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Reducible Pisot substitutions

Hokkaido substitution associated with the minimal Pisot number:

σ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

Mσ =

(
1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
, f (x)g(x) = (x3 − x − 1)(x2 − x + 1)

Dominant root β of f (x) is the smallest Pisot number. The substitution
σ is a reducible unit Pisot substitution.

Mσ-invariant decomposition: R5 = Kβ ⊕H.

Mσ|Kβ
is hyperbolic and induces an expanding/contracting decomposition

Kβ = Ke ×Kc = R× C.



Geometric representation

σ : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1

• Projection of vertices of a
broken line.

1 23 4 5 1 1 2 1 23

• Embedded beta numeration
integers:∑
k≥0

δc(dkβ
k), (dk) ≤lex (1)β



Problems

Framework: reducible Pisot substitutions.

Remark: Pisot conjecture is false → e.g. Thue-Morse.

Some problems (Ei, Ito 05), (Ei, Ito, Rao 06):

1 No de�nition as Hausdor� limit of renormalized patches of polygons.

2 No geometric representation for stepped surfaces.

3 No periodic (multiple) tiling.

We show that indeed we can have all of them!!!
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Dual substitutions

(Arnoux, Ito 01) formalism for irreducible Pisot substitutions.

Action of the substitution on 1-dimensional faces → broken line
For (x, a) ∈ Zd ×A

E1(σ)(x, a) =
∑

σ(a)=pbs

(Mσx + l(p), b)

Dual action on (d − 1)-dimensional faces:

E∗1(σ)(x, a)∗ =
∑

σ(b)=pas

(M−1σ (x− l(p)), b)∗



Hausdorff limits

R(a) = lim
k→∞

πc(Mk
σ E
∗
1(σ)k(0, a)∗)
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Stepped surfaces

Set of coloured points �near� to Kc :

Γ = {(x, a) ∈ Zd ×A : x ∈ (Kc)≥, x− ea ∈ (Kc)<}

• E∗1(σ)(Γ) = Γ → self-replicating property (Kenyon).

• Aperiodic translation set (Delone set) for a self-replicating multiple
tiling made of Rauzy fractals.

• Geometric representation as an arithmetic discrete model of the
hyperplane Kc , whose projection is a polygonal tiling.
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Higher dimensional dual maps

Reducible case: n = #A > d = deg(β).
We can still de�ne Γ but the existence of geometric representations of
stepped surfaces is unclear.

We want to work with (d − 1)-dimensional faces! The dual map
E∗n−d+1(σ) will suit:

E∗n−d+1(σ)(x, a)∗ =
∑
b

p
−→a

(
M−1σ (x− l(p)), b

)∗
Remarks:

• E∗n−d+1(σ) acts on
(

n

n−d+1

)
oriented faces.

• If σ is irreducible n = d and E∗n−d+1(σ) = E∗1(σ).

• Ek(σ) and E∗k(σ) commute in general with boundary and
coboundary operators (Sano, Arnoux, Ito 2001).

• Similar approach for the study of a free group automorphism
associated with a complex Pisot root
(Arnoux, Furukado, Harriss, Ito 2011).
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Stepped surfaces

Let U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}. We have U ⊂ E∗3(σ)5(U).
Consider

ΓU =
⋃
k≥0

E∗3(σ)5k(U)
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Stepped surfaces

Let U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}. We have U ⊂ E∗3(σ)5(U).
Consider

ΓU =
⋃
k≥0

E∗3(σ)5k(U)

• Regularity: E∗3(σ)(0, a)∗ in
good position, ∀a.

• Geometric �niteness

property: πc(ΓU ) covers Kc
β .

• πc(ΓU ) is a polygonal tiling.



Rauzy fractals and tilings

Rauzy fractals: R(a) + πc(x) = limk→∞ πc(Mk
σ E
∗
n−d+1(σ)k(x, a)∗).

Properties:

• if neutral polynomial has only roots of modulus one

R(a) + πc(x) =
⋃

(y,b)∈E∗
n−d+1

(σ)(x,a)

β ·
(
R(b) + πc(y)

)
,

where the union is measure disjoint.

• compact with nonzero measure.

• closure of the interior.

• boundary has zero measure.



Rauzy fractals and tilings

Rauzy fractals: R(a) + πc(x) = limk→∞ πc(Mk
σ E
∗
n−d+1(σ)k(x, a)∗).

The collection {R(a) + πc(x) : (x, a)∗ ∈ ΓU} is a self-replicating tiling.
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Periodic tilings

Recall: the original Hokkaido tile can not tile periodically (Ei, Ito 2005)

U = {(0, 2 ∧ 3), (0, 2 ∧ 4), (0, 3 ∧ 4)}.

• The patch πc(U) tiles periodically by
the lattice
ΛU = πc((e4 − e3)Z + (e4 − e2)Z).

• RU + ΛU is a periodic tiling.

• Do you see the original Hokkaido tile?
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Broken lines and codings

We have a broken line in R5 which is the geometrical interpretation of
the �xed point u of σ:

u =
⋃
i≥1

{(l(u0u1 · · · ui−1), ui )},

where (x, i) denotes the segment from x to x + ei .

Being reducible means that some linear dependencies arise when we
project the basis vectors {ea}a∈A from R5 to R3:

π(e1) = π(e3) + π(e4), π(e5) = π(e2) + π(e3)

Combinatorially this is equivalent to applying the coding

χ : 1 7→ 34, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 32.



Broken lines and codings

E�ect of the coding χ:

1 23 4 5 1 1 2 1 2 3

3 4 23 4 323 34 4 3 42 2 3

In this process we converted the
substitution into an irreducible one!

Project now the vertices of the new
broken line. . .
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Domain exchange

• (T ,ET ) is a domain exchange on the
original Hokkaido tile.

ET : T (a) 7→ T (a) + πc(ea), a ∈ A

• (R,E ) is a toral translation, since it
induces a periodic tiling of C.

E : R(a) 7→ R(a)+πc(ea), a ∈ {2, 3, 4}

• ET is the �rst return of E on T .



Codings of the domain exchange

Let Ω = {Skw : k ∈ N}, where w = χ(u) is the coded �xed point of σ.

We have the following commutative diagram:

Xσ
χ //

S

��

Ω
φ //

S

��

R //

E

��

C/Λ

E

��
Xσ

χ // Ω
φ // R // C/Λ

φ measure conjugation.

We can generalize what shown for the family of substitutions

σt : 1 7→ 1t+12, 2 7→ 3, 3 7→ 4, 4 7→ 1t5, 5 7→ 1



Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!



Irreducibilifying

Guiding philosophy: try to turn the substitution into an irreducible one!

Figure : Changing suitably the projection we get di�erent polygonal tilings by

some faces of three di�erent types.



Remarks and perspectives

Important hypotheses:

• Regularity → projection of patches onto Kc behaves well.

• Geometric �niteness property → covering property for the stepped
surface.

• Roots of the neutral polynomial of modulus one → measure
disjointness in the set equation.

• Strong coincidence condition → domain exchange.
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Remarks and perspectives

Perspectives:

• Can we generalize these constructions to every reducible Pisot
substitution?

• Characterization of the points of the stepped surfaces as in the
irreducible case?

• Is χ ◦ σ a new (irreducible) substitution?

• In�uence of the neutral space in the dynamics?

• When are �rst returns of rotations on compact groups again
rotations?

• Cohomology? (Barge, Bruin, Jones, Sadun 2012)

• Pisot conjecture for reducible substitutions?


