Fractals arising from numeration and substitutions

Milton Minervino

University of Leoben, Austria Doctoral program in Discrete Mathematics

ÖMG - DMV Congress 2013 September 26, 2013

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- The geometrical approach for the study of substitution dynamical systems.
- 2 Escaping some of the hypothesis: main differences and generalizations.

◆□ > < 個 > < E > < E > E の < @</p>

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.
 $\sigma(1) = 12$

◆□ > < 個 > < E > < E > E の < @</p>

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.
 $\sigma^2(1) = 1213$

(ロ)、(型)、(E)、(E)、 E のQで

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.
 $\sigma^{3}(1) = 1213121$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>Tribonacci substitution</u>: $\mathcal{A} = \{1, 2, 3\}$, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.

 $\sigma^4(1) = 1213121121312$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>Tribonacci substitution</u>: $A = \{1, 2, 3\}$, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.

 $\sigma^{5}(1) = 121312112131212131211213$

◆□ > < 個 > < E > < E > E の < @</p>

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.

$$\mathrm{u}:=\sigma^{\omega}(1)=121312112131212131211213\cdots\in\mathcal{A}^{\mathbb{N}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.

$$\mathrm{u} := \sigma^{\omega}(1) = 121312112131212131211213 \cdots \in \mathcal{A}^{\mathbb{N}}$$

We study the symbolic dynamical system (X_{σ}, S) generated by a primitive substitution σ :

$$X_{\sigma} = \overline{\{S^n \mathbf{u} \mid n \in \mathbb{N}\}}$$

where $u \in \mathcal{A}^{\mathbb{N}}$ is a fixed point of σ and S is the shift.

Tribonacci substitution:
$$\mathcal{A} = \{1, 2, 3\}$$
, $\sigma(1) = 12$, $\sigma(2) = 13$, $\sigma(3) = 1$.

 $\mathrm{u} := \sigma^{\omega}(1) = 121312112131212131211213 \cdots \in \mathcal{A}^{\mathbb{N}}$

We study the symbolic dynamical system (X_{σ}, S) generated by a primitive substitution σ :

$$X_{\sigma} = \overline{\{S^n \mathbf{u} \mid n \in \mathbb{N}\}}$$

where $u \in \mathcal{A}^{\mathbb{N}}$ is a fixed point of σ and S is the shift.

Aim: Understand the ergodic behaviour of these systems.

Rauzy, 1982: For the Tribonacci substitution (X_{σ}, S) is conjugate to a minimal toral translation (\mathbb{T}^2, τ) .

Pisot numbers

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The Tribonacci substitution is an example of an irreducible unit Pisot substitution.

$$\beta$$
 root of det $(xI - M_{\sigma}) = x^3 - x^2 - x - 1$

Pisot numbers

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Tribonacci substitution is an example of an *irreducible* unit **Pisot** substitution.

$$\beta$$
 root of det $(xI - M_{\sigma}) = x^3 - x^2 - x - 1$

Pisot numbers

A real algebraic integer $\beta > 1$ is a *Pisot number* if all its conjugates β' other than β itself satisfy $|\beta'| < 1$.

Pisot numbers

The Tribonacci substitution is an example of an *irreducible* unit **Pisot** substitution.

$$\beta$$
 root of det $(xI - M_{\sigma}) = x^3 - x^2 - x - 1$

Pisot numbers

A real algebraic integer $\beta > 1$ is a *Pisot number* if all its conjugates β' other than β itself satisfy $|\beta'| < 1$.

Dynamically: expanding direction \oplus contracting hyperplane.

E.g. consider the hyperbolic toral automorphism $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathsf{GL}(2,\mathbb{Z})$

Geometrical interpretation - Part |

・ロト ・個ト ・モト ・モト

₹.

$$u = \sigma^{\infty}(1) = 121312112131212131211213 \dots \in \mathcal{A}^{\mathbb{N}}$$

Geometrical interpretation - Part |

$$u = \sigma^{\infty}(1) = 1213121121312112131211213 \dots \in \mathcal{A}^{\mathbb{N}}$$

Rauzy fractal

$$\mathcal{R}_{a} = \overline{\{\pi_{c} \circ P(u_{0} \cdots u_{n-1}) \mid n \in \mathbb{N}, u_{n} = a\}}, \quad \mathcal{R} = \bigcup_{a \in \mathcal{A}} \mathcal{R}_{a}.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as $\sigma^n(d_n)\sigma^{n-1}(d_{n-1})\cdots d_0$, $d_i \in \{0,1\}$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as $\sigma^n(d_n)\sigma^{n-1}(d_{n-1})\cdots d_0$, $d_i \in \{0,1\}$.

•
$$P \circ \sigma = M_{\sigma} \circ P$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as $\sigma^n(d_n)\sigma^{n-1}(d_{n-1})\cdots d_0$, $d_i \in \{0,1\}$.

•
$$P \circ \sigma = M_{\sigma} \circ P$$
.

• Take the scalar product with a left eigenvector \mathbf{v}_{β} . Action of M_{σ} on \mathbb{R}^3 is equivalent to action of β on $\mathbb{R} \times \mathbb{C} = \mathbb{K}_e \times \mathbb{K}'_{\beta}$. Projection $\pi_c \leftrightarrow \text{Embedding } \delta'$.

• Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as $\sigma^n(d_n)\sigma^{n-1}(d_{n-1})\cdots d_0$, $d_i \in \{0,1\}$.

•
$$P \circ \sigma = M_{\sigma} \circ P$$
.

- Take the scalar product with a left eigenvector \mathbf{v}_{β} . Action of M_{σ} on \mathbb{R}^3 is equivalent to action of β on $\mathbb{R} \times \mathbb{C} = \mathbb{K}_e \times \mathbb{K}'_{\beta}$. Projection $\pi_c \leftrightarrow \text{Embedding } \delta'$.
- The points of the broken line are β -integers:

$$\sum_{i=0}^n d_i\beta^i \in \mathbb{N}_\beta$$

and projecting them and taking the closure we get the Rauzy fractal.

$$egin{aligned} & T_eta: [0,1)
ightarrow [0,1) \ & x \ \mapsto eta x - \lfloor eta x
floor \end{aligned}$$

Every real $x \in [0, 1)$ has a β -*expansion*:

$$(x)_{\beta} = .d_1d_2d_3\cdots$$

with $d_i \in \{0, 1, \dots, \lceil \beta \rceil - 1\}$. Not every word is allowed! This depends on $(1)_{\beta}$.

Figure : T_{β} for $\beta^3 = \beta^2 + \beta + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

$$egin{aligned} &\mathcal{T}_eta:[0,1) o [0,1)\ &x\mapsto eta x-\lflooreta x
brace \end{aligned}$$

Every real $x \in [0, 1)$ has a β -expansion:

$$(x)_{\beta} = .d_1d_2d_3\cdots$$

with $d_i \in \{0, 1, \dots, \lceil \beta \rceil - 1\}$. Not every word is allowed! This depends on $(1)_{\beta}$.

$$egin{aligned} V &= \{ T^k_eta(1): k \geq 0 \} \ &= \{ 1, eta - 1, eta^{-1}, 0 \} \end{aligned}$$

Figure : T_{β} for $\beta^3 = \beta^2 + \beta + 1$.

|▲□▶|▲圖▶|▲≣▶||▲≣▶||| 差||||の�@

ション ふゆ アメリア メリア しょうくの

 Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as σⁿ(d_n)σⁿ⁻¹(d_{n-1})····d₀, d_i ∈ {0,1}.

•
$$P \circ \sigma = M_{\sigma} \circ P$$
.

- Take the scalar product with a left eigenvector \mathbf{v}_{β} . Action of M_{σ} on \mathbb{R}^3 is equivalent to action of β on $\mathbb{R} \times \mathbb{C} = \mathbb{K}_e \times \mathbb{K}'_{\beta}$. Projection $\pi_c \leftrightarrow \text{Embedding } \delta'$.
- The points of the broken line are β -integers:

$$\sum_{i=0}^n d_i\beta^i \in \mathbb{N}_\beta = \bigcup_{k\geq 0}\beta^k T_\beta^{-k}(0)$$

and projecting them is equivalent to embed them in \mathbb{K}'_{β} :

$$\mathcal{R} = \bigcup_{k \ge 0} \delta'(\beta^k T_{\beta}^{-k}(0))$$

 Dumont-Thomas '89: Every finite prefix of u can be uniquely expanded as σⁿ(d_n)σⁿ⁻¹(d_{n-1})····d₀, d_i ∈ {0,1}.

•
$$P \circ \sigma = M_{\sigma} \circ P$$
.

- Take the scalar product with a left eigenvector \mathbf{v}_{β} . Action of M_{σ} on \mathbb{R}^3 is equivalent to action of β on $\mathbb{R} \times \mathbb{C} = \mathbb{K}_e \times \mathbb{K}'_{\beta}$. Projection $\pi_c \leftrightarrow \text{Embedding } \delta'$.
- The points of the broken line are β -integers: for $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$

$$x+\sum_{i=0}^n d_i\beta^i\in \bigcup_{k\geq 0}\beta^kT_{\beta}^{-k}(x)$$

and embedding we get a translated Rauzy fractal

$$\mathcal{R}(x) = \bigcup_{k \ge 0} \delta'(\beta^k T_{\beta}^{-k}(x))$$

Geometrical interpretation - Part II

How does the action of S on X_{σ} translate on \mathcal{R} ?

Recall: $\mathcal{R}_a = \overline{\{\pi_c \circ P(u_0 \cdots u_{n-1}) \mid n \in \mathbb{N}, u_n = a\}}$ and Dumont-Thomas

Geometrical interpretation - Part II

・ロト ・得ト ・ヨト ・ヨト

Э

How does the action of S on X_{σ} translate on \mathcal{R} ?

Recall: $\mathcal{R}_a = \overline{\{\pi_c \circ P(u_0 \cdots u_{n-1}) \mid n \in \mathbb{N}, u_n = a\}}$ and Dumont-Thomas

Geometrical interpretation - Part II

ション ふゆ アメリア メリア しょうくの

How does the action of S on X_{σ} translate on \mathcal{R} ?

Recall: $\mathcal{R}_a = \overline{\{\pi_c \circ P(u_0 \cdots u_{n-1}) \mid n \in \mathbb{N}, u_n = a\}}$ and Dumont-Thomas

The Strong Coincidence Condition (SCC) holds: the subtiles are disjoint in measure.

Domain exchange transformation:

$$E: \mathcal{R} \to \mathcal{R}, \quad \mathbf{z} \mapsto \mathbf{z} + \delta'(\mathbf{v}_a) \quad \text{for} \quad \mathbf{z} \in \mathcal{R}_a.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The action of E on \mathcal{R} is coded by (X_{σ}, S) thanks to the partition given by the subtiles.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The action of E on \mathcal{R} is coded by (X_{σ}, S) thanks to the partition given by the subtiles.

Now we want the conjugation with a toral translation!

Anti-diagonal lattice: $\Lambda = \delta'(\langle V - V \rangle_{\mathbb{Z}}).$ \Rightarrow each translation direction of *E* is identified!

Anti-diagonal lattice: $\Lambda = \delta'(\langle V - V \rangle_{\mathbb{Z}}).$ \Rightarrow each translation direction of *E* is identified!

Anti-diagonal lattice: $\Lambda = \delta'(\langle V - V \rangle_{\mathbb{Z}}).$ \Rightarrow each translation direction of *E* is identified!

・ロト ・四ト ・ヨト ・ヨー うへつ

Anti-diagonal lattice: $\Lambda = \delta'(\langle V - V \rangle_{\mathbb{Z}}).$ \Rightarrow each translation direction of *E* is identified!

If $\mathcal{R} + \Lambda$ is a tiling of \mathbb{C} , then we have the conjugation with the toral translation $(\mathbb{C}/\Lambda, \tau)$.

ション ふゆ アメリア メリア しょうくの

This geometrical construction can be applied to every *irreducible unit Pisot* substitution (Arnoux, Ito 2001).

Pisot conjecture

Let σ be an irreducible unit Pisot substitution. Then (X_{σ}, S) has pure discrete spectrum.

There are several combinatorial, topological and arithmetical conditions that imply the tiling property.

Escaping some of the hypothesis

Key-words: irreducible, unit.

Example: β smallest Pisot number, $(1)_{\beta} = .10001$ $\sigma_{\beta} : 1 \mapsto 12, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 5, 5 \mapsto 1$ $M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad f(X)g(X) = (X^3 - X - 1)(X^2 - X + 1)$

Escaping irreducibility

ション ふゆ アメリア メリア しょうくの

- Pisot conjecture is **false** for reducible Pisot substitutions (Barge, Baker, Kwapisz 2006)! Easy example: Thue-Morse.
- Remarkable fact: no example of a β -substitution failing the Pisot conjecture is known.
- Problems with periodic tiling due to $\#V > \deg(\beta)$. For β minimal Pisot $L = \langle V V \rangle_{\mathbb{Z}} = \mathbb{Z}[\beta]$.

Escaping irreducibility

- Pisot conjecture is **false** for reducible Pisot substitutions (Barge, Baker, Kwapisz 2006)! Easy example: Thue-Morse.
- Remarkable fact: no example of a β-substitution failing the Pisot conjecture is known.
- Problems with periodic tiling due to $\#V > \deg(\beta)$. For β minimal Pisot $L = \langle V V \rangle_{\mathbb{Z}} = \mathbb{Z}[\beta]$.

 (QM) : rank $(L) = \mathsf{deg}(\beta) - 1 \Rightarrow \delta'(L)$ lattice

Figure : A patch of C_{per} for $\beta^3 = 2\beta^2 - \beta + 1$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

ldea: if β is not a unit we enlarge the representation space so that β becomes a unit therein.

Let $K = \mathbb{Q}(\beta)$. Representation space:

$$\mathbb{K}_eta := \mathsf{K}_\infty imes \prod_{\mathfrak{p} \mid (eta)} \mathsf{K}_\mathfrak{p}$$

where

- $K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^r \times \mathbb{C}^s$, abs. values given by Galois embeddings.
- $K_{\mathfrak{p}}$ finite extension of \mathbb{Q}_{p} , for $\mathfrak{p} \mid (p)$, $|\cdot|_{\mathfrak{p}} = \mathfrak{N}(\mathfrak{p})^{-\nu_{\mathfrak{p}}(\cdot)}$.

ldea: if β is not a unit we enlarge the representation space so that β becomes a unit therein.

Let $K = \mathbb{Q}(\beta)$. Representation space:

$$\mathbb{K}_eta := extsf{K}_\infty imes \prod_{\mathfrak{p} \mid (eta)} extsf{K}_\mathfrak{p}$$

where

- $K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^r \times \mathbb{C}^s$, abs. values given by Galois embeddings.
- $K_{\mathfrak{p}}$ finite extension of \mathbb{Q}_{p} , for $\mathfrak{p} \mid (p)$, $|\cdot|_{\mathfrak{p}} = \mathfrak{N}(\mathfrak{p})^{-\nu_{\mathfrak{p}}(\cdot)}$.

$$\begin{split} \mathbb{K}_{\beta} &= \mathbb{K}_{\mathfrak{p}_{1}} \times \mathbb{K}'_{\beta}. \text{ Multiplication by } \beta \text{ is a contraction on } \mathbb{K}'_{\beta}. \\ \text{Embed } K \text{ into } \mathbb{K}_{\beta}, \mathbb{K}'_{\beta}, \mathbb{K}'_{\infty} \text{ diagonally by } \delta, \delta', \delta'_{\infty}. \end{split}$$

Properties of the Rauzy fractals

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Rauzy fractals

• are compact with non-zero Haar measure.

Properties of the Rauzy fractals

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Rauzy fractals

- are compact with non-zero Haar measure.
- are the closure of their interior.

Properties of the Rauzy fractals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rauzy fractals

- are compact with non-zero Haar measure.
- are the closure of their interior.
- have fractal boundary with zero Haar measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rauzy fractals

- are compact with non-zero Haar measure.
- are the closure of their interior.
- have fractal boundary with zero Haar measure.
- are self-similar (IFS)

$$\mathcal{R}(x) = \bigcup_{y \in \mathcal{T}^{-1}(x)} \beta \mathcal{R}(y)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Rauzy fractals

- are compact with non-zero Haar measure.
- are the closure of their interior.
- have fractal boundary with zero Haar measure.
- are self-similar (IFS)

$$\mathcal{R}(x) = \bigcup_{y \in T^{-1}(x)} \beta \mathcal{R}(y)$$

provide an aperiodic multiple tiling of K'_{\beta}:

$$\mathcal{C}_{\mathrm{aper}} = \{\mathcal{R}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$$

Non-unit example: $\beta^2 = 2\beta + 2$, $\mathbb{K}'_{\beta} = \mathbb{R} \times \mathbb{K}_f \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\mathcal{R}(0)$ for $\beta^2 = 2\beta + 2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

∃ 990

(a)

Non-unit example: $\beta^2 = 2\beta + 2$, $\mathbb{K}'_{\beta} = \mathbb{R} \times \mathbb{K}_f \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\beta^{-1}\mathcal{R}(0)$ for $\beta^2 = 2\beta + 2$.

(a)

ж

Non-unit example: $\beta^2 = 2\beta + 2$, $\mathbb{K}'_{\beta} = \mathbb{R} \times \mathbb{K}_f \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\beta^{-1}\mathcal{R}(0)$ for $\beta^2 = 2\beta + 2$.

(a)

32

Non-unit example: $\beta^2 = 2\beta + 2$, $\mathbb{K}'_{\beta} = \mathbb{R} \times \mathbb{K}_{\mathrm{f}} \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\beta^{-2}\mathcal{R}(0)$ for $\beta^2 = 2\beta + 2$.

<ロ> (四) (四) (三) (三) (三) (三)

Reducible example: $\beta^3 = \beta + 1$, $\mathbb{K}'_{\beta} = \mathbb{C}$.

Figure : $\mathcal{R}(0)$ for $\beta^3 = \beta + 1$.

・ロト ・個ト ・モト ・モト

ж

Reducible example: $\beta^3 = \beta + 1$, $\mathbb{K}'_{\beta} = \mathbb{C}$.

Figure : $\beta^{-5}\mathcal{R}(0)$ for $\beta^3 = \beta + 1$.

Figure : Patch of C_{aper} for $\beta^3 = \beta + 1$.

Suspend the Rauzy fractals with intervals...

$$\mathscr{X} = igcup_{i=1}^{m-1} [\mathsf{v}_i, \mathsf{v}_{i+1}) imes (\delta'(\mathsf{v}_i) - \mathcal{R}(\mathsf{v}_i)). \ \mathscr{T}_eta : \mathscr{X} o \mathscr{X}, \quad (\mathbf{x}, \mathbf{y}) \mapsto ig(\mathcal{T}_eta(\mathbf{x}), eta \cdot \mathbf{y} - \delta'(\lfloor eta \mathbf{x}
floor)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suspend the Rauzy fractals with intervals...

$$\mathscr{X} = igcup_{i=1}^{m-1} [v_i, v_{i+1}) imes (\delta'(v_i) - \mathcal{R}(v_i)), \ \mathscr{T}_eta: \mathscr{X} o \mathscr{X}, \quad (x, \mathbf{y}) \mapsto ig(\mathcal{T}_eta(x), eta \cdot \mathbf{y} - \delta'(\lfloor eta x
floor)))$$

- $(\mathscr{X}, \mathscr{B}, \mu, \mathscr{T}_{\beta})$ is a natural extension of $([0, 1), B, \mu \circ \pi^{-1}, T_{\beta})$.
- $\mathbb{K}_{\beta} = \mathscr{X} + \delta(\mathbb{Z}[\beta^{-1}]).$
- $x \in Pur(\beta)$ if and only if $x \in \mathbb{Q}(\beta)$, $\delta(x) \in \mathscr{X}$.

Natural extension

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Tribonacci natural extension in $\mathbb{R} \times \mathbb{C}$:

Natural extension associated to $\beta^2 = 2\beta + 2$ in $\mathbb{R}^2 \times \mathbb{Q}_2^2$:

What we want is that these natural extensions are conjugate to toral/solenoidal automorphisms!

Framework: β **non-unit**.

Integral β -tiles For $x \in \mathbb{Z}[\beta] \cap [0, 1)$,

$$\mathcal{S}(x) = \{(z_\mathfrak{p}) \in \mathcal{R}(x) : z_\mathfrak{p} = 0 \hspace{0.2cm} ext{for each} \hspace{0.2cm} \mathfrak{p} \mid (eta)\}$$

Properties:

1 $\mathcal{S}(x)$ form "slices" of $\mathcal{R}(0)$ and of \mathcal{X} . **2** $\mathcal{S}(x) \neq \emptyset$ iff $x \in \mathbb{Z}[\beta]$. **3** $\mathcal{S}(x) = \lim_{k \to \infty} \delta'_{\infty}(\beta^k(T_{\beta}^{-k}(x) \cap \mathbb{Z}[\beta])) \in K'_{\infty}$.

(ロ)、

Let $Z' = K'_{\infty} \times \prod_{\mathfrak{p}|(\beta)} \overline{\delta_{\mathbf{f}}(\mathbb{Z}[\beta])}$ be the stripe space.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Let $Z' = K'_{\infty} \times \prod_{\mathfrak{p}|(\beta)} \overline{\delta_{\mathbf{f}}(\mathbb{Z}[\beta])}$ be the stripe space.

Figure : A patch of $C_{per} = \{\delta'(x) + \mathcal{R}(0) : x \in \mathbb{Z} (\beta-3)\}, \ \beta^2 = 2\beta + 2.$

Theorem (M., Steiner 2013)

Let β be a Pisot number. Then the collections C_{ext} , C_{aper} , and C_{int} are multiple tilings of \mathbb{K}_{β} , \mathbb{K}'_{β} , and \mathbb{K}'_{∞} , respectively, and they all have the same covering degree. The following statements are equivalent:

- 1 All collections \mathcal{C}_{ext} , \mathcal{C}_{aper} , and \mathcal{C}_{int} are tilings.
- 0 One of the collections \mathcal{C}_{ext} , \mathcal{C}_{aper} , and \mathcal{C}_{int} is a tiling.
- m One of the collections \mathcal{C}_{ext} , \mathcal{C}_{aper} , and \mathcal{C}_{int} has an exclusive point.
- 💿 Property (W) holds.
- The spectral radius of the boundary graph is less than β .

If (QM) holds, then the following statement is also equivalent to the ones above:

🕥 $\mathcal{C}_{
m per}$ is a tiling of Z' .

Thanks for the attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○