Discrete Cost Uncertainty Robust Optimization

Stefan Lendl

Institute of Discrete Mathematics Graz University of Technology

Example: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment
 n investment opportunities
 w_i required cash for
 investment i
 p_i profit from investment i
 (uncertain)

Example: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment n investment opportunities w_i required cash for investment i p_i profit from investment i (uncertain)

Cash outflows and profits of the investments

i	w_i	p_i^1	p_i^2	p_i^3
1	3	4	3	3
2	5	8	4	6
3	2	5	3	3
4	4	3	2	4
5	5	2	8	2
6	3	4	6	2

b = 12

Example: Investments

Example: [Assi et al.; 2009] $\max_{x \in \mathcal{X}} \min_{p \in \mathcal{U}} \sum_{i=1}^{n} p_i x_i$

Input:

b bound on total investment n investment opportunities w_i required cash for investment i p_i profit from investment i

Cash outflows and profits of the investments

i	w_i	p_i^1	p_i^2	p_i^3
1	3	4	3	3
2	5	8	4	6
3	2	5	3	3
4	4	3	2	4
5	5	2	8	2
6	3	4	6	2

b = 12

Solutions:

(uncertain)

Optimal values and solutions (discrete scenario case)

2	3	Optimal solution
10	12	Scenario 1: (1,1,1,0,0,0)
17	7	Scenario 2: (0,0,1,0,1,1)
9	13	Scenario 3: (0,1,1,1,0,0)
12	12	Max-min: (0,1,0,1,0,1)
	2 10 17 9 12	17

Computational Complexity

Theorem

MIN-MAX robust optimization is NP-hard for $\mathcal{X} = \{0,1\}^n$ if the uncertainty set \mathcal{U} contains exactly K = 2 scenarios.

Proof.

Reduction from SUBSET SUM.

K-Approximation

Theorem

Consider an instance of MIN-MAX robust optimization for given $\mathcal{X} \subseteq \{0,1\}^n$ with discrete uncertainty set \mathcal{U} containing exactly K scenarios. Consider also an instance of the classic MIN problem with linear costs $c_i' = \sum_{s=1}^k \frac{c_s^s}{k}$ for each $i=1,\ldots,n$ and let x' be an optimal solution to this instance. It then holds that

$$\max_{c \in \mathcal{U}} c(x') \le k \cdot \min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x)$$

K-Approximation

Theorem

Consider an instance of MIN-MAX robust optimization for given $\mathcal{X} \subseteq \{0,1\}^n$ with discrete uncertainty set \mathcal{U} containing exactly K scenarios. Consider also an instance of the classic MIN problem with linear costs $c_i' = \sum_{s=1}^k \frac{c_s^s}{k}$ for each $i=1,\ldots,n$ and let x' be an optimal solution to this instance. It then holds that

$$\max_{c \in \mathcal{U}} c(x') \le k \cdot \min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x)$$

Same holds also for $c'_i = \max_{c \in \mathcal{U}} c_i$. (Exercise!)

Strong NP-hardness

Theorem

MIN-MAX robust optimization is strongly NP-hard for $\mathcal{X} = \{0,1\}^n$.

Proof.

Reduction from SET COVER.

Algorithm for constant K

Main tool: EXACT problem: Decide if there exists a solution with objective value exactly v!

Theorem (Assi, Bazgun, Vanderpooten; 2005)

There is a pseudo-polynomial algorithm for Min-Max robust optimization with discrete uncertainties $\mathcal U$ and $|\mathcal U|=K$ is constant if the Exact problem and ists search version are polynomially or pseudo-polynomially solvable.

Hence the problem is not strongly NP-hard for constant K.

Algorithm for constant K

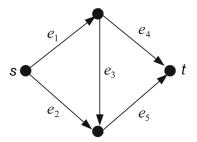
```
v \leftarrow 0
test \leftarrow false
while test \neq true do
   for (\alpha_1, \ldots, \alpha_k): max\{\alpha_1, \ldots, \alpha_k\} = v do
      value \leftarrow \sum_{n=1}^{k} \alpha_p (mM+1)^{p-1}
      if Decide_Exact_\mathcal{P}(I',value) then
          Construct_Exact_\mathcal{P} (I', value, x^*)
          test \leftarrow true
   if test \neq true then
      v \leftarrow v + 1
opt \leftarrow v
Output opt and x^*
```

Example: Shortest Path

Example: [Kasperski, Zielinski; 2016]

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

$$c^{s_1} = (2, 10, 3, 1, 1), c^{s_2} = (1, 11, 0, 5, 1), c^{s_3} = (8, 8, 0, 8, 8, 8)$$

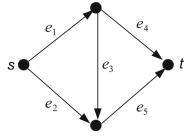


Example: Shortest Path

Example: [Kasperski, Zielinski; 2016]

$$\min_{X \in \mathcal{F}} \max_{c \in \mathcal{U}} c(X)$$

$$c^{s_1} = (2, 10, 3, 1, 1), c^{s_2} = (1, 11, 0, 5, 1), c^{s_3} = (8, 8, 0, 8, 8, 8)$$



	c^{s_1}	c^{s_2}	c^{s_3}
$\{e_{1,}e_{4}\}$	3	6	16
$\{e_{1,}e_{3,}e_{5}\}$	6	2	16
$\{e_{2},e_{5}\}$	11	12	16

Efficient solutions \mathcal{E} : A solution x is efficient for \mathcal{U} if no other solution dominates it. A solution x dominates y if $c(x) \leq c(y)$ for all $c \in \mathcal{U}$, with at least one inequality being strict.

Efficient solutions \mathcal{E} : A solution x is efficient for \mathcal{U} if no other solution dominates it. A solution x dominates y if $c(x) \leq c(y)$ for all $c \in \mathcal{U}$, with at least one inequality being strict.

Theorem

At least one solution of MIN-MAX robust optimization for $\mathcal{X} \subseteq \{0,1\}^n$ is neccessarily an efficient solution.

Efficient solutions \mathcal{E} : A solution x is efficient for \mathcal{U} if no other solution dominates it. A solution x dominates y if $c(x) \leq c(y)$ for all $c \in \mathcal{U}$, with at least one inequality being strict.

Theorem

At least one solution of MIN-MAX robust optimization for $\mathcal{X} \subseteq \{0,1\}^n$ is neccessarily an efficient solution.

Proof.

If x dominates y then $\max_{c \in \mathcal{U}} c(x) \leq \max_{c \in \mathcal{U}} c(y)$.

Efficient solutions \mathcal{E} : A solution x is efficient for \mathcal{U} if no other solution dominates it. A solution x dominates y if $c(x) \leq c(y)$ for all $c \in \mathcal{U}$, with at least one inequality being strict.

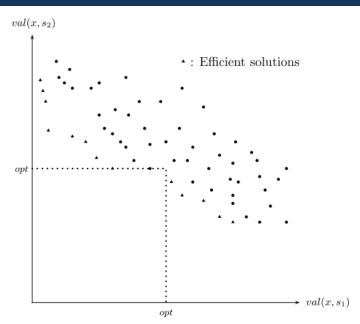
Theorem

At least one solution of MIN-MAX robust optimization for $\mathcal{X} \subseteq \{0,1\}^n$ is neccessarily an efficient solution.

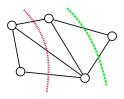
Proof.

If x dominates y then $\max_{c \in \mathcal{U}} c(x) \leq \max_{c \in \mathcal{U}} c(y)$.

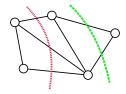
Take $x \in \mathcal{E}$ with minimum $\max_{c \in \mathcal{U}} c(x)$.



Robust Global Minimum Cut



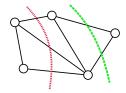
Robust Global Minimum Cut



Algorithm Min-Max($G(V, E, w_1, ..., w_k)$):

- 1. Let $w'(e) = \sum_{i=1}^{k} w_i(e)$, for every $e \in E$.
- 2. Find all the k-approximate minimum cuts in G with respect to w'.
- 3. Among all the cuts C found in the previous step find the one for which $\max_{i=1}^k w_i(C)$ is minimized.

Robust Global Minimum Cut



Algorithm Min-Max($G(V, E, w_1, ..., w_k)$):

- 1. Let $w'(e) = \sum_{i=1}^k w_i(e)$, for every $e \in E$.
- 2. Find all the k-approximate minimum cuts in G with respect to w'.
- 3. Among all the cuts C found in the previous step find the one for which $\max_{i=1}^{k} w_i(C)$ is minimized.

Lemma

If C is an optimal $\operatorname{Min-Max}$ cut and D is any other cut in the graph then

$$w'(C) \leq Kw'(D)$$
.

Karger's Contraction Algorithm

Procedure Contract(G)

repeat until G has 2 vertices

choose an edge (v, w) uniformly at random from G let $G \leftarrow G/(v, w)$

return G

Lemma

A cut (A, B) is output by the Contraction Algorithm if and only if no edge crossing (A, B) is contracted by the algorithm.

Theorem

A particular minimum cut in G is returned by the Contraction Algorithm with probability at least $\binom{n}{2}^{-1} = \Omega(n^{-2})$.

Karger-Stein: k-Approximate Minimum Cuts

Lemma

The probability that a particular k-approximate minimum cut survives contraction to 2k vertices is $\Omega(\binom{n}{2k}^{-1})$.

Theorem

The number of k-approximate minimum cuts is $O((2n)^{2k})$ and they can be found in randomized polynomial time.

Overview: Complexity

Problems	Constant	
	Min-max	
SHORTEST PATH SPANNING TREE ASSIGNMENT KNAPSACK MIN CUT MIN S—t CUT	NP-hard, pseudo-poly [65] NP-hard [43], pseudo-poly [3] NP-hard [43] NP-hard, pseudo-poly [43] Polynomial [7] strongly NP-hard [2]	
Problems	Non-constant	
	Min-max	

A general approximation scheme

For constant K there is an FPTAS computing the efficient solutions \mathcal{E} .

Theorem

If for any instance I of a robust Min-Max robust optimization problem on $\mathcal X$ with discrete uncertainty $\mathcal U$ it holds that

- a lower and upper bound L and U for the optimal value can be computed in time p(|I|) such that $U \le q(|I|)L$, where p and q are two polynomials with q non-decreasing and $q(|I|) \ge 1$, and
- ② there exists and algorithm that finds for I an optimal solution r(|I|, U), where r is a non-decresing polynomial,

then there exists an FPTAS.

A general approximation scheme

For constant K there is an FPTAS computing the efficient solutions \mathcal{E} .

Theorem

If for any instance I of a robust Min-Max robust optimization problem on $\mathcal X$ with discrete uncertainty $\mathcal U$ it holds that

- a lower and upper bound L and U for the optimal value can be computed in time p(|I|) such that $U \le q(|I|)L$, where p and q are two polynomials with q non-decreasing and $q(|I|) \ge 1$, and
- ② there exists and algorithm that finds for I an optimal solution r(|I|, U), where r is a non-decressing polynomial,

then there exists an FPTAS.

When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any instance on a set of k scenarios of $\operatorname{Min-Max}$ robust optimization, there exists a lower and an upper bound L and U computable in polynomial time such that $U \leq kL$.

When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any instance on a set of k scenarios of $\operatorname{Min-Max}$ robust optimization, there exists a lower and an upper bound L and U computable in polynomial time such that $U \leq kL$.

Proposition

The second condition can be weakend to require an algorithm that is polynomial in |I| and $\max(I) = \max_{c \in \mathcal{U}, i} c_i$

When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any instance on a set of k scenarios of $\operatorname{Min-Max}$ robust optimization, there exists a lower and an upper bound L and U computable in polynomial time such that $U \leq kL$.

Proposition

The second condition can be weakend to require an algorithm that is polynomial in |I| and $\max(I) = \max_{c \in \mathcal{U}, i} c_i$

Proof.

If there exists $c \in \mathcal{U}$ such that c(i) > U, then $x_i = 0$.

Overview: Approximation

Problems	Constant	Non-constant
	Min-max	Min-max
SHORTEST	fptas [61]	Not $\log^{1-\varepsilon} k$ approx. [40]
SPANNING TREE	fptas [4,3]	Not $\log^{1-\varepsilon} k$ approx. [40]
KNAPSACK	fptas [4]	Non approx. [4]

Thank you!

