Interval Uncertainties Robust Optimization

Stefan Lendl

Institute of Discrete Mathematics Graz University of Technology

Interval Uncertainties

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Interval Uncertainties

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Often we use different notation:

$$[c^-(e), c^+(e)]$$
 or $[\underline{c}(e), \overline{c}(e)]$

Theorem

The Min-Max robust optimization problem for $\mathcal X$ with interval uncertainties $\mathcal U_I$ can be solved using just one execution of the classic linear optimization problem for $\mathcal X$.

Interval Uncertainties

$$\mathcal{U}_I = \{c^s \colon c^s(e) \in [c(e), c(e) + d(e)] \, \forall e \in E\}$$

Often we use different notation:

$$[c^-(e), c^+(e)]$$
 or $[\underline{c}(e), \overline{c}(e)]$

Theorem

The MIN-MAX robust optimization problem for $\mathcal X$ with interval uncertainties $\mathcal U_I$ can be solved using just one execution of the classic linear optimization problem for $\mathcal X$.

Proof.

Solve an instance of the classic linear optimization problem for $\mathcal X$ with linear costs g given by the upper bounds g(e)=c(e)+d(e).

Interval Uncertainties and Regret

MIN-MAX REGRET

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x) - \mathsf{opt}(c)$$

where

$$\mathsf{opt}(c) = \min_{x \in \mathcal{X}} c(x)$$

Interval Uncertainties and Regret

MIN-MAX REGRET

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}} c(x) - \mathsf{opt}(c)$$

where

$$opt(c) = \min_{x \in \mathcal{X}} c(x)$$

Lemma

For the Min-Max Regret problem the worst case scenario $c^{-(x)} \in \mathcal{U}_I$ is

$$c^{-(x)}(e) = \begin{cases} c^{+}(e) & \text{if } x_{e} = 1\\ c^{-}(e) & \text{if } x_{e} = 0. \end{cases}$$

Lemma

For the Min-Max Regret problem the worst case scenario $c^{-(x)} \in \mathcal{U}_I$ for any solution x is

$$c^{-(x)}(e) = \begin{cases} c^{+}(e) & \text{if } x_{e} = 1\\ c^{-}(e) & \text{if } x_{e} = 0. \end{cases}$$

Proof.

Let
$$I(x) = \{e : x_e = 1\}.$$

$$r(x,c) = c(I(x)) - c(I(x^*(c))) = c(I(x) \setminus I(x^*(c)) - c(I(x^*(c)) \setminus I(x))$$

$$\leq c^+(I(x) \setminus I(x^*(c)) - c^-(I(x^*(c)) \setminus I(x)))$$

$$= c^{-(x)}(x) - c^{-(x)}(x^*(c))$$

$$\leq c^{-(x)}(x) - c^{-(x)}(x^*(c^{-(x)}(x)))$$

Properties of the optimal solution

Theorem

For the Min-Max Regret problem for \mathcal{X} the optimal solution x^* corresponds to an optimal solution for its most favorable scenario $c^{+(x^*)}$ defined as

$$c^{+(x)}(e) = \begin{cases} c^{+}(e) & \text{if } x_e = 0 \\ c^{-}(e) & \text{if } x_e = 1. \end{cases}$$

Properties of the optimal solution

Theorem

For the Min-Max Regret problem for \mathcal{X} the optimal solution x^* corresponds to an optimal solution for its most favorable scenario $c^{+(x^*)}$ defined as

$$c^{+(x)}(e) = \begin{cases} c^{+}(e) & \text{if } x_{e} = 0 \\ c^{-}(e) & \text{if } x_{e} = 1. \end{cases}$$

We call an interval $[a, a] = \{a\}$ degenerate.

Corollary

If the number of nondegenerate intervals in \mathcal{U}_l is d, the Min-Max Regret robust optimization problem for \mathcal{X} can be solved using 2^d calls to the classic linear optimization problem for \mathcal{X} .

The proof is an exercise!

Approximation

Theorem

Given an instance of MIN-MAX REGRET for $\mathcal X$ and let x^* be its optimal solution. Let $c'(e) = \frac{1}{2}(c^-(e) + c^+(e))$ and x' the optimal solution to the linear optimization problem for $\mathcal X$ with respect to c'. Then for the regret of x' it holds that $r(x') \leq 2r(x^*)$.

Approximation

Theorem

Given an instance of MIN-MAX REGRET for $\mathcal X$ and let x^* be its optimal solution. Let $c'(e) = \frac{1}{2}(c^-(e) + c^+(e))$ and x' the optimal solution to the linear optimization problem for $\mathcal X$ with respect to c'. Then for the regret of x' it holds that $r(x') \leq 2r(x^*)$.

Lemma

Let $X, Y \in \mathcal{F}$. Then

$$r(Y) \ge c^+(Y \setminus X) - c^-(X \setminus Y) \tag{1}$$

$$r(Y) \le r(X) + c^{+}(Y \setminus X) - c^{-}(X \setminus Y) \tag{2}$$

Computational Complexity: Interval Uncertainty

Problems	Min-max regret
SHORTEST PATH	Strongly NP-hard [18]
SPANNING TREE	Strongly NP-hard [18]
ASSIGNMENT	Strongly NP-hard [1]
KNAPSACK	<i>NP</i> -hard
MIN CUT	Polynomial [2]
MIN $S-t$ CUT	Strongly NP-hard [2]

Theorem

The Min-Max Regret Spanning Tree problem with interval uncertainty \mathcal{U}_l is NP-hard.

Theorem

The Min-Max Regret Spanning Tree problem with interval uncertainty \mathcal{U}_l is NP-hard.

Theorem

The Min-Max Regret Spanning Tree problem with interval uncertainty \mathcal{U}_l is NP-hard.

EXACT COVER BY 3-SETS

Given: $q \in \mathbb{N}$, finite set B, |B| = 3q, family T of 3-element subsets of B. **Question:** Does T contain an exact cover for B, i.e. $T' \subseteq T$ such that every element of B occurs in exactly one member of T'?

Theorem

The Min-Max Regret Spanning Tree problem with interval uncertainty \mathcal{U}_l is NP-hard.

EXACT COVER BY 3-SETS

Given: $q \in \mathbb{N}$, finite set B, |B| = 3q, family T of 3-element subsets of B. **Question:** Does T contain an exact cover for B, i.e. $T' \subseteq T$ such that every element of B occurs in exactly one member of T'?

Auxiliary Problem

Given: Connected graph G'.

Task: Find the maximum number of connected components that can be obtained from G' by removing the edges of some spanning tree in G'.

Thank you!

