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Budgeted Interval Uncertainties

Classic interval uncertainty:

𝒰I = {cs : cse ∈ [ĉe , ĉe + de ]∀e ∈ E}

(Discrete) Budgeted interval uncertainty:

𝒰Γ
I = {cs : cse ∈ [ĉe , ĉe + 𝛿ede ], 𝛿e ∈ {0, 1}∀e ∈ E ,

∑︁
e∈E

𝛿e ≤ Γ}

(Continous) Budgeted interval uncertainty:

𝒰c,Γ
I = {cs : cse ∈ [ĉe , ĉe + 𝛿e ], 0 ≤ 𝛿e ≤ de∀e ∈ E ,

∑︁
e∈E

𝛿e ≤ Γ}
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Algorithm Based on Nominal Problem

Theorem

The problem Min-Max Robust Optimization problem with discrete
budgeted uncertainty,

min
x∈𝒳

max
c∈𝒰Γ

I

c(x)

can be solved by solving n + 1 nominal problems with respect to 𝒳 .

Proof: Dual of adversarial problem and mathematical insights.
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Algorithm Based on Nominal Problem

Theorem

The problem Min-Max Robust Optimization problem with continous
budgeted uncertainty,

min
x∈𝒳

max
c∈𝒰c,Γ

I

c(x)

can be solved by solving 2 nominal problems with respect to 𝒳 .

Proof: Dual of adversarial problem and mathematical insights.
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Locally Budgeted Uncertainty

𝒰P,Γ
I = {c = ĉ + 𝛿 : 0 ≤ 𝛿e ≤ de∀e ∈ E ,

∑︁
i∈Pj

𝛿e ≤ Γj∀j ∈ [K ]}

where P1 ∪ · · · ∪ PK = E is a partition of E into regions.

What are regions?

Periods in multi-period problems (weeks, months)

Geographical regions

Types of roads

Asset classes or sectors
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Overview of Computational Complexity

K number of regions

Problem K = O(1) arbitrary K

Unconstrained P P
Selection P P

Knapsack weakly NP-hard weakly NP-hard
Repr. Selection P strongly NP-hard
Spanning Tree P strongly NP-hard

s-t-min-cut P strongly NP-hard
Shortest Path P strongly NP-hard
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Compact MIP Formulation

Adverserial Problem

max
∑︁
i∈E

(c i + 𝛿i )xi

s.t.
∑︁
i∈Pj

𝛿i ≤ Γj ∀j ∈ [K ]

𝛿i ≤ di ∀i ∈ E

𝛿i ≥ 0 ∀i ∈ E
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Compact MIP Formulation

LP Duality:

min
∑︁
j∈[K ]

⎛⎝Γj𝜋j +
∑︁
i∈Pj

di𝜌i +
∑︁
i∈Pj

c ixi

⎞⎠
s.t. 𝜋j + 𝜌i ≥ xi ∀j ∈ [K ], i ∈ Pj

𝜋j ≥ 0 ∀j ∈ [K ]

𝜌i ≥ 0 ∀i ∈ E
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Compact MIP Formulation

Compact MIP:
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Constant Number of Regions

Theorem

The robust problem with locally budgeted uncertainty can be decomposed
into 2K subproblems of nominal typ, where K is the number of regions.

min
∑︁
j∈[K ]

⎛⎝Γj𝜋j +
∑︁
i∈Pj

di𝜌i +
∑︁
i∈Pj

c ixi

⎞⎠
s.t. 𝜋j + 𝜌i ≥ xi ∀j ∈ [K ], i ∈ Pj

𝜋j ≥ 0 ∀j ∈ [K ]

𝜌i ≥ 0 ∀i ∈ E

xxx ∈ 𝒳

Lemma

There is an optimal solution, where 𝜋j ∈ {0, 1} for all j ∈ [K ].
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Unbounded Number of Regions – Hardness

Robust Representative Selection Problem

Theorem

The robust representative selection problem with locally budgeted
uncertainty and arbitrary K is NP-hard, even every part contains only two
candidates and for the regions it holds that |Pj | ≤ 3 for all j ∈ [K ].
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Unbounded Number of Regions – Hardness

Reduction from Vertex Cover:

1
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3i

ccc = 000,ddd = 111,ΓΓΓ = 111
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Unbounded Number of Regions – Hardness

Theorem

The robust representative selection problem with locally budgeted
uncertainty and arbitrary K is NP-hard, even every part contains only two
candidates and for the regions it holds that |Pj | ≤ 3 for all j ∈ [K ].

Theorem

Assuming ETH, there is no O*(2o(K)) time algorithm for the robust
representative selection problem with locally budgeted uncertainty.
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Unbounded Number of Regions – Selection

Theorem

The robust selection problem with locally budgeted unceratainty can be
solved in O(n log n + pn) time.

Proof ideas:

Precompute for each region j values fj(pj): the slection problem with
continous budgeted uncertainty in region j .

Solve

T (K ′, p′) := min
∑︁
j∈[K ′]

fj(pj)

s.t.
∑︁
j∈[K ′]

pj = p′

pj ∈ N0 ∀j ∈ [K ′].

using dynamic programming.
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Thank you!
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