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Overview

@ Fractals and Numeration.
® Main differences when escaping unimodularity and irreducibility.

©® New developments and perspectives.



1. Fractals and Numeration
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Figure : Tg for 8> = B+ 1.

Beta numeration

Let 8 > 1 be a Pisot number. Define

Ts:[0,1) — [0,1)
x = fx — |Bx]

Every real x € [0,1] has a 3-expansion:
(X)ﬁ = .d1d2d3 e
with d; € A=1{0,1,...,[8] —1}.

([0,1), Tg) is conjugate to a either sofic or
of finite type subshift, the admissibility
depending on (1)g.
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Substitutions and beta numeration

Key words: unit, non-unit, irreducible, reducible. ..

Reducible: ~ #{T}(1): k > 1} > deg(8) = d

Example: § smallest Pisot number, (1)g = .10001

1—12,2—3,3—4,4—5,5—1

op
10001
10000
M,=]0 10 0 0 fF(X)g(X)=(X3 =X —-1)(X2 =X +1)
00100
00010



Geometrical representation

Consider the number field K = Q(/3) and the finite set of places
S=5.,U{p:p|(B)}. The representation space is

Ks = Koo x ] Ko =[] %o
pI(8) pes
where
e Ko =K®gRX=R"x C®.
e K, finite extension of Qp, for p | (p).



Geometrical representation

Consider the number field K = Q(/3) and the finite set of places
S=5.,U{p:p|(B)}. The representation space is

Ks = Koo x ] Ko =[] %o
p1(8) pES

where
e Ko =K@gR=R"x C*.
e K, finite extension of Qp, for p | (p).

Cut out the first (expanding) place: K/g. Here x 3 is a contraction!
Embed K into K3, Ké diagonally by 4, ¢'.



Beta tiles

The x-tiles
For x € Z[~1] N [0,1),

R(x) =] 6(BKT;*(x)) € Kj

k>0




The x-tiles
For x € Z[~1] N [0,1),

Beta tiles

R(x) = |J 0Bk T;*(x)) € K}
k>0
Cut and project scheme:
R s Ks K
U U U
zZ[p] & ozl S d@BY)

e §(Z[B7Y)) is a lattice in K.
o §(Z[71]N[0,1)) is a Delone set in Kj.



Properties of the Rauzy fractals

Rauzy fractals

e are compact with non-zero Haar measure.

e are the closure of their interior.

e have fractal boundary with zero Haar measure.
e are self-similar (IFS).

e provide a multiple tiling of Ké.

e under some conditions provide a tiling.



How they look like

Non-unit example: 5> =24+ 2, Kj =R x K3 = R x Q3.
Os)
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Figure : R(0) for 82 = 28 + 2.



How they look like

Non-unit example: 5> =25 + 2, Kj =R x K3 = R x Q3.
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Figure : B7'R(0) for B2 =28 +2.



How they look like

Non-unit example: 5> =25 + 2, Kj =R x K3 = R x Q3.

Ks)
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Figure : 87'R(0) for B2 =28 +2.



How they look like

Non-unit example: 5> =25+ 2, Kj =R x K3 = R x Q3.

Kis)

4

: 4 : F R
Figure : 872R(0) for 2 =28 +2.



How they look like

Reducible example: 3* = 3+ 1, Kj; = C.

Figure : R(0) for 8> =3 + 1.



How they look like

Reducible example: 3* = 3+ 1, Kj; = C.

Figure : B7°R(0) for 2 = B+ 1.



Natural extension

How to construct a natural extension for the circle-doubling map (T, T,)?

X = 1im(T, T2) = {(x)iz0 € T" : % = Toxjp1, Vi}

Ta2(x0, X1, X2, . ..) = (TaXo, X0, X1, - - -)



Natural extension

How to construct a natural extension for the circle-doubling map (T, T,)?

X = 1im(T, T2) = {(x)iz0 € T" : % = Toxjp1, Vi}

Ta2(x0, X1, X2, . ..) = (TaXo, X0, X1, - - -)

We have -
lim(T, T2) = (R x Q2)/3(Z[3]) = Z[3]

which is called the dyadic solenoid.



The dyadic solenoid

Figure : Visualizing the dyadic solenoid as a nested intersection of solid tori
Niso k(S x D?), with f(t,z) = (T2(t), z/4 + €277 /2).



Natural extension

Let V = {w1,...,v,} with the v; € {T§(1) : k > 0} U {0} ordered
increasingly. Define

m—1

X = J Wi vier) x (0/(v) = R(w)),

i=1

7—5: X_>X’ (X’Y)H(TB(X)aB'y_(S/(I_BXD)



Natural extension

Let V = {w1,...,v,} with the v; € {T§(1) : k > 0} U {0} ordered
increasingly. Define

m—1

X = J Wi vier) x (0/(v) = R(w)),

i=1

,Tﬁ: X_>X’ (X’Y)H(TB(X)7B'Y_6/(|_6XD)

Theorem
(X, %P, u,Ts) is a natural extension of ([0,1), B, o7, Tg). }

o X = UxEZ[ﬁ*l]ﬁ[O,l){X} X ((5’(X) — ’R(X))
o Ky =X+ 5[5 ).



Natural extensions

Smallest Pisot number natural Natural extension associated to
extension in R x C: B%=2B8+2in R? x Q%

What we want is that these natural extensions are conjugate to
toral/solenoidal automorphisms!



2. Main Differences



Integral [-tiles

Framework: /5 non-unit.

Integral [-tiles
For x € Z[~1] N [0,1),
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Integral [-tiles

Framework: /5 non-unit.

Integral [-tiles
For x € Z[~1] N [0,1),

S(x) = {(20)pes\p) € R(x) : 2, =0 for each p [ (5)}

Properties:
@ S(x) form “slices” of R(0) and of X.

S(x) £ 0 iff x € Z[3].
® For x € Z[5]N[0,1),

S(x) = Lim &, (8*(T5*(x) N Z[B))) € KL

S(x) — 04, (x) is close to S(y) — 0. (y) if |x — yly is small V p | (3).
S(x) are SRS tiles (Berthé, Siegel, Steiner et al. 2011).
(6] {S(x) :x € Z[] N [0,1)} forms a weak m-tiling of K_.
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conjugation with a toral/solenoidal translation — pure discrete spectrum.
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Let V = {TA(1): k >0} \ {0}.

e Irreducible case: all directions of the domain exchange can be
identified, by choosing a natural anti-diagonal lattice ¢’(L), where
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e Reducible case: #V > d = deg(3) and &'(L) C K may not be a
lattice.



Periodic tiling

Dynamically very important: if we have a periodic tiling we get the
conjugation with a toral/solenoidal translation — pure discrete spectrum.

Let V = {TA(1): k >0} \ {0}.
e Irreducible case: all directions of the domain exchange can be
identified, by choosing a natural anti-diagonal lattice ¢’(L), where

L=(V—-V),

e Reducible case: #V > d = deg(3) and &'(L) C K may not be a
lattice.
This is the case for the family 83 — 3% — (t +1)3 -1, t e N: L = Z[f]
dense in K.

But not for 83 =82 — B+ 1, t > 2: L has rank 2.
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Periodic tiling

Let Z' = K, x [, ZIB] be the stripe space.

(QM): L hasrank d —1 = ¢§'(L) lattice in Z'

Proposition
If (QM) holds:
® R(0) + ¢'(L) is a multiple tiling of Z’.
® R(0) + (L) is a tiling of Z" iff {R(x) : x € Z[p~1]N[0,1)} is a
tiling of Kj.




Periodic tilings

B e

I
-10 -5 5 10

Figure : Periodic tiling for 32 = 28 + 2.

Figure : Periodic tiling for 83 =282 — g+ 1.



Equivalent tilings

Property (W):

VyeP, 3zeZ[BN[0,e), k>0: Th(y +2)=Th(z) =0

Theorem (M., Steiner 2017)
The following are equivalent:
e (W) holds.
o X +5(Z[B71]) is a tiling of K.
o {R(x): x € Z[B*]N[0,1)} is an aperiodic tiling of K.
o {S(x):xe€Z[f]N[0,1)} is a weak tiling of K/_.
If (QM) holds, the following is also equivalent to the ones above:
e R(0) + d'(L) is a periodic tiling of Z'.




Equivalent tilings

Property (W):

VyeP, 3zeZ[BN[0,e), k>0: Th(y +2)=Th(z) =0

Theorem (M., Steiner 2017)

The following are equivalent:
e (W) holds.
o X +5(Z[B71]) is a tiling of K.
o {R(x): x € Z[B*]N[0,1)} is an aperiodic tiling of K.
o {S(x):xe€Z[f]N[0,1)} is a weak tiling of K/_.
If (QM) holds, the following is also equivalent to the ones above:
e R(0) + d'(L) is a periodic tiling of Z'.

Remark: Integral 3-tiles provide an easy proof that for quadratic Pisot
numbers the statements above hold!



Periodic Hokkaido tiling

Consider 83 = g + 1.
(Ei and Ito 2005) + (Ei, Ito and Rao 2006)

e There is no periodic translation set for the smallest Pisot S.

e They construct an “ad hoc” lattice and fundamental domain in order
to have a periodic tiling.




Periodic Hokkaido tiling

Consider 83 = g + 1.
(Ei and Ito 2005) + (Ei, Ito and Rao 2006)

e There is no periodic translation set for the smallest Pisot S.

e They construct an “ad hoc” lattice and fundamental domain in order
to have a periodic tiling.

We saw L = Z[f] dense in Kj.

But actually we have natural periodic translation sets:
A= <Vi7 Vit i7j:ala"'aad>Z

have rank d — 1.



Periodic Hokkaido tiling

Take A = <ﬂ2 —2B8+41, —ﬂ2 + 2>Z = <V3 — Vo, Vg — V2>Z-

g—1

-B*+pB+1

Figure : On the left-hand side red directions are identified mod A, while black
directions are two times any of the red ones mod A.



Exchange of domains

Let R := R(0) and denote by R; its subtiles.
E:R—R, ERi)=Ri+2(v2), forie A

coincides p-a.e. with the first return to R under the transitive toral
translation 7 : C/A — C/A, 7(x + N) = x + §'(v2) + A. This is
equivalent to saying that R + A is a tiling of C.



Exchange of domains

Let R := R(0) and denote by R; its subtiles.
E:R—R, ERi)=Ri+2(v2), forie A

coincides p-a.e. with the first return to R under the transitive toral
translation 7 : C/A — C/A, 7(x + N) = x + §'(v2) + A. This is
equivalent to saying that R + A is a tiling of C.

Xy —>= R ——=C/A

| 4

X, —=R ——=C/A

Figure : The extended domain R.



Periodic Hokkaido tiling

A= (82, -5~ 1)z.

Figure : Red directions are identified mod A. The black dotted direction
coincides with one translation vector.



3. Recent developments



Coincidence rank conjecture
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Let o be a Pisot substitution with deg(3) = d. If the dimension of the
first rational Cech cohomology of the tiling space is d, then we say that

o is homological.
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Coincidence rank conjecture

Homological Pisot (Barge, Bruin, Jones, Sadun 2012)

Let o be a Pisot substitution with deg(3) = d. If the dimension of the
first rational Cech cohomology of the tiling space is d, then we say that
o is homological.

The tiling flow of a homological Pisot substitution has pure discrete
spectrum is false!

Coincidence rank conjecture

The coincidence rank of a homological Pisot substitution divides a power
of the norm of 3.

Perspectives:
e Can we translate the "homological” to Rauzy fractals?

e Can we find a homological non-unit irreducible Pisot substitution
with coincidence rank greater than 17
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Stepped surfaces

As pointed out in (Ei, Ito, Rao 2006) the existence of a polygonal tiling
induced by a stepped surface in the reducible case is unclear.

Inspired by (Arnoux, Furukado, Harriss, Ito 2012), instead of working
with Ef, we considered higher dimensional dual substitutions:

* — d—1
EI’I*d+1 = E

E?(0)(x,i Nj)* = Z (MY (x + P(s1) + P(s2)), k A £)*
U‘(k):p1i51
o(£)=p2jsz2



Stepped surfaces

U=(0,1A3)*U(0,1A4)*U(0,2A4)*U(0,2A5)*U(0,3A5)*




Stepped surfaces

UcEU)!
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Stepped surfaces
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Stepped surfaces

25.8

24.2




Stepped surfaces

2.6

338

-22.8




Stepped surfaces

Renormalizing the 10 pieces we get a self-replicating tiling:

Interpretation: every wedge can be thought as a union of two Hokkaido
subtiles, and cutting in a suitable way we get the Hokkaido
self-replicating tiling.



Merci
Vielen Dank

Have fun at FAN!



