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Solution: Minimize the worst-case regret.
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Regret Robustness: Formal Definition

MIN-MAX REGRET

i — opt(c
R g b —optle)

where
opt(c) = min c(x)
We also write
r(x,c) = c(x) — opt(c)
and

r(x) = max r(x, c)

for the regret of x under scenario ¢ and for the worst-case regret of x.



Example: Knapsack

Cash outflows and profits of the investments

i wi pi p P}

1 3 4 3 3

2 5 8 4 6

2} 2 5 3 3

4 4 3 2 4

5 5 2 8 2

6 3 4 6 2
1 2 3 Optimal solution
17 10 12 Scenario 1: (1,1,1,0,0,0)
11 17 7 Scenario 2: (0,0,1,0,1,1)
16 9 13 Scenario 3: (0,1,1,1,0,0)
15 12 12 Max-min: (0,1,0,1,0,1)
15 15 11 Min-max regret: (0,1,1,0,1,0)




Computational Complexity: Discrete Uncertainty

number of scenarios K constant

Problems

Constant

Min-max

Min-max regret

SHORTEST PATH
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Computational Complexity: Discrete Uncertainty

number of scenarios K non-constant

Problems

Non-constant

Min-max

Min-max regret

SHORTEST PATH
SPANNING TREE
ASSIGNMENT
KNAPSACK

MIN CUT

MIN S—{ cuT

Strongly NP-hard [43]
Strongly NP-hard [43]
Strongly NP-hard [1]
Strongly NP-hard [43]
Strongly NP-hard [2]
Strongly NP-hard [2]

Strongly NP-hard [43]
Strongly NP-hard [4]
Strongly NP-hard [1]
Strongly NP-hard [4]
Strongly NP-hard [2]
Strongly NP-hard [2]
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NP-Hardness: Spanning Tree

Theorem
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Theorem

The MIN-MAX REGRET SPANNING TREE problem with discrete

uncertainty U is NP-hard, even if the graph is a grid with only two rows
and K = [U| = 2.

Proof.
Reduction from PARTITION. DJ
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Theorem

Given a minimization problem P, at least one optimal solution for
DI1SCRETE MIN-MAX REGRET P is necessarily an efficient solution for
eachc e l.

Proof.

If x € X dominates y € X, then ¢(x) < c(y) for each c € U.
= r(x) < r(y).
Take

g 1)




Theorem
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problem with arbitrary X C {0,1}" which requires only solving one
instance of the classic linear optimization problem for X .
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Theorem
If for any instance | of a robust MIN-MAX REGRET robust optimization
problem on X with discrete uncertainty U it holds that

© a lower and upper bound L and U for the optimal value can be
computed in time p(|/|) such that U < q(|/|)L, where p and q are
two polynomials with q non-decreasing and q(|l|) > 1, and

@ there exists and algorithm that finds for | an optimal solution
r(|1], U), where r is a non-decresing polynomial,

then there exists an FPTAS.




Problems Constant Non-constant
Min-max Min-max Min-max Min-max regret
regret

sHoRTEST  fptas [61] fptas [4,3] Not log' “k approx. Not log! “k approx.
PATH [40] [40]

SPANNING  fptas [4,3]  fptas [4,3] Not log' “k approx. Not log' “k approx.
TREE [40] [40]

KNAPSACK  fptas [4] Non approx. Non approx. [4] Non approx. [4]

(4]




Thinking Assignment: What else should be robust?

Examples of things that we would like to be robust that we have already
seen:

o Cost
@ Regret
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Thinking Assignment: What else should be robust?

Examples of things that we would like to be robust that we have already
seen:

o Cost
@ Regret

What other measurable bad properties of
an uncertain optimization problem would
one like to be robust against?

Not a literature search exercise! Be creative!
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