫

m

S(α)3e(−nα)dα

∣∣∣∣ ≤ ∫
m

|S(α)|3dα.

First observe that∫ 1

0

|S(α)|2dα =

∫ 1

0

( ∑
p1,p2≤n

log p1e(αp1)log p2e(αp2)

)
dα =

=

∫ 1

0

∑
p1,p2≤n

log(p1 + p2)e(α(p1 − p2))dα =

=
∑

p1,p2≤n

log(p1 + p2)

∫ 1

0

e(α(p1 − p2))dα =

=
∑
p≤n

(log p)2 � log n
∑
p≤n

log p ≤ log nψ(n)� n log n.

Here we used Chebyshev’s Theorem for the fuvntion ψ(n).

The next crucial step is to give an upper bound of supα∈m |S(α)| of the order n(log n)4−B/2.
In order to achieve this we rely on the following claim due to Vinogradov:

Claim 5.3.1 (Vinogradov). Let α ∈ R, gcd(a, q) = 1, q ≤ n, be such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
.

Then we have
S(α)� (log n)4

(
nq−

1
2 + n

4
5 + (qn)

1
2

)
.

Lemma 5.3.1 (Dirichlet’s approximation Theorem). Let α ∈ R. Then for each real
number x ≥ 1 there exists a rational number a

q
with gcd(a, q) = 1, 1 ≤ q ≤ x such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qx
.

Proof. It suffices to prove the inequality for gcd(a, q) ≥ 1 without assuming strictly

gcd(a, q) = 1. Indeed, if q′ = qs for s > 1, then
∣∣∣α− a′

q′

∣∣∣ ≤ 1
q′x

< 1
qx

where a′ = as.

Let m = [x], then the m numbers βq = αq − [αq] for q = 1, 2, ...,m all lie in [0, 1).
Consider the m+ 1 intervals

Br =

[
r − 1

m+ 1
,

r

m+ 1

)
r = 1, 2, ...,m+ 1.
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If βq ∈ B1 then from βq
q

= α− [αq]
q

we get∣∣∣∣α− [αq]

q

∣∣∣∣ =

∣∣∣∣βqq
∣∣∣∣ ≤ 1

q(m+ 1)
<

1

qx
.

If βq ∈ Bm+1 then 1− βq ≤ 1/(m+ 1) and so∣∣∣∣α− [αq] + 1

q

∣∣∣∣ =
|1− βq|

q
≤ 1

q(m+ 1)
<

1

qx
.

In the first case a = [αq], and in the second case a = [αq] + 1.

If βq 6∈ B1 ∪ Bm+1 then one of the m − 1 intervals Br with 2 ≤ r ≤ m contains at
least two elements of the βq (by the pigeonhole principle), say βu and βv with u < v ≤ m.
Then

1

m+ 1
≥ |βu − βv| = α(v − u)− ([αv]− [αu]).

Now we take q = v − u and a = [αv]− [αu]. Then we have

1

m+ 1
≥ αq − a and

1

xq
≥ 1

(m+ 1)q
≥ α− a

q
.

Assuming now that Claim 5.3.1 and Lemma 5.3.1 hold we are able to bound supα∈m |S(α)|.
Indeed, we chose

x =
n

(log n)B
=
n

Q
=

1

τ
.

If α ∈ m there are a and q with gcd(a, q) = 1, Q < q ≤ x, such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qx
≤ 1

q2
.

After Claim 5.3.1 we will then have

S(α)� (log n)4
(
nq−

1
2 + n

4
5 + (nq)

1
2

)
≤

≤ (log n)4
(
n(log n)−

B
2 + n

4
5 + n

1
2n

1
2 (log n)−

B
2

)
� n(log n)4−B

2 .

Now from
∫ 1

0
|S(α)|2dα� n log n and the latter estimate we get∫

m

|S(α)|3dα�
∫ 1

0

|S(α)|2 sup
α∈m
|S(α)|dα� n2(log n)5−B

2 .

Now take B ≥ 10 + 2A. This proves Theorem 5.3.1.

Remember the Claim 5.3.1 in the past proof. In order to prove Vinogradov’s Claim
5.3.1 we need some auxiliary Lemmas.
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Lemma 5.3.2. Let Θ ∈ R and [a, b] ⊂ [1, N ]. Then we have the estimate∣∣∣∣∣∣
∑
m∈[a,b]

e(Θm)

∣∣∣∣∣∣� min

{
N,

1

‖Θ‖

}

where ‖Θ‖ = minz∈Z |z −Θ| is the distance to the nearest integer.

Proof. Without loss of generality we can assume that Θ ∈
(
−1

2
, 1

2

]
, since e(z) is periodic

with period 1. Then ‖Θ‖ = |Θ|.

Case 1: Θ = 0
Then ∣∣∣∣∣∣

∑
m∈[a,b]

e(Θm)

∣∣∣∣∣∣ ≤
∑
m∈[a,b]

1 ≤ |[a, b]| ≤ N.

Case 2: Θ 6= 0
Then we have summing of a geometric progression∣∣∣∣∣∣

∑
m∈[a,b]

e(Θm)|

∣∣∣∣∣∣ =

∣∣∣∣∣∣e(aΘ)
∑

m∈[0,b−a]

e(Θm)

∣∣∣∣∣∣ =

∣∣∣∣e(Θ(b− a+ 1))− 1

e(Θ)− 1

∣∣∣∣ ≤ 2

|e(Θ)− 1|
.

Consider now

|e(Θ)− 1| =
∣∣∣∣e(Θ2

)∣∣∣∣ ∣∣∣∣e(Θ2
)
− e

(
−Θ

2

)∣∣∣∣ =

= | cos(πΘ) + i sin(πΘ)− cos(−πΘ)− i sin(−πΘ)| = 2| sin(πΘ)| � |Θ|.

This proves the Lemma.

Lemma 5.3.3. Let L ≥ 1, n > 1, q ≥ 1 be given and α ∈ R be such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
for gcd(a, q) = 1.

Then we have ∑
l≤L

min

{
n

l
,

1

‖αl‖

}
� (nq−1 + L+ q) log(2Lq).

Proof. Let us write α = a
q

+ β. Then
∣∣∣α− a

q

∣∣∣ = |β| ≤ 1
q2

. We also partition the interval

[1, L] into parts of length q, that is we write l = hq + r with 1 ≤ r ≤ q and 0 ≤ h ≤ L
q
.

Then

αl =

(
a

q
+ β

)
(hq + r) = ah+

ra

q
+ hqβ + rβ and ‖αl‖ =

∥∥∥∥raq + hqβ + rβ

∥∥∥∥ .
We get

U =
∑
l≤L

min

{
n

l
,

1

‖αl‖

}
=
∑

0≤h≤L
q

q∑
r=1

min

{
n

hq + r
,

∥∥∥∥raq + hqβ + rβ

∥∥∥∥−1
}
.
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Let us mention that we have ‖x‖ = |x| when |x| ≤ 1
2

and
∣∣∣ ‖x‖ − ‖y‖ ∣∣∣ ≤ ‖x+ y‖ ≤

‖x‖+ ‖y‖.

Denote the contribution to the sum U for h = 0, r ≤ q
2

by U0 so that U = U0 + U1.

Then for h = 0, 1 ≤ r ≤ q
2

we have |rβ| ≤ q
2

1
q2

= 1
2q

and q - ra implies that
∥∥∥ raq ∥∥∥ ≥ 1

q
.

In this case ∥∥∥∥raq + hqβ + rβ

∥∥∥∥ =

∥∥∥∥raq + rβ

∥∥∥∥ ≥
∣∣∣∣∣
∥∥∥∥raq

∥∥∥∥− ‖rβ‖
∣∣∣∣∣ ≥

∥∥∥∥raq
∥∥∥∥− 1

2q
,

and also 1
2

∥∥∥ raq ∥∥∥ ≥ 1
2q

, so that
∥∥∥ raq ∥∥∥− 1

2q
≥ 1

2

∥∥∥ raq ∥∥∥.

Then we have

U0 �
∑
r≤ q

2

(∥∥∥∥raq
∥∥∥∥− 1

2q

)−1

�
∑
r≤ q

2

∥∥∥∥raq
∥∥∥∥−1

�
∑

− q
2
<m≤ q

2
m 6=0

∑
r≤ q

2
ra≡m (mod q)

∥∥∥∥raq
∥∥∥∥−1

=

=
∑

− q
2
<m≤ q

2
m 6=0

∣∣∣∣mq
∣∣∣∣−1 ∑

1≤r≤ q
2

r≡mā (mod q)

1� q
∑

1≤m≤ q
2

1

m
� q log q.

For the remaining summands in U1 we have hq + r � (h + 1)q. Indeed, if h = 0 and
r ≥ q

2
this holds with constant 1

2
. When h ≥ 1 we have hq + r ≥ h+1

2
q. Then

U1 �
∑

0≤h≤L
q

q∑
r=1

min

{
n

(h+ 1)q
,

∥∥∥∥raq + hqβ + rβ

∥∥∥∥−1
}
.

Let us consider any interval I with length 1
q
. Then for a fixed h the relation

ra

q
+ rβ + hqβ (mod 1) ∈ I (I)

has at most O(1) solutions r ∈ [1, q]. Indeed, if r, r′ are two such solutions, then∥∥∥∥raq + rβ − r′a

q
− r′β

∥∥∥∥ ≤ 1

q
.

If s = r − r′ then 0 ≤ |s| < q and |sβ| ≤ 1
q
, so∥∥∥∥saq

∥∥∥∥− 1

q
≤
∥∥∥∥saq − sβ

∥∥∥∥ ≤ 1

q
.

As this is possible only for 0 ≤
∥∥∥∥saq

∥∥∥∥ ≤ 2

q
we have finite choices of s (mod q), and thus

of r′, once r has been fixed.

Now we choose I = Is =

[
s

q
,
s+ 1

q

]
with 0 ≤ s ≤ q − 1. We group the O(1) r’s

such that r is a solution of (Is) together. We note that when s + 1 ≤ q
2

this means that
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∥∥∥∥raq + hqβ + rβ

∥∥∥∥ ∈ Is, i.e.

∥∥∥∥raq + hqβ + rβ

∥∥∥∥ ≥ s

q
.

If s+ 1 > q
2

then for the solution of (I) we get∥∥∥∥raq + hqβ + rβ

∥∥∥∥ ≥ 1− s+ 1

q
=
q − s− 1

q
.

Thus we can consider the summation only for 1 ≤ s ≤ q
2

and get

U1 �
∑

0≤h≤L
q

q
2∑

s=1

q

s
+
∑

0≤h≤L
q

n

(h+ 1)q

where in the last sum, for s = 0, we rather bounded by
n

(h+ 1)q
, also there only O(1)

r’s satisfy (I0).
Then

U1 � q
∑
h≤L

q

log q +
n

q

∑
1≤h≤L

q

1

h
� L log(q) +

n

q
log(L).

Putting things together we get

U � |U0|+ |U1| � q log q + L logQ+
n

q
logL� (nq−1 + L+ q) log(2Lq).

We also need the following Lemma, which is a corollary of Vaughan’s identity.

Lemma 5.3.4. Let U ≥ 1, V ≥ 1, such that UV ≤ x. Then for any arithmetic function
f we have the estimate ∑

U<n≤x

f(n)Λ(n)� (log x)T1 + T2,

where

T1 =
∑
l≤UV

max
w

∣∣∣∣∣∣
∑

w<k≤x
l

f(kl)

∣∣∣∣∣∣
T2 =

∣∣∣∣∣∣
∑

U<m≤ x
V

∑
V <k≤ x

m

Λ(m)b(k)f(mk)

∣∣∣∣∣∣
and b(k) denotes an arithmetic function, depending only on V and satisfying |b(k)| ≤
τ(k).

Proof. This is a Corollary of Vaughan’s identity, see for example p. 194–196 in Brüdern’s
“Einführung in die analytische Zahlentheorie” [1] (Satz 6.1.2).

Now we can finally prove Claim 5.3.1.
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Proof. Recall that S(α) =
∑

k≤n Λ(k)e(αk). Then

S(α) =
∑
k≤U

Λ(k)e(αk) +
∑

U<k≤n

Λ(k)e(αk)� U +
∑

U<k≤n

Λ(k)e(αk)

where we used Chebyshev’s Theorem for the first sum. For the second sum we will apply
Lemma 5.3.4 with x = n, f(k) = e(αk) and U = V . We will choose later the parameter
U ≤ n in a suitable way.
Then

S(α)� U + (log n)T1 + T2,

where

T1 =
∑
l≤U2

max
w

∣∣∣∣∣∣
∑

w≤k≤n
l

e(αkl)

∣∣∣∣∣∣
T2 =

∣∣∣∣∣∣
∑

U<m≤ n
U

∑
U<k≤ n

m

Λ(m)b(k)e(αkm)

∣∣∣∣∣∣ .
For the inner sum of T1 we immediately apply Lemma 5.3.2:∣∣∣∣∣∣

∑
w≤k≤n

l

e(αlk)

∣∣∣∣∣∣� min
{n
l
, ||αl||−1

}
and therefore

T1 �
∑
l≤U2

min
{n
l
, ||αl||−1

}
.

In order to estimate the sum T2 we first exchange the order of summation. Then from
U ≤ k ≤ n

m
we get U ≤ k ≤ n

U
, since U < m ≤ n

U
and n

m
≤ n

U
. Then we split the

interval
[
U, n

U

]
into dyadic intervals K < k ≤ 2K where K = 2νU and K ≤ n

U
. Clearly

logK = ν log 2 + logU and ν � log n. Then we have

T2 =

∣∣∣∣∣∣
∑

U<k≤ n
U

b(k)
∑

U<m≤n
k

Λ(m)e(αmk)

∣∣∣∣∣∣� (log n) max
U<K≤ n

U

T (K)

with

T (K) =

∣∣∣∣∣∣
∑

K<k≤2K

b(k)
∑

U<m≤n
k

Λ(m)e(αmk)

∣∣∣∣∣∣ .
Recall the Cauchy-Schwarz inequality | 〈x, y〉 |2 ≤ ‖x‖2 · ‖y‖2. Then

T (K)2 ≤
∑

K<k≤2K

|b(k)|2
∑

K<k≤2K

∣∣∣∣∣∣
∑

U<m≤n
k

Λ(m)e(αmk)

∣∣∣∣∣∣
2

.

By Lemma 5.3.4 we know that |b(k)| ≤ τ(k), and we also use without proof the estimate∑
k≤z

τ 2(k)� z(log z)3.

55



(Recall that in Claim 2.4.2 we showed that
∑

k≤z τ(k)� z log z.) Then we get

T (K)2 � K(logK)3
∑

K<k≤2K

∑
U<m1,m2≤nk

Λ(m1)Λ(m2)e(αk(m1 −m2)).

The terms with m1 = m2 give∑
K<k≤2K

∑
U<m≤n

k

Λ(m)2 �
∑

K<k≤2K

(
log

n

k

)2

· n
k
� K(log n)2 · n

K
� n(log n)2.

For the other terms we have∑
K<k≤2K

∑
U<m1,m2≤nk

m1 6=m2

Λ(m1)Λ(m2)e(αk(m1 −m2))�

�
∑

U<m1,m2≤ n
K

m1 6=m2

Λ(m1)Λ(m2)

∣∣∣∣∣ ∑
K<k≤2K

e(αk(m1 −m2))

∣∣∣∣∣�
� (log n)2

∑
U<m2<m1≤ n

K

min{K, ‖α(m1 −m2)‖−1}

where we again used Lemma 5.3.2.

Further, put l = m1 −m2. When U < m2 < m1 ≤ n
K

then 1 ≤ l ≤ n
K

and for any l
the equation l = m1 −m2 has at most n

K
solutions. Then, since K ≤ n

l
we can write the

last sum as ∑
l≤ n

K

min
{n
l
, ‖αl‖−1

}
.

Putting together the pieces up to now we have

T (K)2 � K(logK)3

n(log n)2 + (log n)2
∑
l≤ n

K

min
{n
l
, ‖αl‖−1

}�
� Kn(log n)5 + n(log n)5 + n(logn)5

∑
l≤ n

K

min
{n
l
, ‖αl‖−1

}
.

Thus both T1 and T (K), i.e T2, got reduced to estimating a sum of the type treated in
Lemma 5.3.3. If we have the same condition for existence of a good rational approximation
of α like in Claim 5.3.1, Lemma 5.3.3 then gives

T (K)2 � Kn(log n)5 + n(log n)5 log
(

2q
n

K

)(
nq−1 +

n

K
+ q
)
�

� Kn(log n)5 + (n2q−1 + n2K−1 + nq)(log n)6.

Then
T (K)� (Kn)

1
2 (log n)

5
2 +

(
nq−

1
2 + nK−

1
2 + (nq)−

1
2

)
(log n)3.

Using the condition U ≤ K ≤ n
U

we get K−
1
2 ≤ U−

1
2 and K

1
2 ≤ n

1
2U−

1
2 , so

T2 � (log n) max
U<K≤ n

U

T (K)� (log n)4(nU−
1
2 + nq−

1
2 + nU−

1
2 + (nq)

1
2 )�

� (log n)4(nU−
1
2 + nq−

1
2 + (nq)

1
2 ).
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Similarily, we apply Lemma 5.3.3 to the sum T1 to get

T1 �
∑
l≤U2

min
{n
l
, ‖αl‖−1

}
� log

(
2U2q

)
(nq−1 + U2 + q).

Now we choose U = n
2
5 . Then U2 = n

4
5 and log (2U2q)� log n because q ≤ n. Then

T1 � (log n)(nq−1 + n
4
5 + q)

T2 � (log n)4(n1− 1
5 + nq−

1
2 + (nq)

1
2 ).

Noticing that for q ≤ n we have q ≤ (nq)
1
2 , we finally get

S(α)� n
2
5 + (log n)2(nq−1 + n

4
5 + q) + (log n)4(n

4
5 + nq−

1
2 + (nq)

1
2 )

� (log n)4
(
n

4
5 + nq−

1
2 + (qn)

1
2

)
.

Let us note here that we defined S(α) = S(α, n) =
∑

p≤n log p · e(αp) but we proved
Claim 5.3.1 for S∗(α) =

∑
k≤n Λ(k)e(αk). However, since

S∗(α) = S(α) +
∑
pβ≤n
β≥2

log(p)e(αpβ) = S(α) + Σ

where

|Σ| ≤
∑

2≤β≤ logn
log 2

∑
p≤n

1
2

log p ≤
∑

β≤ logn
log 2

∑
p≤n

1
2

1� log n
∑

β≤logn

n
1
2

log n
� n

1
2 log n.

One of the terms on the RHS of Claim 5.3.1 is of magnitude (log n)4n
4
5 , so having proven

S∗(α)� RHS gives also S(α)� RHS.

5.4 Treatment of the major arcs

Now recall that we have already seen some error terms for the Prime number theorem
and the Prime number theorem for arithmetic progressions. We will need the following
version which is a corollary of the famous Siegel-Walfisz Theorem (Corollary 11.21 in [3]).

Theorem 5.4.1 (Siegel-Walfisz). Let A > 0 and q ≤ (log x)A, gcd(a, q) = 1. Then there
exists a constant c > 0 such that

θ(x; a, q) :=
∑
p≤x

p≡a mod q

log p =
x

ϕ(q)
+OA(xe−c

√
log x).

Definition 5.4.1. The Ramanujan’s sum is defined as

cq(h) =

q∑
a=1

gcd(a,q)=1

e

(
ah

q

)
.
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The following identity holds.

Lemma 5.4.1. The Ramanujan’s sum satisfies

cq(h) = ϕ(q)
µ
(

q
gcd(q,h)

)
ϕ
(

q
gcd(q,h)

) .
Proof. First note that for h ∈ Z we have

q∑
a=1

e

(
ah

q

)
=

{
q, if h ≡ 0 (mod q);

0, otherwise.

The first case is trivial. In the second case we have a geometric progression

e

(
h

q

)(
e(0) + e

(
h

q

)
+ · · ·+ e

(
(q − 1)h

q

))
= e

(
h

q

) e
(
qh
q

)
− 1

e
(
h
q

)
− 1

= e

(
h

q

)
e(h)− 1

e
(
h
q

)
− 1

= 0.

We can write

q∑
a=1

e

(
ah

q

)
=
∑
d|q

q∑
a=1

gcd(a,q)=d

e

(
ah

q

)
=
∑
d|q

∑
1≤a

d
≤ q
d

gcd(ad ,
q
d)=1

e

( a
d
h
q
d

)

=
∑
d|q

c q
d
(h) =

∑
d|q

cd(h)
(
= Scq(h)

)
.

Now recall the Möbius inversion formula f = µ ∗Sf and also note taht for any d|q we
will have Scd(h) = d if h ≡ 0 mod q, and 0 otherwise. Then

cq(h) =
∑
d|q

h≡0 mod q

µ
(q
d

)
Scd(h) =

∑
d| gcd(q,h)

µ
(q
d

)
d.

In particular, cq(h) is real-valued and it is multiplicative regarding q, when h is fixed.
Also cq(h) = cq(gcd(a, q)). Then it is enough to verify the statement of the Lemma only
for prime powers, that is

cq(h) = µ

(
q

gcd(q, h)

)
ϕ(q)

ϕ
(

q
gcd(q,h)

)
holds for q = pk and k ≥ 1.

Let pβ|h but pβ+1 - h (denoted by pβ||h). Then gcd(h, q) = gcd(pβh1, p
k) = pmin{β,k}.
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Case 1: k ≤ β Then cpk(h) = cpk(p
k) and

cpk(p
k) =

∑
d|pk

µ

(
pk

d

)
d = ϕ(pk) = ϕ(q).

We used that Sϕ(n) = n and by Möbius inversion ϕ(n) = µ ∗ Sϕ(n) =
∑

d|n µ
(
n
d

)
d. In

this case q
gcd(q,h)

= pk

pk
= 1.

Case 2: k = β + 1 Then gcd(q, h) = pβ and

cpβ+1(h) =
∑
d|pβ

µ

(
pβ+1

d

)
d = µ(p)pβ = µ(p)

ϕ(pβ+1)

ϕ(p)
= µ

(
q

gcd(q, h)

)
ϕ(q)

ϕ
(

q
gcd(q,h)

) .
We used that pβ+1

d
≤ p ⇔ pβ ≤ d that is d = pβ, all the remaining summands with

µ

(
pβ+1

d

)
factors are zero.

Case 3: k ≥ β + 2 Again gcd(q, h) = pβ and in the sum

cpk(h) =
∑
d|pβ

µ

(
pk

d

)
d

all the factors with µ are 0, since
pk

d
≥ pk

pβ
≥ p2. Thus we again have

cpk(h) = 0 = µ(pk−β)
ϕ(q)

ϕ
(

q
gcd(q,h)

) .

After the estimate of S(α) at the minor arcs in Claim 5.3.1 it is now time to estimate
it on the major arcs.

Claim 5.4.1. Let β = α − a
q

and T (β) =
∑n

m=1 e(βm) with 1 ≤ a ≤ q ≤ Q such that

gcd(a, q) = 1. Then for any α ∈M(a, q) there exists a constant c > 0 such that

S(α) =
µ(q)

ϕ(q)
T (β) +O(ne−c

√
logn).

Proof. Consider first

S

(
a

q
, x

)
=
∑
p≤x

(log p)e

(
a

q
p

)
.

Then we have

S

(
a

q
, x

)
=

q∑
r=1

e

(
q

q
r

) ∑
p≤x

p≡r mod q

log p

=

q∑
r=1

gcd(r,q)=1

e

(
a

q
r

)
θ(x; r, q) +

q∑
r=1

gcd(r,q)≥2

e

(
a

q
r

) ∑
p≤x

p≡r mod q

log p.
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Note that in the second sum if gcd(r, q) = d then p ≡ r mod q yields d|p and
since d ≥ 2 we should have d = p. But then in the second summation there is
only one term for each p dividing q in the inner sum and the whole contribution is
O(ω(q) log x)� log q log x. Here ω(q) denotes the number of prime divisors of q and we
use the trivial bound ω(q)� log q.

Now we can apply the Theorem of Siegel-Walfisz for estimating θ(x; r, q).

S

(
a

q
, x

)
=

q∑
r=1

gcd(r,q)=q

e

(
a

q
r

)(
x

ϕ(q)
+O(xe−c

√
log x)

)
+O(log x log q) =

=
x

ϕ(q)

q∑
r=1

gcd(r,q)=q

e

(
a

q
r

)
+O(qxe−c

√
log x) =

x

ϕ(q)
cq(a) +O(xe−c

√
log x),

since q ≤ (log x)B ≤ (log n)B = Q, and we consider x ≤ n. Also, the constant c in the
error terms might vary in the different instances. Clearly if gcd(a, q) = 1 then q

gcd(a,q)
= q

and by the above Lemma 5.4.1 we have cq(a) = µ(q). So we get

S

(
a

q
, x

)
=
µ(q)

ϕ(q)
x+O(xe−c

√
log x). (5.1)

Something more, for all x ≤ n we have

S

(
a

q
, x

)
=
µ(q)

ϕ(q)
x+O(ne−c

√
logn). (5.2)

Indeed, if x ≤
√
n then this is trivial. If

√
n ≤ x ≤ n we have

1

ec
√

logn
� 1

ec
√

log x
thus

x

ec
√

log x
� n

ec
√

logn
.

So (5.2) follows from (5.1).

We return to estimating S(α) at α = a
q

+ β. By partial summation (2.2.3) we get

S

(
a

q
+ β

)
=
∑
p≤n

(log p)e

(
a

q
p

)
e(βp) =

= e(βn)
∑
p≤n

e

(
a

q
p

)
−
∫ n

1

∑
p≤x

log(p)e

(
a

q
p

)
e(βx)′dx =

= e(βn)S

(
a

q

)
− 2πiβ

∫ n

1

S

(
a

q
, x

)
e(βx)dx =

= e(βn)

(
µ(q)

ϕ(q)
n+O(ne−c

√
logn)

)
− 2πiβ

∫ n

1

(
µ(q)

ϕ(q)
x+O(ne−c

√
logn)

)
e(βx)dx =

=
µ(q)

ϕ(q)

(
ne(βn)− 2πiβ

∫ n

1

xe(βx)dx

)
+O

(
n(1 + n|β|)e−c

√
logn
)
.

Recall that T (β) =
∑
k≤n

e(βk) and again by summation by parts we get

T (β) = ne(βn)− 2πiβ

∫ n

1

[x]e(βx)dx.
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Then we use that |β| ≤ τ =
(log n)B

n
and so n|β| � (log n)B. We get

S

(
a

q
+ β

)
=
µ(q)

ϕ(q)
T (β) +O

(
β

∫ n

1

{x}e(βx)dx

)
+O(ne−c

√
logn)

=
µ(q)

ϕ(q)
T (β) +O

(
ne−c

√
logn
)
,

which proves the Claim.

Now we are able to prove the estimate on the major arcs.

Theorem 5.4.2. Suppose that A is a positive constant and B ≥ 2A. Then∫
M

S(α)3e(−αn)dα =
1

2
C(n)n2 +O(n2(log n)−A)

where
C(n) =

∏
p-n

(1 + (p− 1)−3)
∏
p|n

(1− (p− 1)−2).

Proof. First, by Claim 5.4.1, we have

S

(
a

q
+ β

)3

=

(
µ(q)

ϕ(q)
T (β) +O(ne−c

√
logn)

)3

=
µ(q)

ϕ(q)
T (β)3 +O(n3e−c

√
logn)

because

∣∣∣∣ µ(q)

ϕ(q)3
T (β)

∣∣∣∣ ≤ n by a trivial estimate.

When α ∈M(a, q) we have α = a
q

+ β and∫
M(a,q)

S(α)3e(−αn)dα =

=
µ(q)

ϕ(q)3
e

(
−a
q
n

)∫
M(a,q)

T (β)3e(−βn)dα +O
(∫

M(a,q)

n3e−c
√

logne(−αn)dα

)
=

=
µ(q)

ϕ(q)3
e

(
−a
q
n

)∫ τ

−τ
T (β)3e(−βn)dβ +O(n2e−c

√
logn)

where we used that |β| ≤ τ =
(log n)B

n
.

Now integrating over all major arcs M we get∫
M

S(α)3e(−αn)dα =
∑
q≤Q

q∑
a=1

gcd(a,q)=1

∫
M(a,q)

S(α)2e(−αn)dα =

=
∑
q≤Q

q∑
a=1

gcd(a,q)=1

µ(q)

ϕ(q)3
e

(
−a
q
n

)∫ τ

−τ
T (β)3e(−βn)dβ +O(Q2n2e−c

√
logn)
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since ∑
q≤Q

q∑
a=1

gcd(a,q)=1

1 ≤
∑
q≤Q

q = 1 + 2 + · · ·+Q =
(Q+ 1)Q

2
� Q2.

Then we can write, using the appropriate notation,

IM = C∗(n,Q)

∫ τ

−τ
T (β)3e(−βn)dβ +O(n2e−c

√
logn).

Recall Lemma 5.3.2: Since for β ∈
(
−1

2
, 1

2

)
we have ‖β‖ = |β|, we will get

|T (β)| � 1

‖β‖
=

1

β
.

Thus ∫ τ

−τ
T (β)3e(−βn)dβ =

∫ 1
2

− 1
2

T (β)3e(−βn)dβ +O

(∫ 1
2

τ

|T (β)|3dβ

)
=

=: J(n) +O

(∫ 1
2

τ

dβ

β3

)
= J(n) +O(τ−2) = J(n) +O(n2Q−2).

Then we have

IM = C∗(n,Q)J(n) +O

(∑
q≤Q

ϕ(q)−2n2Q−2

)
+O

(
n2(log n)−2B

)
.

Recall that we have already seen that n1−ε = o(ϕ(n)) and so ϕ(n)−1 � nε−1. Therefore
we have ∑

q≤Q

ϕ(q)−2 �
∑
q≤Q

q−(2−ε) ≤
∞∑
q=1

q−(2−ε) � 1.

Then the second error term is absorbed by the last one and we have

IM = C∗(n,Q)J(n) +O
(
n2(log n)−2B

)
.

We also used that Q2n2e−c
√

logn � n2(log n)−2B. We note that

J(n) =

∫ 1
2

− 1
2

T (β)3e(−βn)dβ =
∑

1≤m1,m2,m3≤n
m1+m2+m3=n

1,

which follows from the orthogonality relation∫ 1
2

− 1
2

e(αh)dα =

{
1, h = 0

0, h ∈ Z \ {0}.

But ∑
1≤mi≤n

m1+m2+m3=n

1 =
∑

1≤mi≤n
m1+m2=n−m3

1 =
∑

1≤m3≤n−2

(n−m3 − 1)

= (n− 1)
∑

1≤m3≤n−2

1−
∑

1≤m3≤n−2

m3 =

= (n− 1)(n− 2)− 1

2
(n− 2)(n− 1) =

1

2
(n− 1)(n− 2).
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We already showed that |C∗(n,Q)| � 1, thus we can proceed by writing

IM =
1

2
C∗(n,Q)n2 +O(n2(log n)−2B).

Finally, let us complete the singular series by introducing

C∗(n) =
∞∑
q=1

µ(q)

ϕ(q)3

q∑
a=1

gcd(a,q)=1

e

(
−a
q
n

)
.

Clearly

C∗(n,Q) = C∗(n) +O

(∑
q>Q

ϕ(q)−2

)
.

As ϕ(q)−2 � q−(2−ε) we have∑
q>Q

ϕ(q)−2 �
∑
q>Q

q−(2−ε) � Q−(1−ε) � Q−
1
2 .

Then
C∗(n,Q) = C∗(n) +O(Q−

1
2 )

and

IM =
1

2
C∗(n)n2 +O(n2Q−

1
2 ) +O(n2Q−2) =

1

2
n2C∗(n) +O(n2Q−

1
2 )

=
1

2
n2C∗(n) +O

(
n2(log n)−

B
2

)
.

Now if we choose B such that (log n)−
B
2 ≤ (log n)−A the error term would be of the

desired shape.

The only thing left to check is that C∗(n) = C(n). Notice that

Q∑
a=1

gcd(a,q)=1

e

(
−a
q
n

)
= cq(n)

is the Ramanujan’s sum. So

C∗(n) =
∞∑
q=1

µ(q)

ϕ(q)3
cq(n) =

∏
p

(
1 +

µ(p)

ϕ(p)3
cp(n)

)
.

Now by Lemma 5.4.1

cp(n) = ϕ(p)
µ
(

p
gcd(p,n)

)
ϕ
(

p
gcd(p,n)

) =

{
µ(p), if gcd(p, n) = 1;

ϕ(p), if gcd(p, n) = p.

Then

C∗(n) =
∏
p-n

(
1 +

1

ϕ(p)3

)∏
p|n

(
1− 1

ϕ(p)2

)

=
∏
p-n

(
1 +

1

(p− 1)3

)∏
p|n

(
1− 1

(p− 1)2

)
= C(n).
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One easily sees that C(n) � 1, and C(n) = 0 when n is even. This proves the
Theorem.

Combining the estimates of the minor and major arcs from Theorem 5.3.1 and The-
orem 5.4.2 we get the desired asymptotic formula for the quantity R(n), thus we prove
Theorem 5.1.1.

5.5 Other applications of the circle method

5.5.1 Exceptional set for the binary Goldbach’s problem

Recall that for the ternary Goldbach’s problem we showed that the sum

R(n) =
∑

p1,p2,p3
p1+p2+p3=n

log p1 log p2 log p3

satisfies the asymptotic relation

R(n) =
1

2
C(n)n2 +O

(
n2

(log n)A

)
for any constant A > 0 and 1� C(n)�∞ is the singular series

C(n) =
∞∑
q=1

µ(q)

ϕ(q)3
cq(n).

It is conjectured that in the binary Goldbach’s problem the corresponding weighted sum

R2(n) =
∑
p1,p2

p1+p2=n

log p1 log p2

satisfies the asymptotic relation

R2(n) = nC2(n) +O
(

n

(log n)A

)
for any constant A > 0 and the corresponding singular series

C2(n) =
∞∑
q=1

µ(q)2

ϕ(q)2
cq(n).

Question: Why can’t the circle method handle the binary Goldbach’s problem?

In the ternary case we used that for the set of minor arcs m and S(α) =
∑
p≤n

log p·e(αp)

we have ∫
m

|S(α)|2dα =
∑
p≤n

(log p)2 � n log n

and
sup
α∈m
|S(α)| � n(log n)4−B

2 .
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Then we saw in Theorem 5.3.1 that |Im| �
n2

(log n)A
where Im denotes as usual the

integral over the minor arcs. This suffices, since the main term of R(n) is of magnitude
n2. However, if we follow the same idea for the binary Goldbach’s problem, we would get∫

m

|S(α)|dα� n

and ∣∣∣∣∫
m

S(α)2e(−nα)dα

∣∣∣∣� n2

(log n)A

which is a problem in the binary case since there we expect a main term of magnitude n.
Actually, we can show that over the major arcs∫

M

S(α)2e(−nα)dα = nC2(n) + o(n).

Combining the estimates over the major and minor arcs only provides an upper bound

O
(

n2

(logn)A

)
for R2(n) and does not guarantee R2(n) > 0.

Still, the circle method can be used to prove the following second moment version of
the binary problem.

Theorem 5.5.1. Let A > 0 be any constant. Then

n∑
m=1

|R2(m)−mC2(m)|2 � n3

(log n)A
.

Using this theorem one can give a non-trivial upper bound of the exceptional set of
even numbers which are not presentable as the sum of two primes.

Corollary 5.5.1. Let E(n) be the number of even numbers m not exceeding n for which
m is not the sum of two primes. Then

E(n)� n

(log n)A
.

Proof. Note that trivially E(n) ≤
[
n
2

]
so the corollary gives a non-trivial improvement.

For each m, counted by E(n), we have R2(m) = 0 and so

m−2|R2(m)−mC2(m)|2 = C2(m)2 � 1.

Hence

E(n)�
n∑

m=1

m−2|R2(m)−mC2(m)|2 =

= n−2

n∑
m=1

|R2(m)−mC2(m)|2 +O
(∫ n

1

dt

(log t)A

)
� n

(log n)A

by the Abel transformation.

65



5.5.2 Waring’s problem

Theorem 5.5.2. For any n ≥ 2 there exists k = k(n) such that every N ∈ N can be
presented as a sum of at most k n-th powers of positive integers, i.e. the Diophantine
equation

xn1 + · · ·+ xnk = N

has a solution for xi ∈ N.

Theorem 5.5.3 (Jacobi,1834). For any n ∈ N let R(n) denote the number of solutions
of

x2
1 + x2

2 + x2
3 + x2

4 = n

with xi ∈ Z. Then
R(n) = 8

∑
d|n

d 6≡0 mod 4

d.

Theorem 5.5.4. Let n ≥ 2 and k ≥ 2n + 1. Then there are δ = δ(k, n) > 0, c1 =
c1(k, n) > 0, c2 = c2(k, n) > 0 independent of N , such that if Ik,n denotes the number of
k-tuples (x1, . . . , xn) ∈ Nk satisfying

xn1 + · · ·+ xnk = N,

we have the asymptotic formula

Ik,n(N) =
Γ
(
1 + 1

n

)k
Γ
(
k
n

) Ck,n(N)N
k
n
−1 +O

(
N

k
n
−1−δ

)
,

where c1 ≤ Ck,n(N) ≤ c2, and Γ(α) is the gamma function.

Set-up of the circle method Take

Q =
(
N

1
n

) 1
100
, τ =

Q

N
=

1

N1− 1
100n

.

Then

M(a, q) = {α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ τ}, M =
⋃
q≤Q

⋃
1≤a≤q−1
gcd(a,q)=1

M(a, q)

and
m = [τ, 1 + τ ] \M.

The condition k ≥ 2n+1 plays a major role, it guarantees that the singular series Ck,n(N)
is absolutely convergent.

In general the circle method provides asymptotic formulae for additive Diophantine
problems only if the number of variables is large enough, still, it provides heuristics what
to expect for a smaller number of variables as well.
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