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Overview

1 The geometrical approach for the study of substitution dynamical
systems.

2 Escaping some of the hypothesis: main di�erences and
generalizations.



Substitution dynamical systems

Tribonacci substitution: A = {1, 2, 3}, σ(1) = 12, σ(2) = 13, σ(3) = 1.

σ(1) = 12

We study the symbolic dynamical system (Xσ, S) generated by a
primitive substitution σ:

Xσ = {Snu | n ∈ N}

where u ∈ AN is a �xed point of σ and S is the shift.

Aim: Understand the ergodic behaviour of these systems.

Rauzy, 1982: For the Tribonacci substitution (Xσ, S) is conjugate to a
minimal toral translation (T2, τ).
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Pisot numbers

The Tribonacci substitution is an example of an irreducible unit Pisot
substitution.

β root of det(xI −Mσ) = x3 − x2 − x − 1

Pisot numbers
A real algebraic integer β > 1 is a Pisot number if all its conjugates β′

other than β itself satisfy |β′| < 1.

Dynamically: expanding direction ⊕ contracting hyperplane.

E.g. consider the hyperbolic toral automorphism
(
2 1
1 1

)
∈ GL(2,Z)

0 1

1

0 1

1
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Geometrical interpretation - Part I

u = σ∞(1) = 121312112131212131211213 · · · ∈ AN

Rauzy fractal

Ra = {πc ◦ P(u0 · · · un−1) | n ∈ N, un = a}, R =
⋃
a∈A

Ra.



Geometrical interpretation - Part I

u = σ∞(1) = 121312112131212131211213 · · · ∈ AN

Rauzy fractal

Ra = {πc ◦ P(u0 · · · un−1) | n ∈ N, un = a}, R =
⋃
a∈A

Ra.



Hidden numeration

• Dumont-Thomas '89: Every �nite pre�x of u can be uniquely
expanded as σn(dn)σn−1(dn−1) · · · d0, di ∈ {0, 1}.

• P ◦ σ = Mσ ◦ P.

• Take the scalar product with a left eigenvector vβ . Action of Mσ on
R3 is equivalent to action of β on R× C = Ke ×K′β . Projection πc
↔ Embedding δ′.

• The points of the broken line are β-integers:
n∑

i=0

diβ
i ∈ Nβ

and projecting them and taking the closure we get the Rauzy fractal.
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Beta-numeration

0 1

1

β−1 β − 1

Figure : Tβ for β3 = β2 + β + 1.

Beta-transformation:

Tβ : [0, 1)→ [0, 1)

x 7→ βx − bβxc

Every real x ∈ [0, 1) has a β-expansion:

(x)β = .d1d2d3 · · ·

with di ∈ {0, 1, . . . , dβe − 1}. Not every
word is allowed! This depends on (1)β .

V = {T k
β (1) : k ≥ 0}

= {1, β − 1, β−1, 0}
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Hidden numeration

• Dumont-Thomas '89: Every �nite pre�x of u can be uniquely
expanded as σn(dn)σn−1(dn−1) · · · d0, di ∈ {0, 1}.

• P ◦ σ = Mσ ◦ P.

• Take the scalar product with a left eigenvector vβ . Action of Mσ on
R3 is equivalent to action of β on R× C = Ke ×K′β . Projection πc
↔ Embedding δ′.

• The points of the broken line are β-integers: for x ∈ Z[β−1] ∩ [0, 1)

x +
n∑

i=0

diβ
i ∈

⋃
k≥0

βkT−kβ (x)

and embedding we get a translated Rauzy fractal

R(x) =
⋃
k≥0

δ′(βkT−kβ (x))



Geometrical interpretation - Part II

How does the action of S on Xσ translate on R?

Recall: Ra = {πc ◦ P(u0 · · · un−1) | n ∈ N, un = a} and Dumont-Thomas

The Strong Coincidence Condition (SCC) holds: the subtiles are disjoint
in measure.

Domain exchange transformation:

E : R → R, z 7→ z + δ′(va) for z ∈ Ra.
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Geometrical interpretation - Part II

The action of E on R is coded by (Xσ,S) thanks to the partition given
by the subtiles.

Xσ //

S

��

R

E

��
Xσ // R

Now we want the conjugation with a toral translation!



Geometrical interpretation - Part II

The action of E on R is coded by (Xσ,S) thanks to the partition given
by the subtiles.

Xσ //

S

��

R //

E

��

C/Λ

τ

��
Xσ // R // C/Λ

Now we want the conjugation with a toral translation!



Periodic tiling

Anti-diagonal lattice: Λ = δ′(〈V − V 〉Z).
⇒ each translation direction of E is identi�ed!

If R+ Λ is a tiling of C, then we have the conjugation with the toral
translation (C/Λ, τ).
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Pisot conjecture

This geometrical construction can be applied to every irreducible unit

Pisot substitution (Arnoux, Ito 2001).

Pisot conjecture
Let σ be an irreducible unit Pisot substitution. Then (Xσ, S) has pure
discrete spectrum.

There are several combinatorial, topological and arithmetical conditions
that imply the tiling property.



Escaping some of the hypothesis

Key-words: irreducible, unit.

Example: β smallest Pisot number, (1)β = .10001

σβ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

Mσ =


1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , f (X )g(X ) = (X 3 − X − 1)(X 2 − X + 1)



Escaping irreducibility

• Pisot conjecture is false for reducible Pisot substitutions (Barge,
Baker, Kwapisz 2006)! Easy example: Thue-Morse.

• Remarkable fact: no example of a β-substitution failing the Pisot
conjecture is known.

• Problems with periodic tiling due to #V > deg(β). For β minimal
Pisot L = 〈V − V 〉Z = Z[β].

(QM): rank(L) = deg(β)− 1 ⇒ δ′(L) lattice

Figure : A patch of Cper for β3 = 2β2 − β + 1.
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Escaping unimodularity

Idea: if β is not a unit we enlarge the representation space so that β
becomes a unit therein.

Let K = Q(β). Representation space:

Kβ := K∞ ×
∏
p|(β)

Kp

where

• K∞ = K ⊗Q R ∼= Rr × Cs , abs. values given by Galois embeddings.

• Kp �nite extension of Qp, for p | (p), | · |p = N(p)−vp(·).

Kβ = Kp1 ×K′β . Multiplication by β is a contraction on K′β .
Embed K into Kβ , K′β , K′∞ diagonally by δ, δ′, δ′∞.
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Properties of the Rauzy fractals

Rauzy fractals

• are compact with non-zero Haar measure.

• are the closure of their interior.

• have fractal boundary with zero Haar measure.

• are self-similar (IFS)

R(x) =
⋃

y∈T−1(x)

βR(y)

• provide an aperiodic multiple tiling of K′β :

Caper = {R(x) : x ∈ Z[β−1] ∩ [0, 1)}
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How they look like

Non-unit example: β2 = 2β + 2, K′β = R×Kf
∼= R×Q2

2.

R

Kf

Figure : R(0) for β2 = 2β + 2.
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How they look like

Non-unit example: β2 = 2β + 2, K′β = R×Kf
∼= R×Q2

2.

R

Kf

Figure : β−2R(0) for β2 = 2β + 2.



How they look like

Reducible example: β3 = β + 1, K′β = C.

Figure : R(0) for β3 = β + 1.



How they look like

Reducible example: β3 = β + 1, K′β = C.

Figure : β−5R(0) for β3 = β + 1.



How they look like

Figure : Patch of Caper for β3 = β + 1.



Natural extension

Suspend the Rauzy fractals with intervals. . .

X =
m−1⋃
i=1

[vi , vi+1)× (δ′(vi )−R(vi )),

Tβ : X →X , (x , y) 7→
(
Tβ(x), β · y − δ′(bβxc)

)

• (X ,B, µ,Tβ) is a natural extension of ([0, 1),B, µ ◦ π−1,Tβ).

• Kβ = X + δ(Z[β−1]).

• x ∈ Pur(β) if and only if x ∈ Q(β), δ(x) ∈X .
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Natural extension

Tribonacci natural extension in
R× C:

Natural extension associated to
β2 = 2β + 2 in R2 ×Q2

2:

(1, 0, 0)

(1, 1, 0)

(1, 1, β−1)

(1, 1, 1)

(0, 0, β−1)

What we want is that these natural extensions are conjugate to
toral/solenoidal automorphisms!



Main di�erences - Integral tiles

Framework: β non-unit.

Integral β-tiles
For x ∈ Z[β] ∩ [0, 1),

S(x) = {(zp) ∈ R(x) : zp = 0 for each p | (β)}

Properties:
1 S(x) form �slices� of R(0) and of X .
2 S(x) 6= ∅ i� x ∈ Z[β].
3 S(x) = Limk→∞ δ′∞(βk(T−kβ (x) ∩ Z[β])) ∈ K ′∞.

S(β−2) S(0) S(3−β)

R(0)R(2β−1)

R(β−1)

R(2β−2)

R(β−1+2β−2)

R(β−1+β−2)

R(β−2)R(2β−1+β−2)



Main di�erences - Periodic tiling

Let Z ′ = K ′∞ ×
∏

p|(β) δf(Z[β]) be the stripe space.

0 3−ββ−3 6−2β

Figure : A patch of Cper = {δ′(x) +R(0) : x ∈ Z (β−3)}, β2 = 2β + 2.
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Equivalence of tiling properties

Theorem (M., Steiner 2013)
Let β be a Pisot number. Then the collections Cext, Caper, and Cint are
multiple tilings of Kβ , K′β , and K′∞, respectively, and they all have the
same covering degree. The following statements are equivalent:

i All collections Cext, Caper, and Cint are tilings.

ii One of the collections Cext, Caper, and Cint is a tiling.

iii One of the collections Cext, Caper, and Cint has an exclusive point.

iv Property (W) holds.

v The spectral radius of the boundary graph is less than β.

If (QM) holds, then the following statement is also equivalent to the ones
above:

vi Cper is a tiling of Z ′.



Thanks for the attention!


