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Example: Investments

Example: [Assi et al.; 2009] maxyexy Minpey Y rq PiXi
Cash outflows and profits of the investments

Input:

. i L 1 2 3
b bound on total investment ! Wi p; p; p;
n investment opportunities 1 3 4 3 3
, red cash f 2 5 8 4 6
w; required cash for 3 5 5 3 3
Investment / 4 4 3 2 4
pi profit from investment i 5 5 2 8 2
. 6 3 4 6 2

(uncertain)
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Example: Investments

Example: [Assi et al.; 2009] maxyexy Minpey Y rq PiXi

Cash outflows and profits of the investments

Input:
. i L 1 2 &
b bound on total investment ! Wi Pi Pi Pi
n investment opportunities 1 3 4 3 3
, red cash f 2 5 8 4 6
w; required cash for 3 2 5 3 3
investment / 4 4 3 2 4
p; profit from investment i 5 5 2 8 2
. 6 3 4 6 2
(uncertain)
b=12
Solutions:
Optimal values and solutions (discrete scenario case)
1 2 3 Optimal solution
17 10 12 Scenario 1: (1,1,1,0,0,0)
11 17 7 Scenario 2: (0,0,1,0,1,1)
16 9 13 Scenario 3: (0,1,1,1,0,0)

15 12 12 Max-min: (0,1,0,1,0,1)
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Computational Complexity

Theorem

MIN-MAX robust optimization is NP-hard for X = {0,1}" if the
uncertainty set U contains exactly K = 2 scenarios.

Proof.
Reduction from SUBSET SUM. O




K-Approximation

Theorem

Consider an instance of MIN-MAX robust optimization for given
X C {0,1}" with discrete uncertainty set U containing exactly K

scenarios. Consider also an instance of the classic MIN problem with linear
k c? . . .
costs ¢, = > o, 4 foreachi=1,...,n and let X' be an optimal solution

to this instance. It then holds that

max c(x’) < k - min max c(x)
ceu x€EX ceU




K-Approximation

Theorem

Consider an instance of MIN-MAX robust optimization for given

X C {0,1}" with discrete uncertainty set U containing exactly K
scenarios. Consider also an instance of the classic MIN problem with linear
costs ¢/ = K C—Z for each i =1,...,n and let x' be an optimal solution
to this instance. It then holds that

max c(x’) < k - min max c(x)
ceu x€EX ceU

Same holds also for ¢/ = maxc¢y ¢;. (Exercisel!
1 eu



Strong NP-hardness

Theorem
MIN-MAX robust optimization is strongly NP-hard for X = {0,1}".

Proof.

Reduction from SET COVER. L]




Algorithm for constant K

Main tool: EXACT problem: Decide if there exists a solution with
objective value exactly v!

Theorem (Assi, Bazgun, Vanderpooten; 2005)

There is a pseudo-polynomial algorithm for MIN-MAX robust optimization
with discrete uncertainties U and |U| = K is constant if the EXACT
problem and ists search version are polynomially or pseudo-polynomially
solvable.

Hence the problem is not strongly NP-hard for constant K.



Algorithm for constant K

v 0
test — false
while test # true do
for (ay,...,0x): max{ay,...,ar} =v do
value — Z’;:l ap(mM + 1)P~!
if DECIDE_EXACT_P(I’ value) then
CONSTRUCT_EXACT_P (I’ ,value,x™)
test < true
if test # true then
ve—v+1
opt — v
Output opt and z*



Example: Shortest Path

Example: [Kasperski, Zielinski; 2016]

min max c(X)
XeF ceu

¢t = (2,10,3,1,1),c® = (1,11,0,5,1),c® = (8,8,0,8,8,8)




Example: Shortest Path

Example: [Kasperski, Zielinski; 2016]

min max c(X)
XeF ceu

¢t = (2,10,3,1,1),c® = (1,11,0,5,1),c® = (8,8,0,8,8,8)

lees| 3 6 16
{61,63,‘35} 6 2 16
leyes) | 11 12 16




Connection to multi-objective optimization

Efficient solutions &£: A solution x is efficient for U/ if no other solution
dominates it. A solution x dominates y if c(x) < c(y) for all ¢ € U, with
at least one inequality being strict.
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Connection to multi-objective optimization

Efficient solutions &£: A solution x is efficient for U/ if no other solution
dominates it. A solution x dominates y if c(x) < c(y) for all ¢ € U, with
at least one inequality being strict.

Theorem

At least one solution of MIN-MAX robust optimization for X C {0,1}" is
neccessarily an efficient solution.

Proof.

If x dominates y then maxccys c(x) < maxcey c(y).
Take x € £ with minimum max.¢y c(x).




Connection to multi-objective optimization

« ; Efficient solutions
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Robust Global Minimum Cut




Robust Global Minimum Cut

Algorithm Min-Max(G(V, E, wy, ..., wy)):

1. Let w'(e) = Zf.;l w;(e), forevery e € E.

2. Find all the k-approximate minimum cuts in G with respect to w'’.
3. Among all the cuts C found in the previous step find the one for which
max’_, w;(C) is minimized.



Robust Global Minimum Cut

Algorithm Min-Max(G(V, E, wy, ..., wy)):

1. Let w'(e) = ZL[ w;(e), forevery e € E.

2. Find all the k-approximate minimum cuts in G with respect to w'’.
3. Among all the cuts C found in the previous step find the one for which
max’_, w;(C) is minimized.

Lemma
If C is an optimal MIN-MAX cut and D is any other cut in the graph then

w'(C) < Kw'(D).




Karger's Contraction Algorithm

Procedure Contract(G)

repeat until 7 has 2 vertices

choose an edge (v, w) uniformly at random from &
let G+ G/(v,w)

return &

Lemma

A cut (A, B) is output by the Contraction Algorithm if and only if no edge
crossing (A, B) is contracted by the algorithm.

v

Theorem
A particular minimum cut in G is returned by the Contraction Algorithm
with probability at least (3) ™" = Q(n™2).
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Karger-Stein: k-Approximate Minimum Cuts

Lemma

The probability that a particular k—ap{aroximate minimum cut survives
contraction to 2k vertices is Q((5}) )

Theorem

The number of k-approximate minimum cuts is O((2n)?*) and they can
be found in randomized polynomial time.

13 /18



Overview: Complexity

Problems

Constant

Min-max

SHORTEST PATH
SPANNING TREE
ASSIGNMENT
KMAFSACK

MIN CUT

MIN S—I[ cut

NP-hard, pseudo-poly [65]
NP-hard [43], pseudo-poly [3]
NP-hard [43]

NP-hard, pseudo-poly [43]
Polynomial [7]

strongly NP-hard [2]

Problems

Non-constant

Min-max

SHORTEST PATH
SPANNING TREE
ASSIGNMENT
KNAPSACK

MIN CUT

MIN 5—F cuT

Strongly NP-hard [43]
Strongly NP-hard [43]
Strongly NP-hard [1]
Strongly NP-hard [43]
Strongly NP-hard [2]
Strongly NP-hard [2]




A general approximation scheme

For constant K there is an FPTAS computing the efficient solutions &£.

Theorem
If for any instance | of a robust MIN-MAX robust optimization problem
on X with discrete uncertainty U it holds that

@ a lower and upper bound L and U for the optimal value can be
computed in time p(|/|) such that U < q(|/|)L, where p and q are
two polynomials with q non-decreasing and q(|l|) > 1, and

@ there exists and algorithm that finds for | an optimal solution
r(|/], U), where r is a non-decresing polynomial,

then there exists an FPTAS.
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When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any
instance on a set of k scenarios of MIN-MAX robust optimization, there
exists a lower and an upper bound L and U computable in polynomial time
such that U < kL.
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v

Proposition
The second condition can be weakend to require an algorithm that is
polynomial in |l and max(/) = maxcey,i ;i
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When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any
instance on a set of k scenarios of MIN-MAX robust optimization, there
exists a lower and an upper bound L and U computable in polynomial time
such that U < kL.

v

Proposition

The second condition can be weakend to require an algorithm that is
polynomial in |l and max(/) = maxcey,i ;i

Proof.
If there exists ¢ € U such that c(i) > U, then x; = 0. Ll




Overview: Approximation

Problems Constant MNon-constant
Min-max  Min-max
sHorTest  fptas [61] Mot lu:xvgj ~“k approx.
PATH [40]
saNNING  fptas [4,3]  Not log! *k approx.
TREE [40]
knapsack  fptas [4] Non approx. [4]







