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Scope of the course

What is in it?

What is robust optimization and should we care?

Theory (e.g. computational complexity) of RO problems.

How to solve RO problems using a computer?

Current research topics in RO.

What do you get out of it?

Be able to conduct your own research in RO!

Know how to apply RO to problems in practice!
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How will the course be organized?

Online videos explaining concepts and theory
short (15-45 min), available via link from the website

Thinking assignments
stated in “lectures” or via mail/website; not neccessarily like exercises

Reading assignments
after basics are covered

Discussion and exercise meetings
via stream (Webex) + maybe on-site

Tutorials
mix of videos and stream/on-site for software tools

Mail, Discord and (virtual) office hours for questions
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Discrete Linear Optimization

Input:
E = {e1, e2, . . . , en} set of elements
ℱ ⊆ 2E set of feasible solutions
c : E → R+ cost function

Problem (Discrete Optimization Problem):

Minimize

c(X ) =
∑︁
e∈X

c(e)

subject to

X ∈ ℱ

Binary vectors vs. sets:
𝒳 set of {0, 1} incidence vectors of feasible solutions.
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Discrete Optimization – Examples

Selection ℱ = {X ⊆ E : |X | = p}

Minimum Spanning Tree

Shortest Path

Knapsack ℱ = {X ⊆ E : w(X ) =
∑︀

e∈X w(e) ≤ B}
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Robust Discrete Optimization

Main idea: Uncertainty sets for costs

Uncertainty set 𝒰 :
For each scenario s a cost function cs : E → R+ ∈ 𝒰

Examples

Discrete uncertainty 𝒰D = {cs1 , cs2 , . . . , csK }
Interval uncertainty
𝒰I = {cs : cs(e) ∈ [c(e), c(e) + d(e)]∀e ∈ E}

Robust Optimization (Min-Max)

min
X∈ℱ

max
c∈𝒰

c(X )

Max-Min for maximization problems
Also: Uncertainty in the constraints, not only subsets/0-1 vectors, ...
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Thinking Assignment: Uncertainty Sets

Discrete uncertainty 𝒰D = {cs1 , cs2 , . . . , csK }
Interval uncertainty
𝒰I = {cs : cs(e) ∈ [c(e), c(e) + d(e)]∀e ∈ E}

What other ideas do you have for
modelling uncertainty using

uncertainty sets?

Not a literature search exercise! Be creative!
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Example 1: Investments

Example: [Assi et al.; 2009] maxx∈𝒳 minp∈𝒰
∑︀n

i=1 pixi

Input:
b bound on total investment
n investment opportunities
wi required cash for
investment i
pi profit from investment i
(uncertain)

b = 12

Solutions:
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Example 2: Shortest Path

Example: [Kasperski, Zielinski; 2016]

min
X∈ℱ

max
c∈𝒰

c(X )

cs1 = (2, 10, 3, 1, 1), cs2 = (1, 11, 0, 5, 1), cs3 = (8, 8, 0, 8, 8, 8)
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Thank you!
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