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The Rauzy fractal



The Rauzy fractal

An in�nite word:

(un)n≥0 = 1213121121312121312112 · · ·

How to interpret it?

The Rauzy fractal:

R = {π ◦ P(u0 · · · un−1) | n ∈ N}

Subtiles:

R(i) = {π ◦ P(u0 · · · un−1) | n ∈ N, un = i}
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Substitutions

Let A be a �nite alphabet. A substitution is an endomorphism of the free
monoid A∗, i.e.,

σ : A∗ → A∗, σ(uv) = σ(u)σ(v), u, v ∈ A∗.

We can naturally associate to a substitution σ an incidence matrix Mσ

with entries (Mσ)a,b = |σ(b)|a, for all a, b ∈ A.

A substitution σ is primitive if there exists an integer k such that, for
every pair (a, b) ∈ A2, the word σk(a) contains at least one occurrence
of the letter b.



Pisot substitutions

De�nition
An algebraic integer α > 1 is a Pisot number if all its algebraic
conjugates α′ other than α itself satisfy |α′| < 1.

De�nition
A substitution σ is a Pisot substitution if the dominant eigenvalue of Mσ

is a Pisot number. We say that a primitive substitution σ is irreducible if
the characteristic polynomial of Mσ is irreducible over Q. Otherwise we
call σ reducible.

The pre�x-su�x automaton associated to the substitution σ is the
directed graph with

V = A, E = {(a, b) ∈ A2 : σ(a) = pbs, for some p, s ∈ A∗, b ∈ A}.

We denote an edge a→p b.
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Pisot substitutions

• Tribonacci substitution: σ(1) = 12, σ(2) = 13, σ(3) = 1.

Mσ =

1 1 1
1 0 0
0 1 0

 , det(xI −Mσ) = x3 − x2 − x − 1.

We have a real dominant eigenvalue β > 1, and two complex
conjugate roots β′, β̄′ such that |β′| < 1. This is an example of
unimodular irreducible Pisot substitution.



Pisot substitutions

• Non-unit Pisot substitution: σ(1) = 1121, σ(2) = 11.

Mσ =

(
3 2
1 0

)
, det(xI −Mσ) = x2 − 3x − 2.

The dominant eigenvalue is α = 3+
√
17

2
, which is non-unit Pisot.



Symbolic dynamical systems

Tribonacci substitution: σ(1) = 12, σ(2) = 13, σ(3) = 1.

σ(1) = 12

The main aim is to study the symbolic dynamical system (Xσ,S)
generated by a primitive substitution σ:

Xσ = {Snu | n ∈ N}

where u ∈ AN is a �xed point of σ and S is the shift.

Rauzy, 1982: For the Tribonacci substitution (Xσ, S) is
measure-theoretically isomorphic to a translation on the torus T2.
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The main aim is to study the symbolic dynamical system (Xσ,S)
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Symbolic dynamical systems

Tribonacci substitution: σ(1) = 12, σ(2) = 13, σ(3) = 1.

σ3(1) = 1213121

The main aim is to study the symbolic dynamical system (Xσ,S)
generated by a primitive substitution σ:

Xσ = {Snu | n ∈ N}

where u ∈ AN is a �xed point of σ and S is the shift.

Rauzy, 1982: For the Tribonacci substitution (Xσ, S) is
measure-theoretically isomorphic to a translation on the torus T2.



Symbolic dynamical systems

Tribonacci substitution: σ(1) = 12, σ(2) = 13, σ(3) = 1.

σ4(1) = 1213121121312

The main aim is to study the symbolic dynamical system (Xσ,S)
generated by a primitive substitution σ:

Xσ = {Snu | n ∈ N}

where u ∈ AN is a �xed point of σ and S is the shift.

Rauzy, 1982: For the Tribonacci substitution (Xσ, S) is
measure-theoretically isomorphic to a translation on the torus T2.
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Rauzy, 1982: For the Tribonacci substitution (Xσ, S) is
measure-theoretically isomorphic to a translation on the torus T2.
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β-expansions

Let β > 1 be a real number. Consider the transformation

Tβ : [0, 1) −→ [0, 1), Tβ(x) = βx − bβxc.

Every x ∈ [0, 1) has a β-expansion:

x =
∑
k≥1

dkβ
−k ←→ (x)β = .d1d2 · · ·

where dk = bβT k−1
β (x)c ∈ {0, 1, . . . , dβe − 1}.

The sequences (dk)k≥1 such that
∑

k≥1 dkβ
−k is the β-expansion of

some x ∈ [0, 1) are called admissible.

Set of admissible sequences forms a subshift: a closed shift-invariant set
X ⊆ AN, characterizable by a set of forbidden words.
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Golden ratio subshift

Consider the golden ratio β = 1+
√
5

2
, which is solution of the polynomial

equation x2 − x − 1 = 0.

(1/2)β = .0100, (3−
√
5)β = .1001, (1)β = .11

0 11/β

Admissibility is governed by d∗β(1) = .(10)ω. Thus the subshift is
equivalent to all those in�nite words without any occurrence of two
consecutive 1s.
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Back to Rauzy

• Consider the unit Pisot root β of x3 − x2 − x − 1 and let β′ be one
of the complex Galois conjugates of β.

• Take the set of β-integers, i.e., all those x whose β-expansion
contains only non-negative powers of β:

x =
m∑
i=0

diβ
i ∈ Zβ ←→ (x)β = dmdm−1 · · · d0.

• Embed this set in a suitable contracting space: substitute β′ to
each β.

R =
{∑

i≥0

di (β
′)i : ∀i , di ∈ {0, 1}, di+2di+1di 6= 111

}
.
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Properties of Rauzy tiles

• R is compact with non-zero measure.

• R is the closure of its interior and its
fractal boundary has zero measure.

• R satis�es a graph directed iterated

function system.

• R induces two di�erent tilings of C.



Dumont-Thomas numeration

Consider the function δ : A∗ → Q(α) de�ned by

δ(p) = 〈P(p), vα〉,

where vα is a left eigenvector of Mσ associated to α.

Theorem (Dumont, Thomas)
Let σ be a primitive substitution on the alphabet A. Let us �x a ∈ A.
For every real number x ∈ [0, δ(a)), there exists a unique (σ, a)-admissible
walk (pi , ai , si )i≥1 in the pre�x-su�x automaton such that

x =
∑
i≥1

δ(pi )α
−i .

The set of digits D = {δ(p) | p pre�x of σ} is �nite and depends on vα
and on the pre�x-su�x automaton.



Dumont-Thomas numeration

Set X =
⋃

a∈A
(
[0, δ(a))× {a}

)
and consider the map

Tσ : X → X , (x , a) 7→
(
αx − δ(p), b

)
.

For x ∈ R+ we have a Dumont-Thomas expansion

(x)σ,i = δ(pn) · · · δ(p0).δ(p−1)δ(p−2) · · ·

• (σ, i)-integers: ⋃
n≥0

αn · T−nσ (0, i).

• (σ, i)-fractional parts:

V · Z[α−1] ∩ [0, δ(i)),

where V = 〈δ(1), . . . , δ(n)〉Z.
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A bit of Algebraic Number Theory

Let K be a number �eld.

Ring of Integers

OK = {a ∈ K | a integral over Z} → Dedekind domain

Prime ideal factorization

a ∈ K∗, aOK =
∏
p

pvp(a).

p-adic valuation
Every prime ideal p of OK yields a p-adic valuation vp over K :

vp : K∗ −→ Z
a 7−→ vp(a)
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Local �elds

Let K be a number �eld.

Let Kp be the completion of K w.r.t. |·|p.
• If p | ∞, the abs. value |·|p is de�ned by the Galois embeddings
τ : K → C. Kp

∼= R or C, depending whether p is real or complex.

• If p is �nite, we de�ne

|a|p = N(p)−vp(a),

where N(p) = pf is the norm of the ideal p, where f is the inertia
degree of p lying over (p), and vp the p-adic valuation. Kp is an
extension of degree ep|(p) · fp|(p) of Qp.
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Local �elds

Kp completion of K w.r.t. |·|p:

p | ∞, Kp
∼= R or C

p -∞, Kp
∼= �nite extension of Qp

These are all the possible completions!



Representation Space

Consider the number �eld K = Q(α).

The representation space for the substitution σ is de�ned as

Kσ = K ′∞ ×
∏
p|(α)

Kp =
∏
p∈Sα

Kp,

We have the diagonal embedding

Φ : Q(α) −→ Kσ

ξ 7−→
∏
p∈Sα

ξ

Lemma
Let µ be the Haar measure on Kσ. Then, for a measurable set M ⊂ Kσ,

µ(α ·M) = α−1 · µ(M).
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Tiles

Set of (σ, i)-integers:

Zσ,i :=
⋃
n≥0

αn · T−nσ (0, i).

Projecting by Φ into the representation space:

• Subtiles of the substitution:

Tσ(i) = Φ(Zσ,i ).

• Central tile:
Tσ =

⋃
i∈A

Tσ(i).
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Graph-directed Iterated Function System

The subtiles Tσ(i) are solutions of the following graph-directed iterated
function system:

∀ i ∈ A, Tσ(i) =
⋃
j

p−→i

αTσ(j) + Φ(δ(p)).

Furthermore this union is measure disjoint.

Tribonacci substitution:

Tσ(1) = αTσ(1) ∪ αTσ(2) ∪ αTσ(3),

Tσ(2) = αTσ(1) + Φ(δ(1)),

Tσ(3) = αTσ(2) + Φ(δ(1)).
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Non-unit tiles properties

• Tσ is compact with non-zero Haar measure.

• Tσ is the closure of its interior.

• The boundary ∂Tσ has zero Haar measure.

• The unions in the GIFS are measure-disjoint.



An example

Consider the non-unit Pisot substitution σ(1) = 152, σ(2) = 13,

Mσ =

(
5 3
1 0

)
, det(xI −Mσ) = x2 − 5x − 3.

Pisot root: α = 5+
√
37

2
.

(3) = (α)︸︷︷︸
p1

(5− α)︸ ︷︷ ︸
p2

⇒ Kp1
∼= Q3.

Representation space: Kσ = R×Q3.

Φ : Q(α) −→ R×Q3

a0 + a1α 7−→ (a0 + a1ᾱ, a0 + a1α)
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Tσ ⊂ R× Z3

Tσ(2) = Tδ(15)., Tσ(1) = Tσ \ Tσ(2).
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Tilings

Translation set:

Γ = {(Φ(x), i) ∈ Kσ ×A | x ∈ V · Z[α−1] ∩ [0, δ(i))}

Γ is a Delone set, i.e., uniformly discrete and relatively dense.

Theorem (Thuswaldner, M.)
The collection {Tσ(i) + γ | (γ, i) ∈ Γ} forms a self-replicating multiple

tiling of Kσ.



Tiling conditions

Two important concepts:

• Exclusivity of a point of a tile.

• Geometric property (F) ↔ Translation set has �nite DT expansion.

Lemma
The substitution σ satis�es the geometric property (F) if and only if 0 is
an exclusive inner point of the central tile Tσ.

Theorem (Thuswaldner, M.)
Let σ be an irreducible Pisot substitution. If σ satis�es the geometric
property (F), the self-replicating multiple tiling {Tσ(i) + γ | (γ, i) ∈ Γ} is
a tiling.
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R
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Q3



Tilings

Tiling associated to σ(1) = 152, σ(2) = 13, with translation set.

R

Q3



Applications

• Study of properties of numeration systems (for example purely
periodicity of β-expansions).

• Study of the substitution dynamical system (Xσ, S).

Pisot conjecture

• Every unimodular irreducible Pisot substitution σ induces a lattice
tiling and a self-replicating tiling of its representation space.

• (Xσ, S) has pure discrete spectrum or, equivalently, is
measure-theoretically isomorphic to a translation on the torus Tn−1.
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Short Summary

• Every substitution σ generates a numeration system.

• We de�ne a suitable contracting representation space Kσ.

• We embed in Kσ the σ-integers and the σ-fractional parts obtaining
respectively the central tile and a translation set.

• We obtain a multiple tiling and tiling conditions.
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Thanks for the attention!


