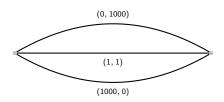
Introduction Robust Optimization

Stefan Lendl

Institute of Discrete Mathematics Graz University of Technology

An Uncertain World

An Uncertain World



An Uncertain World

Scope of the course

What is in it?

- What is robust optimization and should we care?
- Theory (e.g. computational complexity) of RO problems.
- How to solve RO problems using a computer?
- Current research topics in RO.

Scope of the course

What is in it?

- What is robust optimization and should we care?
- Theory (e.g. computational complexity) of RO problems.
- How to solve RO problems using a computer?
- Current research topics in RO.

What do you get out of it?

- Be able to conduct your own research in RO!
- Know how to apply RO to problems in practice!

• Online videos explaining concepts and theory short (15-45 min), available via link from the website

- Online videos explaining concepts and theory short (15-45 min), available via link from the website
- Thinking assignments stated in "lectures" or via mail/website; not neccessarily like exercises

- Online videos explaining concepts and theory short (15-45 min), available via link from the website
- Thinking assignments stated in "lectures" or via mail/website; not neccessarily like exercises
- Reading assignments after basics are covered

- Online videos explaining concepts and theory short (15-45 min), available via link from the website
- Thinking assignments stated in "lectures" or via mail/website; not neccessarily like exercises
- Reading assignments after basics are covered
- Discussion and exercise meetings
 via stream (Webex) + maybe on-site

- Online videos explaining concepts and theory short (15-45 min), available via link from the website
- Thinking assignments stated in "lectures" or via mail/website; not neccessarily like exercises
- Reading assignments after basics are covered
- Discussion and exercise meetings
 via stream (Webex) + maybe on-site
- Tutorials mix of videos and stream/on-site for software tools

- Online videos explaining concepts and theory short (15-45 min), available via link from the website
- Thinking assignments stated in "lectures" or via mail/website; not neccessarily like exercises
- Reading assignments after basics are covered
- Discussion and exercise meetings
 via stream (Webex) + maybe on-site
- Tutorials mix of videos and stream/on-site for software tools
- Mail, Discord and (virtual) office hours for questions

Discrete Linear Optimization

Input:

 $E = \{e_1, e_2, \dots, e_n\}$ set of elements $\mathcal{F} \subseteq 2^E$ set of feasible solutions $c \colon E \to \mathbb{R}_+$ cost function

Discrete Linear Optimization

Input:

 $E = \{e_1, e_2, \dots, e_n\}$ set of elements $\mathcal{F} \subseteq 2^E$ set of feasible solutions $c \colon E \to \mathbb{R}_+$ cost function

Problem (Discrete Optimization Problem):

Minimize

$$c(X) = \sum_{e \in X} c(e)$$

subject to

$$X \in \mathcal{F}$$

Discrete Linear Optimization

Input:

 $E = \{e_1, e_2, \dots, e_n\}$ set of elements $\mathcal{F} \subseteq 2^E$ set of feasible solutions $c \colon E \to \mathbb{R}_+$ cost function

Problem (Discrete Optimization Problem):

Minimize

$$c(X) = \sum_{e \in X} c(e)$$

subject to

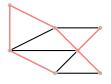
$$X \in \mathcal{F}$$

Binary vectors vs. sets:

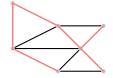
 ${\mathcal X}$ set of $\{0,1\}$ incidence vectors of feasible solutions.

• Selection $\mathcal{F} = \{X \subseteq E \colon |X| = p\}$

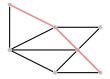
- Selection $\mathcal{F} = \{X \subseteq E \colon |X| = p\}$
- MINIMUM SPANNING TREE



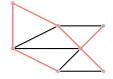
- Selection $\mathcal{F} = \{X \subseteq E \colon |X| = p\}$
- MINIMUM SPANNING TREE



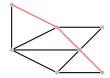
• Shortest Path



- Selection $\mathcal{F} = \{X \subseteq E \colon |X| = p\}$
- MINIMUM SPANNING TREE



• SHORTEST PATH



• Knapsack $\mathcal{F} = \{X \subseteq E : w(X) = \sum_{e \in X} w(e) \le B\}$

Main idea: Uncertainty sets for costs

Uncertainty set \mathcal{U} :

For each scenario s a cost function $c^s \colon E \to \mathbb{R}_+ \in \mathcal{U}$

Main idea: Uncertainty sets for costs

Uncertainty set \mathcal{U} :

For each scenario s a cost function $c^s \colon E \to \mathbb{R}_+ \in \mathcal{U}$

Examples

- Discrete uncertainty $\mathcal{U}_D = \{c^{s_1}, c^{s_2}, \dots, c^{s_K}\}$
- Interval uncertainty

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Main idea: Uncertainty sets for costs

Uncertainty set \mathcal{U} :

For each scenario s a cost function $c^s \colon E \to \mathbb{R}_+ \in \mathcal{U}$

Examples

- Discrete uncertainty $\mathcal{U}_D = \{c^{s_1}, c^{s_2}, \dots, c^{s_K}\}$
- Interval uncertainty

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Robust Optimization (MIN-MAX)

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

Max-Min for maximization problems

Main idea: Uncertainty sets for costs

Uncertainty set \mathcal{U} :

For each scenario s a cost function $c^s \colon E o \mathbb{R}_+ \in \mathcal{U}$

Examples

- Discrete uncertainty $\mathcal{U}_D = \{c^{s_1}, c^{s_2}, \dots, c^{s_K}\}$
- Interval uncertainty

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Robust Optimization (MIN-MAX)

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

MAX-MIN for maximization problems

Also: Uncertainty in the constraints, not only subsets/0-1 vectors, ...

Thinking Assignment: Uncertainty Sets

- ullet Discrete uncertainty $\mathcal{U}_D = \{c^{s_1}, c^{s_2}, \dots, c^{s_K}\}$
- Interval uncertainty $\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$

What other ideas do you have for modelling uncertainty using uncertainty sets?

Not a literature search exercise! Be creative!

Example 1: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment
 n investment opportunities
 w_i required cash for
 investment i
 p_i profit from investment i
 (uncertain)

Example 1: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment n investment opportunities w_i required cash for investment i p_i profit from investment i (uncertain)

Cash outflows and profits of the investments

i	w_i	p_i^1	p_i^2	p_i^3
1	3	4	3	3
2	5	8	4	6
3	2	5	3	3
4	4	3	2	4
5	5	2	8	2
6	3	4	6	2

b = 12

Example 1: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment n investment opportunities w_i required cash for investment i p_i profit from investment i

Cash outflows and profits of the investments

i		w_i	p_i^1	p_i^2	p_i^3
1		3	4	3	3
2		5	8	4	6
3		2	5	3	3
4		4	3	2	4
5		5	2	8	2
6		3	4	6	2
,	10				

b = 12

Solutions:

(uncertain)

Optimal values and solutions (discrete scenario case)

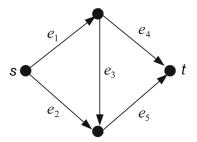
1	2	3	Optimal solution
17	10	12	Scenario 1: (1,1,1,0,0,0)
11	17	7	Scenario 2: (0,0,1,0,1,1)
16	9	13	Scenario 3: (0,1,1,1,0,0)
15	12	12	Max-min: (0,1,0,1,0,1)
			0 / 11

Example 2: Shortest Path

Example: [Kasperski, Zielinski; 2016]

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

$$c^{s_1} = (2, 10, 3, 1, 1), c^{s_2} = (1, 11, 0, 5, 1), c^{s_3} = (8, 8, 0, 8, 8, 8)$$

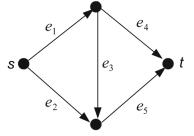


Example 2: Shortest Path

Example: [Kasperski, Zielinski; 2016]

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

$$c^{s_1} = (2, 10, 3, 1, 1), c^{s_2} = (1, 11, 0, 5, 1), c^{s_3} = (8, 8, 0, 8, 8, 8)$$



	c^{s_1}	c^{s_2}	c^{s_3}
$\{e_{1,}e_{4}\}$	3	6	16
$\{e_{1,}e_{3,}e_{5}\}$	6	2	16
$\{e_{2},e_{5}\}$	11	12	16

Thank you!

