Regret Robustness with Discrete Uncertainty Robust Optimization

Stefan Lendl

Institute of Discrete Mathematics Graz University of Technology

Strict robust optimization (Min-Max): minimize the worst-case cost "Human evaluation" of solutions often:

Strict robust optimization (Min-Max): minimize the worst-case cost "Human evaluation" of solutions often:

- Happens after the scenario is revealed.
- Does not care about the uncertainty before making the decision, or what else could have happend.
- Compares to the best possible decision for the true revealed scenario the regret.

Strict robust optimization (Min-Max): minimize the worst-case cost "Human evaluation" of solutions often:

- Happens after the scenario is revealed.
- Does not care about the uncertainty before making the decision, or what else could have happend.
- Compares to the best possible decision for the true revealed scenario the regret.

Problem: MIN-MAX solution might have terrible regret.

Strict robust optimization (MIN-MAX): minimize the worst-case cost "Human evaluation" of solutions often:

- Happens after the scenario is revealed.
- Does not care about the uncertainty before making the decision, or what else could have happend.
- Compares to the best possible decision for the true revealed scenario the regret.

Problem: MIN-MAX solution might have terrible regret.

Solution: Minimize the worst-case regret.

Regret Robustness: Formal Definition

MIN-MAX REGRET

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x) - \mathsf{opt}(c)$$

where

$$\mathsf{opt}(c) = \min_{x \in \mathcal{X}} c(x)$$

Regret Robustness: Formal Definition

MIN-MAX REGRET

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x) - \mathsf{opt}(c)$$

where

$$\mathsf{opt}(c) = \min_{x \in \mathcal{X}} c(x)$$

We also write

$$r(x,c) = c(x) - \mathsf{opt}(c)$$

and

$$r(x) = \max_{c \in \mathcal{U}} r(x, c)$$

for the regret of x under scenario c and for the worst-case regret of x.

Example: Knapsack

Cash outflows and profits of the investments

i	w_i	p_i^1	p_i^2	p_i^3
1	3	4	3	3
2	5	8	4	6
3	2	5	3	3
4	4	3	2	4
5	5	2	8	2
6	3	4	6	2

1	2	3	Optimal solution
17	10	12	Scenario 1: (1,1,1,0,0,0)
11	17	7	Scenario 2: (0,0,1,0,1,1)
16	9	13	Scenario 3: (0,1,1,1,0,0)
15	12	12	Max-min: (0,1,0,1,0,1)
15	15	11	Min-max regret: (0,1,1,0,1,0)

Computational Complexity: Discrete Uncertainty

number of scenarios K constant

Problems	Constant		
	Min-max	Min-max regret	
SHORTEST PATH SPANNING TREE ASSIGNMENT KNAPSACK MIN CUT MIN S—t CUT	NP-hard, pseudo-poly [65] NP-hard [43], pseudo-poly [3] NP-hard [43] NP-hard, pseudo-poly [43] Polynomial [7] strongly NP-hard [2]	NP-hard, pseudo-poly [65] NP-hard [43], pseudo-poly [3] NP-hard [43] NP-hard, pseudo-poly [43] Polynomial [2] strongly NP-hard [2]	

Computational Complexity: Discrete Uncertainty

number of scenarios K non-constant

Problems	Non-constant	Non-constant		
	Min-max	Min-max regret		
SHORTEST PATH	Strongly NP-hard [43]	Strongly NP-hard [43]		
SPANNING TREE	Strongly NP-hard [43]	Strongly NP-hard [4]		
ASSIGNMENT	Strongly NP-hard [1]	Strongly NP-hard [1]		
KNAPSACK	Strongly NP-hard [43]	Strongly NP-hard [4]		
MIN CUT	Strongly NP-hard [2]	Strongly NP-hard [2]		
MIN $s-t$ CUT	Strongly NP-hard [2]	Strongly NP-hard [2]		

NP-Hardness: Spanning Tree

Theorem

The Min-Max Regret Spanning Tree problem with discrete uncertainty \mathcal{U} is NP-hard, even if the graph is a grid with only two rows and $K = |\mathcal{U}| = 2$.

NP-Hardness: Spanning Tree

Theorem

The Min-Max Regret Spanning Tree problem with discrete uncertainty \mathcal{U} is NP-hard, even if the graph is a grid with only two rows and $K = |\mathcal{U}| = 2$.

Proof.

Reduction from PARTITION.

Theorem

Given a minimization problem P, at least one optimal solution for DISCRETE MIN-MAX REGRET P is necessarily an efficient solution for each $c \in \mathcal{U}$.

Theorem

Given a minimization problem P, at least one optimal solution for DISCRETE MIN-MAX REGRET P is necessarily an efficient solution for each $c \in \mathcal{U}$.

Proof.

If $x \in \mathcal{X}$ dominates $y \in \mathcal{X}$, then $c(x) \leq c(y)$ for each $c \in \mathcal{U}$.

Theorem

Given a minimization problem P, at least one optimal solution for DISCRETE MIN-MAX REGRET P is necessarily an efficient solution for each $c \in \mathcal{U}$.

Proof.

If $x \in \mathcal{X}$ dominates $y \in \mathcal{X}$, then $c(x) \leq c(y)$ for each $c \in \mathcal{U}$. $\Rightarrow r(x) \leq r(y)$.

Theorem

Given a minimization problem P, at least one optimal solution for DISCRETE MIN-MAX REGRET P is necessarily an efficient solution for each $c \in \mathcal{U}$.

Proof.

If $x \in \mathcal{X}$ dominates $y \in \mathcal{X}$, then $c(x) \leq c(y)$ for each $c \in \mathcal{U}$. $\Rightarrow r(x) \leq r(y)$.

Take

$$\min_{x\in\mathcal{E}}r(x).$$

Approximation

Theorem

There exists a K-approximation algorithm for the MIN-MAX ROBUST problem with arbitrary $\mathcal{X} \subseteq \{0,1\}^n$ which requires only solving one instance of the classic linear optimization problem for \mathcal{X} .

The proof is an exercise!

Approximation

Theorem

There exists a K-approximation algorithm for the MIN-MAX ROBUST problem with arbitrary $\mathcal{X} \subseteq \{0,1\}^n$ which requires only solving one instance of the classic linear optimization problem for \mathcal{X} .

The proof is an exercise!

Theorem

If for any instance I of a robust Min-Max Regret robust optimization problem on $\mathcal X$ with discrete uncertainty $\mathcal U$ it holds that

- **1** a lower and upper bound L and U for the optimal value can be computed in time p(|I|) such that $U \leq q(|I|)L$, where p and q are two polynomials with q non-decreasing and $q(|I|) \geq 1$, and
- ② there exists and algorithm that finds for I an optimal solution r(|I|, U), where r is a non-decressing polynomial,

then there exists an FPTAS.

Approximation

Problems	Constant		Non-constant	
	Min-max	Min-max regret	Min-max	Min-max regret
SHORTEST PATH	fptas [61]	fptas [4,3]	Not $\log^{1-\varepsilon} k$ approx. [40]	Not $\log^{1-\varepsilon} k$ approx. [40]
SPANNING TREE	fptas [4,3]	fptas [4,3]	Not $\log^{1-\varepsilon} k$ approx. [40]	Not $\log^{1-\varepsilon} k$ approx. [40]
KNAPSACK	fptas [4]	Non approx. [4]	Non approx. [4]	Non approx. [4]

Thinking Assignment: What else should be robust?

Examples of things that we would like to be robust that we have already seen:

- Cost
- Regret

Thinking Assignment: What else should be robust?

Examples of things that we would like to be robust that we have already seen:

- Cost
- Regret

What other measurable bad properties of an uncertain optimization problem would one like to be robust against?

Not a literature search exercise! Be creative!

Thank you!

