

Substitution dynamical systems

A substitution is an endomorphism of the free monoid \mathcal{A}^* , where \mathcal{A} is a finite alphabet. **Tribonacci substitution**: $\sigma(1) = 12$, $\sigma(2) = 13, \ \sigma(3) = 1$, example of *irreducible unit Pisot* substitution β root of $\det(xI - M_{\sigma}) = x^3 - x^2 - x - 1$

We study the symbolic dynamical system (X_{σ}, S) generated by a Pisot substitution σ :

 $X_{\sigma} = \overline{\{S^n \mathbf{u} \mid n \in \mathbb{N}\}}$

where $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is a fixed point of σ and S is the shift.

 (X_{σ}, S) is minimal, uniquely ergodic and has entropy zero.

Rauzy 1982: For the Tribonacci substitution (X_{σ}, S) is measurably conjugate to a minimal toral translation (\mathbb{T}^2, τ) .

Pisot conjecture

For irred. Pisot substitutions (X_{σ}, S) has pure discrete spectrum.

Rauzy fractals

Pisot condition: expanding direction \oplus contracting hyperplane. $u = \sigma^{\infty}(1) = 1213121121312131211213 \dots \in \mathcal{A}^{\mathbb{N}}$

Rauzy fractal:

 $\mathcal{R}_a = \overline{\{\pi_c \circ P(u_0 \cdots u_{n-1}) \mid n \in \mathbb{N}, u_n = a\}}, \quad \mathcal{R} = \bigcup_{a \in \mathcal{A}} \mathcal{R}_a$

Connection with *Dumont-Thomas* and *beta numeration*. Points of the broken line correspond to β -integers $\sum_{i>0} d_i \beta^i$ (Thurston 1989).

Properties of Rauzy fractals: $\mathcal{R}(x) = \bigcup_{k \ge 0} \delta'(\beta^k T_{\beta}^{-k}(x))$

- are compact with non-zero Haar measure.
- are the closure of their interior.
- have fractal boundary with zero Haar measure.
- are self-similar (GIFS): $\mathcal{R}(x) = \bigcup_{y \in T^{-1}(x)} \beta \mathcal{R}(y)$
- $\mathcal{C}_{aper} = \{\mathcal{R}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ is an aperiodic multiple tiling.

Rauzy fractals and tilings Milton Minervino

University of Leoben, Austria

Geometrical approach

The Strong Coincidence Condition (SCC) holds: the subtiles are disjoint in measure.

Domain exchange transformation:

 $E: \mathcal{R} \to \mathcal{R}, \quad \mathbf{z} \mapsto \mathbf{z} + \pi_c(\mathbf{e}_a) \quad \text{for} \quad \mathbf{z} \in \mathcal{R}_a$

- The action of E on \mathcal{R} is coded by (X_{σ}, S) thanks to the partition given by the subtiles.
- Consider the lattice $\Lambda = \sum_{a \in \mathcal{A}} \mathbb{Z}(\pi_c(\mathbf{e}_a) \pi_c(\mathbf{e}_1))$: all translation directions of E are identified.

• If $C_{per} = \mathcal{R} + \Lambda$ is a **tiling** of \mathbb{C} , then we have the conjugation with the toral translation $(\mathbb{C}/\Lambda, \tau)$.

This geometrical approach can be extended to any irred. unit Pisot substitution (Arnoux, Ito 2001).

Natural extension

Suspend the Rauzy fractals with intervals (numeration helps): $\mathcal{X} = \bigcup_{i=1}^{m-1} [v_i, v_{i+1}) \times (\delta'(v_i) + \mathcal{T}_{\beta} : \mathcal{X} \to \mathcal{X}, \quad (x, \mathbf{y}) \mapsto (T_{\beta}(x), \mathbf{y})$

- $(\mathcal{X}, \mathcal{B}, \mu, \mathcal{T}_{\beta})$ is a natural extension of $([0,1), B, \mu \circ \pi^{-1}, T_{\beta}).$
- $\mathbb{K}_{\beta} = \mathcal{X} + \delta(\mathbb{Z}[\beta^{-1}])$. Tiling \rightarrow Markov partition for toral automorphisms.
- $x \in \operatorname{Pur}(\beta)$ if and only if $x \in \mathbb{Q}(\beta)$, $\delta(x) \in \mathcal{X}.$

$$-\mathcal{R}(v_i)),$$

$$\beta \cdot \mathbf{y} - \delta'(\lfloor \beta x \rfloor) \big)$$

Beyond irreducibility and unimodularity

- Kwapisz 2006)! Easy example: Thue-Morse.

• If β is not a unit we enlarge the representation space so that β becomes a unit therein. Let $K = \mathbb{Q}(\beta)$.

Representation space:

finite extension of \mathbb{Q}_p , for $\mathfrak{p} \mid (p), \ |\cdot|_{\mathfrak{p}} = \mathfrak{N}(\mathfrak{p})^{-v_{\mathfrak{p}}(\cdot)}$. δ, δ' diagonal embeddings of K.

Theorem (M., Steiner 2013) In the β -numeration context, β Pisot, C_{ext} , C_{aper} , C_{int} and C_{per} are multiple tilings with same covering degree. They are all tilings provided one of them is a tiling. A spectral condition on a certain boundary graph and a weak finiteness property (W) are necessary and sufficient conditions to get tilings.

• In the reducible case Pisot conjecture is false (Barge, Baker, • No known example of β -substitution failing the Pisot conjecture.

• Problems with periodic tiling due to $\#\mathcal{A} > \deg(\beta)$. Domain

exchange related to the first return to \mathcal{R} under a total translation.

Figure 1: Domain exchange on \mathcal{R} for the minimal Pisot number $\beta^3 = \beta + 1$.

 $\mathbb{K}_{\beta} := K_{\infty} \times \prod_{\mathfrak{p}|(\beta)} K_{\mathfrak{p}} \subset \mathbb{A}_{K}$

where $K_{\infty} = \mathbb{R}^r \times \mathbb{C}^s$, abs. values given by Galois embeddings, $K_{\mathfrak{p}}$

 $\mathbb{K}_{\beta} = K_{\mathfrak{p}_1} \times \mathbb{K}'_{\beta}$ unstable-stable decomposition under mult. by β ,

Figure 2: Patch $\beta^{-2} \mathcal{R}(0)$ of \mathcal{C}_{aper} and integral beta-tiles, $\beta^2 = 2\beta + 2$.

Tilings