## NUMBER THEORY SS20

## HOMEWORK 2 (DUE BY 17.06.2020)

Problem 1. (i) Let $n \in \mathbb{N}$. Prove that

$$
\int_{2}^{x} \frac{d t}{(\log t)^{n}}=O\left(\frac{x}{(\log x)^{n}}\right)
$$

Hint: Split the integral into $\int_{2}^{f(x)}+\int_{f(x)}^{x}$ for appropriate function $f(x)$, such that $2 \leq f(x)<x$, and estimate both integrals from above.
(ii) Using integration by parts, prove that for any integer $n \geq 0$ the logarithmic integral $L i(x)$ satisfies

$$
L i(x):=\int_{2}^{x} \frac{d t}{\log t}=\frac{x}{\log x}+\frac{x}{(\log x)^{2}}+\ldots+\frac{n!x}{(\log x)^{n+1}}+O_{n}\left(\frac{x}{(\log x)^{n+2}}\right) .
$$

(iii) Deduce that

$$
\int_{2}^{x} \frac{d t}{(\log t)^{2}}=\frac{x}{(\log x)^{2}}+O\left(\frac{x}{(\log x)^{3}}\right)
$$

by first solving the integral and then applying (ii) and (i).
Problem 2 (Stirling's formula). Show that for $n \rightarrow \infty$ we have the approximation

$$
\log (n!)=n \log n-n+O(\log n) .
$$

Problem 3. Let $\chi$ be a non-principal character modulo $q$. Show that

$$
\sum_{n \geq x} \frac{\chi(n)}{\sqrt{n}}=O\left(\frac{1}{\sqrt{x}}\right)
$$

Problem 4. Given a character $\chi$ modulo $q$, define the Gauss sum

$$
\tau(\chi)=\sum_{a=1}^{q} \chi(a) e\left(\frac{a}{q}\right),
$$

where $e(x):=e^{2 \pi i x}$. Show that

$$
\frac{1}{\varphi(q)} \sum_{\chi} \bar{\chi}(a) \tau(\chi)= \begin{cases}e\left(\frac{a}{q}\right) & ,(a, q)=1 ; \\ 0 & , \text { otherwise } .\end{cases}
$$

Problem 5 (Elementary sieves). Let $n$ denote a positive integer.
(i) (Eratosthenes-Legendre) Let $P_{z}$ be the product of the primes $p \leq z$, and $\pi(x, z)$ the number of $n \leq x$ that are not divisible by any prime $p \leq z$. Show that

$$
\pi(x, z)=\sum_{d \mid P_{z}} \mu(d)\left[\frac{x}{d}\right]
$$

(ii) (Rankin's trick) Let $\Phi(x, z)$ be the number of $n \leq x$ all of whose prime factors are less than or equal to $z$. Prove that for any $\delta>0$

$$
\Phi(x, z) \leq x^{\delta} \prod_{p \leq z}\left(1-\frac{1}{p^{\delta}}\right)^{-1}
$$

Problem $6\left(^{*}\right)$. Prove that the Prime number theorem for the Chebyshev's function, i.e. the statement $\Psi(x) \sim x$, holds if and only if we have

$$
\sum_{n \leq x} \mu(n)=o(x)
$$

where $\mu$ is the Möbius function.
Hint: You can see Chapter 8, 'Multiplicative NT', Montgomery-Vaughan.

