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Interval Uncertainties

𝒰I = {cs : cs(e) ∈ [c(e), c(e) + d(e)]∀e ∈ E}

Often we use different notation:

[c−(e), c+(e)] or [c(e), c̄(e)]

Theorem

The Min-Max robust optimization problem for 𝒳 with interval
uncertainties 𝒰I can be solved using just one execution of the classic linear
optimization problem for 𝒳 .

Proof.

Solve an instance of the classic linear optimization problem for 𝒳 with
linear costs g given by the upper bounds g(e) = c(e) + d(e).
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Interval Uncertainties and Regret

Min-Max Regret
min
x∈𝒳

max
c∈𝒰

c(x) − opt(c)

where
opt(c) = min

x∈𝒳
c(x)

Lemma

For the Min-Max Regret problem the worst case scenario c−(x) ∈ 𝒰I is

c−(x)(e) =

{︃
c+(e) if xe = 1

c−(e) if xe = 0.
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Lemma

For the Min-Max Regret problem the worst case scenario c−(x) ∈ 𝒰I

for any solution x is

c−(x)(e) =

{︃
c+(e) if xe = 1

c−(e) if xe = 0.

Proof.

Let I (x) = {e : xe = 1}.

r(x , c) = c(I (x)) − c(I (x*(c))) = c(I (x) ∖ I (x*(c)) − c(I (x*(c)) ∖ I (x))

≤ c+(I (x) ∖ I (x*(c)) − c−(I (x*(c)) ∖ I (x)))

= c−(x)(x) − c−(x)(x*(c))

≤ c−(x)(x) − c−(x)(x*(c−(x)(x)))
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Properties of the optimal solution

Theorem

For the Min-Max Regret problem for 𝒳 the optimal solution x*

corresponds to an optimal solution for its most favorable scenario c+(x*)

defined as

c+(x)(e) =

{︃
c+(e) if xe = 0

c−(e) if xe = 1.

We call an interval [a, a] = {a} degenerate.

Corollary

If the number of nondegenerate intervals in 𝒰I is d, the Min-Max
Regret robust optimization problem for 𝒳 can be solved using 2d calls
to the classic linear optimization problem for 𝒳 .

The proof is an exercise!
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Approximation

Theorem

Given an instance of Min-Max Regret for 𝒳 and let x* be its optimal
solution. Let c ′(e) = 1

2(c−(e) + c+(e)) and x ′ the optimal solution to the
linear optimization problem for 𝒳 with respect to c ′. Then for the regret
of x ′ it holds that r(x ′) ≤ 2r(x*).

Lemma

Let X ,Y ∈ ℱ . Then

r(Y ) ≥ c+(Y ∖ X ) − c−(X ∖ Y ) (1)

r(Y ) ≤ r(X ) + c+(Y ∖ X ) − c−(X ∖ Y ) (2)
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Computational Complexity: Interval Uncertainty
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NP-Hardness: Spanning Tree

Theorem

The Min-Max Regret Spanning Tree problem with interval
uncertainty 𝒰I is NP-hard.

Exact Cover by 3-Sets
Given: q ∈ N, finite set B, |B| = 3q, family T of 3-element subsets of B.
Question: Does T contain an exact cover for B, i.e. T ′ ⊆ T such that
every element of B occurs in exactly one memeber of T ′?

Auxiliary Problem
Given: Connected graph G ′.
Task: Find the maximum number of connected components that can be
obtained from G ′ by removing the edges of some spanning tree in G ′.
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Thank you!
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