Budgeted Interval Uncertainties and Extensions Robust Optimization

Stefan Lendl

Institute of Discrete Mathematics Graz University of Technology

Budgeted Interval Uncertainties

Classic interval uncertainty:

$$\mathcal{U}_I = \{c^s \colon c_e^s \in [\hat{c}_e, \hat{c}_e + d_e] \, \forall e \in E\}$$

Budgeted Interval Uncertainties

Classic interval uncertainty:

$$\mathcal{U}_I = \{c^s \colon c_e^s \in [\hat{c}_e, \hat{c}_e + d_e] \, \forall e \in E\}$$

(Discrete) Budgeted interval uncertainty:

$$\mathcal{U}_{I}^{\Gamma} = \{c^{s} \colon c_{e}^{s} \in [\hat{c}_{e}, \hat{c}_{e} + \delta_{e}d_{e}], \delta_{e} \in \{0, 1\} \forall e \in E, \sum_{e \in E} \delta_{e} \leq \Gamma\}$$

Budgeted Interval Uncertainties

Classic interval uncertainty:

$$\mathcal{U}_I = \{c^s \colon c_e^s \in [\hat{c}_e, \hat{c}_e + d_e] \, \forall e \in E\}$$

(Discrete) Budgeted interval uncertainty:

$$\mathcal{U}_{I}^{\Gamma} = \{c^{s} : c_{e}^{s} \in [\hat{c}_{e}, \hat{c}_{e} + \delta_{e}d_{e}], \delta_{e} \in \{0, 1\} \forall e \in E, \sum_{e \in F} \delta_{e} \leq \Gamma\}$$

(Continous) Budgeted interval uncertainty:

$$\mathcal{U}_{I}^{c,\Gamma} = \{c^{s} : c_{e}^{s} \in [\hat{c}_{e}, \hat{c}_{e} + \delta_{e}], 0 \leq \delta_{e} \leq d_{e} \forall e \in E, \sum_{e \in E} \delta_{e} \leq \Gamma\}$$

Theorem

The problem Min-Max Robust Optimization problem with discrete budgeted uncertainty,

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{l}^{\Gamma}} c(x)$$

can be solved by solving n+1 nominal problems with respect to \mathcal{X} .

Theorem

The problem Min-Max Robust Optimization problem with discrete budgeted uncertainty,

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{l}^{\Gamma}} c(x)$$

can be solved by solving n+1 nominal problems with respect to \mathcal{X} .

Proof: Dual of adversarial problem and mathematical insights.

Theorem

The problem MIN-MAX ROBUST OPTIMIZATION problem with continous budgeted uncertainty,

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{l}^{c,\Gamma}} c(x)$$

can be solved by solving 2 nominal problems with respect to \mathcal{X} .

Theorem

The problem Min-Max Robust Optimization problem with continous budgeted uncertainty,

$$\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{l}^{c,\Gamma}} c(x)$$

can be solved by solving 2 nominal problems with respect to \mathcal{X} .

Proof: Dual of adversarial problem and mathematical insights.

Locally Budgeted Uncertainty

$$\mathcal{U}_{I}^{P,\Gamma} = \{c = \hat{c} + \delta \colon 0 \leq \delta_{e} \leq d_{e} \forall e \in E, \sum_{i \in P_{j}} \delta_{e} \leq \Gamma_{j} \forall j \in [K]\}$$

where $P_1 \cup \cdots \cup P_K = E$ is a partition of E into regions.

What are regions?

- Periods in multi-period problems (weeks, months)
- Geographical regions
- Types of roads
- Asset classes or sectors

Overview of Computational Complexity

K number of regions

Problem	K = O(1)	arbitrary K
Unconstrained	Р	Р
Selection	P	Р
Knapsack	weakly NP-hard	weakly NP-hard
Repr. Selection	Р	strongly NP-hard
Spanning Tree	Р	strongly NP-hard
<i>s-t</i> -min-cut	Р	strongly NP-hard
Shortest Path	Р	strongly NP-hard

Compact MIP Formulation

Adverserial Problem

$$\max \sum_{i \in E} (\underline{c}_i + \delta_i) x_i$$
s.t.
$$\sum_{i \in P_j} \delta_i \le \Gamma_j \qquad \forall j \in [K]$$

$$\delta_i \le d_i \qquad \forall i \in E$$

$$\delta_i \ge 0 \qquad \forall i \in E$$

Compact MIP Formulation

LP Duality:

$$\min \sum_{j \in [K]} \left(\Gamma_j \pi_j + \sum_{i \in P_j} d_i \rho_i + \sum_{i \in P_j} \underline{c}_i x_i \right)$$
s.t. $\pi_j + \rho_i \ge x_i$ $\forall j \in [K], i \in P_j$

$$\pi_j \ge 0 \qquad \forall j \in [K]$$

$$\rho_i \ge 0 \qquad \forall i \in E$$

Compact MIP Formulation

Compact MIP:

$$\min \sum_{j \in [K]} \left(\Gamma_{j} \pi_{j} + \sum_{i \in P_{j}} d_{i} \rho_{i} + \sum_{i \in P_{j}} \underline{c}_{i} x_{i} \right)$$
s.t. $\pi_{j} + \rho_{i} \geq x_{i}$ $\forall j \in [K], i \in P_{j}$

$$\pi_{j} \geq 0 \qquad \forall j \in [K]$$

$$\rho_{i} \geq 0 \qquad \forall i \in E$$

$$\mathbf{x} \in \mathcal{X}$$

Constant Number of Regions

Theorem

The robust problem with locally budgeted uncertainty can be decomposed into 2^K subproblems of nominal typ, where K is the number of regions.

Constant Number of Regions

Theorem

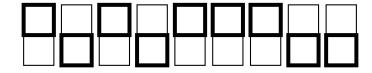
The robust problem with locally budgeted uncertainty can be decomposed into 2^K subproblems of nominal typ, where K is the number of regions.

$$\begin{aligned} & \min \ \sum_{j \in [K]} \left(\Gamma_j \pi_j + \sum_{i \in P_j} d_i \rho_i + \sum_{i \in P_j} \underline{c}_i x_i \right) \\ & \text{s.t.} \ \pi_j + \rho_i \geq x_i & \forall j \in [K], i \in P_j \\ & \pi_j \geq 0 & \forall j \in [K] \\ & \rho_i \geq 0 & \forall i \in E \end{aligned}$$

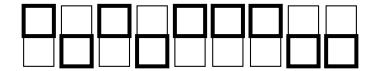
Lemma

There is an optimal solution, where $\pi_j \in \{0,1\}$ for all $j \in [K]$.

Robust Representative Selection Problem



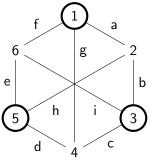
Robust Representative Selection Problem



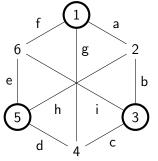
Theorem

The robust representative selection problem with locally budgeted uncertainty and arbitrary K is NP-hard, even every part contains only two candidates and for the regions it holds that $|P_j| \leq 3$ for all $j \in [K]$.

Reduction from Vertex Cover:



Reduction from Vertex Cover:



$$\underline{c} = 0, d = 1, \Gamma = 1$$

Theorem

The robust representative selection problem with locally budgeted uncertainty and arbitrary K is NP-hard, even every part contains only two candidates and for the regions it holds that $|P_i| \leq 3$ for all $j \in [K]$.

Theorem

Assuming ETH, there is no $O^*(2^{o(K)})$ time algorithm for the robust representative selection problem with locally budgeted uncertainty.

Unbounded Number of Regions – Selection

Theorem

The robust selection problem with locally budgeted unceratainty can be solved in $O(n \log n + pn)$ time.

Proof ideas:

- Precompute for each region j values $f_j(p_j)$: the slection problem with continous budgeted uncertainty in region j.
- Solve

$$T(K', p') := \min \sum_{j \in [K']} f_j(p_j)$$
s.t. $\sum_{j \in [K']} p_j = p'$
 $p_j \in \mathbb{N}_0 \qquad \forall j \in [K'].$

using dynamic programming.

Thank you!

