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Example: Investments

Example: [Assi et al.; 2009] maxx∈𝒳 minp∈𝒰
∑︀n

i=1 pixi

Input:
b bound on total investment
n investment opportunities
wi required cash for
investment i
pi profit from investment i
(uncertain)

b = 12

Solutions:
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Computational Complexity

Theorem

Min-Max robust optimization is NP-hard for 𝒳 = {0, 1}n if the
uncertainty set 𝒰 contains exactly K = 2 scenarios.

Proof.

Reduction from subset sum.
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K -Approximation

Theorem

Consider an instance of Min-Max robust optimization for given
𝒳 ⊆ {0, 1}n with discrete uncertainty set 𝒰 containing exactly K
scenarios. Consider also an instance of the classic Min problem with linear

costs c ′i =
∑︀k

s=1
csi
k for each i = 1, . . . , n and let x ′ be an optimal solution

to this instance. It then holds that

max
c∈𝒰

c(x ′) ≤ k · min
x∈𝒳

max
c∈𝒰

c(x)

Same holds also for c ′i = maxc∈𝒰 ci . (Exercise!)
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Strong NP-hardness

Theorem

Min-Max robust optimization is strongly NP-hard for 𝒳 = {0, 1}n.

Proof.

Reduction from set cover.
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Algorithm for constant K

Main tool: Exact problem: Decide if there exists a solution with
objective value exactly v !

Theorem (Assi, Bazgun, Vanderpooten; 2005)

There is a pseudo-polynomial algorithm for Min-Max robust optimization
with discrete uncertainties 𝒰 and |𝒰| = K is constant if the Exact
problem and ists search version are polynomially or pseudo-polynomially
solvable.

Hence the problem is not strongly NP-hard for constant K .
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Algorithm for constant K
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Example: Shortest Path

Example: [Kasperski, Zielinski; 2016]

min
X∈ℱ

max
c∈𝒰

c(X )

cs1 = (2, 10, 3, 1, 1), cs2 = (1, 11, 0, 5, 1), cs3 = (8, 8, 0, 8, 8, 8)
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Connection to multi-objective optimization

Efficient solutions ℰ : A solution x is efficient for 𝒰 if no other solution
dominates it. A solution x dominates y if c(x) ≤ c(y) for all c ∈ 𝒰 , with
at least one inequality being strict.

Theorem

At least one solution of min-max robust optimization for 𝒳 ⊆ {0, 1}n is
neccessarily an efficient solution.

Proof.

If x dominates y then maxc∈𝒰 c(x) ≤ maxc∈𝒰 c(y).
Take x ∈ ℰ with minimum maxc∈𝒰 c(x).

9 / 18



Connection to multi-objective optimization

Efficient solutions ℰ : A solution x is efficient for 𝒰 if no other solution
dominates it. A solution x dominates y if c(x) ≤ c(y) for all c ∈ 𝒰 , with
at least one inequality being strict.

Theorem

At least one solution of min-max robust optimization for 𝒳 ⊆ {0, 1}n is
neccessarily an efficient solution.

Proof.

If x dominates y then maxc∈𝒰 c(x) ≤ maxc∈𝒰 c(y).
Take x ∈ ℰ with minimum maxc∈𝒰 c(x).

9 / 18



Connection to multi-objective optimization

Efficient solutions ℰ : A solution x is efficient for 𝒰 if no other solution
dominates it. A solution x dominates y if c(x) ≤ c(y) for all c ∈ 𝒰 , with
at least one inequality being strict.

Theorem

At least one solution of min-max robust optimization for 𝒳 ⊆ {0, 1}n is
neccessarily an efficient solution.

Proof.

If x dominates y then maxc∈𝒰 c(x) ≤ maxc∈𝒰 c(y).

Take x ∈ ℰ with minimum maxc∈𝒰 c(x).

9 / 18



Connection to multi-objective optimization

Efficient solutions ℰ : A solution x is efficient for 𝒰 if no other solution
dominates it. A solution x dominates y if c(x) ≤ c(y) for all c ∈ 𝒰 , with
at least one inequality being strict.

Theorem

At least one solution of min-max robust optimization for 𝒳 ⊆ {0, 1}n is
neccessarily an efficient solution.

Proof.

If x dominates y then maxc∈𝒰 c(x) ≤ maxc∈𝒰 c(y).
Take x ∈ ℰ with minimum maxc∈𝒰 c(x).

9 / 18



Connection to multi-objective optimization
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Robust Global Minimum Cut

Lemma

If C is an optimal Min-Max cut and D is any other cut in the graph then

w ′(C ) ≤ Kw ′(D).
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Karger’s Contraction Algorithm

Lemma

A cut (A,B) is output by the Contraction Algorithm if and only if no edge
crossing (A,B) is contracted by the algorithm.

Theorem

A particular minimum cut in G is returned by the Contraction Algorithm
with probability at least

(︀n
2

)︀−1
= Ω(n−2).
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Karger-Stein: k-Approximate Minimum Cuts

Lemma

The probability that a particular k-approximate minimum cut survives
contraction to 2k vertices is Ω(

(︀ n
2k

)︀−1
).

Theorem

The number of k-approximate minimum cuts is O((2n)2k) and they can
be found in randomized polynomial time.
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Overview: Complexity
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A general approximation scheme

For constant K there is an FPTAS computing the efficient solutions ℰ .

Theorem

If for any instance I of a robust Min-Max robust optimization problem
on 𝒳 with discrete uncertainty 𝒰 it holds that

1 a lower and upper bound L and U for the optimal value can be
computed in time p(|I |) such that U ≤ q(|I |)L, where p and q are
two polynomials with q non-decreasing and q(|I |) ≥ 1, and

2 there exists and algorithm that finds for I an optimal solution
r(|I |,U), where r is a non-decresing polynomial,

then there exists an FPTAS.
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When do these conditions hold?

Proposition

If a minimization problem is solvable in polynomial time, then for any
instance on a set of k scenarios of Min-Max robust optimization, there
exists a lower and an upper bound L and U computable in polynomial time
such that U ≤ kL.

Proposition

The second condition can be weakend to require an algorithm that is
polynomial in |I | and max(I ) = maxc∈𝒰 ,i ci

Proof.

If there exists c ∈ 𝒰 such that c(i) > U, then xi = 0.
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Overview: Approximation

17 / 18



Thank you!
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