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Proof.
Solve an instance of the classic linear optimization problem for X’ with
linear costs g given by the upper bounds g(e) = c(e) + d(e). O
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Lemma

For the MIN-MAX REGRET problem the worst case scenario ¢~ ) € U,
for any solution x is

oo = {7 et

Proof.
Let /(x) = {e: xe = 1}.

r(x,c) = c(I(x)) = c(I(x*(c))) = e(I(x) \ 1(x*(¢)) = c(I(x*(€)) \ I(x))

< 1)\ 1(x*(€)) — e~ (I(x* () \ I(x)))
= ¢ M(x) = =P (x*(c))
< ¢ (x) = P (x* (=M (x)))
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Theorem

For the MIN-MAX REGRET problem for X the optimal solution x*
corresponds to an optimal solution for its most favorable scenario c¢t(<*)

defined as
ct¥(e) = c*(e) ifxe=0
c (e) ifxe=1.

We call an interval [a, a] = {a} degenerate.

Corollary

If the number of nondegenerate intervals in U, is d, the MIN-MAX
REGRET robust optimization problem for X can be solved using 29 calls
to the classic linear optimization problem for X .

The proof is an exercise!
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Given an instance of MIN-MAX REGRET for X and let x* be its optimal
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linear optimization problem for X with respect to c¢’. Then for the regret
of x" it holds that r(x") < 2r(x*).
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Lemma
Let X,Y € F. Then

r(Y) = c"(Y\X)—c (X \Y) (1)

r(Y) < r(X)+ (YA X) = (X\Y) (2)




Computational Complexity: Interval Uncertainty

Problems Min-max regret
SHORTEST PATH Strongly NP-hard [18]
SPANNING TREE Strongly NP-hard [18]
ASSIGNMENT Strongly NP-hard [1]
KNAPSACK NP-hard

MIN CUT Polynomial [2]

MIN S—t cuT Strongly NP-hard [2]
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AUXILIARY PROBLEM

Given: Connected graph G'.

Task: Find the maximum number of connected components that can be
obtained from G’ by removing the edges of some spanning tree in G’.






