NUMBER THEORY SS20

HOMEWORK 1 (DUE BY 22.04.2020)

Problem 1. Define the Dirichlet product of the arithmetic functions f and g by

$$
f * g(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

Let

$$
e(n)= \begin{cases}1 & , \text { if } n=1 \\ 0 & , \text { if } n>1\end{cases}
$$

and

$$
I(n)=1 \text { for all } n \in \mathbb{N} .
$$

Let \mathcal{M} denote the set of all multiplicative arithmetic functions.
(i) Prove that for $f, g \in \mathcal{M}$ we have $f * g \in \mathcal{M}$.
(ii) Show that the Dirichlet product is associative, commutative and $e(n)$ is the identity element.
(iii) Show that every function $f \in \mathcal{M} \backslash\{f: f(1)=0\}$ has an inverse element.
This shows that the set $\mathcal{M} \backslash\{f \equiv 0\}$ is a group under the Dirichlet product.
Problem 2. Deduce again that for any arithmetic function f we have the Möbius inversion formula

$$
f=\mu * S_{f}
$$

and then show that $f \in \mathcal{M}$ if and only if the sum-function $S_{f} \in \mathcal{M}$.
Problem 3. Show that for the number of divisors function we have the estimate

$$
\tau(n)=o\left(n^{\varepsilon}\right)
$$

(Hint: You can use Lemma 2 from Lecture 2.)

Problem 4. Apply the Vinogradov's lemma to show that

$$
\sum_{x, y \leq N} \sum_{(x, y)=1} 1=\frac{6}{\pi^{2}} N^{2}+O(N \log N)
$$

i.e. the density of the pairs of coprime integers up to N equals $1 / \zeta(2)=6 / \pi^{2}$.

Problem 5 (Gauss Circle Problem). Prove that for the sum of two integer squares function

$$
r(n)=\sum_{x^{2}+y^{2}=n} 1
$$

we have

$$
\sum_{n=1}^{N} r(n)=\pi N+O(\sqrt{N})
$$

Problem 6 (Primitive Circle Problem). Prove that

$$
\sum_{n=1}^{N} \sum_{\substack{x^{2}+y^{2}=n \\(x, y)=1}} 1=\frac{6}{\pi} N+O(\sqrt{N} \log N)
$$

