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Escaping unimodularity

o The geometry of non-unit Pisot substitutions, with J. Thuswaldner.

e Work in progress, with W. Steiner.
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Figure : T for 8 = 8%+ B+ 1.

Beta numeration

Let 8 > 1 be a real number. Define
Ts:[0,1) — [0,1)
x = fBx — | Bx]
Every real x € [0,1] has a 3-expansion:
(x)g = .didads - -
with d; € A={0,1,...,[8] — 1}.

([0,1), Tp) is conjugate to a subshift, the
admissibility depending on (1)g.

For Pisot (3, the subshift is either sofic or of
finite type.



The representation space

Where numeration, geometry and number theory join

Framework: S Pisot number.

Consider the number field K = Q(8) and the finite set of places
S=5.U{p:p|(B)}. The representation space is

Ks::KOCxHKp:HKp

pl(B) peS

where
e Ko =K®gR=R"xC".
e K, finite extension of Qp, for p | (p).



The representation space

Where numeration, geometry and number theory join

Framework: S Pisot number.

Consider the number field K = Q(8) and the finite set of places
S=5.U{p:p|(B)}. The representation space is

Ks := Ky X HKp:HKp
pl(B) pesS

where
e Kw=K®gRX=R"xC".
e K, finite extension of Qp, for p | (p).
Cut out the first (expanding) place: Ks\¢,,}. Here xj3 is a contraction!

Embed K into Ks, Ks\(p,} diagonally by 4, ¢'.



The x-tiles

Beta tiles
For x € Z[~1]N[0,1),

k>0

T(x) = J 5B T;5(x)) € Ks\(pu)




Beta tiles

The x-tiles
For x € Z[~1] N [0,1),

Cut and project scheme:

R HLES Ks T Ks\(pa)
@] @] @]
zip™ szlp) v

e 5(Z[B71]) is a lattice in Ks.
e §'(Z[71]N[0,1)) is a Delone set in Ks\ (5,1



Rauzy fractals

Rauzy fractals: 7(x)

e are compact with
non-zero Haar measure.

e are the closure of their
interior.

e their fractal boundary
has zero Haar measure.

e are self-similar (IFS).

e provide a multiple tiling
of Ks\{pa}-

e under some conditions
provide a tiling.

[m] =5 =




Rauzy fractals

Let 3% = 23 4 2. Representation space: R x K(5) = R x Q3.
O(a)
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Figure : 7(0) for 8> =23 +2.
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Figure : 87T(0) for 82 = 28 + 2.



Rauzy fractals

Let 3% = 283 + 2. Representation space: R x K(B) >R x Q%.

Kis)

4

2 2 4 6 é R
Figure : 872T(0) for 82 = 2 + 2.



Natural extension

Let V ={w1,..., v} with the v; € {Tg(l) :k >0} U{0} ordered
increasingly. Define

m—1
X = U [Vi, vit1) x (8'(vi) = T(vi),
-1

To: X5 X, (x,y) = (Ta(x), 8y —8'(|Bx]))
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Let V ={w1,..., v} with the v; € {Tg(l) :k >0} U{0} ordered
increasingly. Define

m—1
X = U [Vi, vit1) x (8'(vi) = T(vi),
-1

To: X5 X, (x,y) = (Ta(x), 8y —8'(|Bx]))

Theorem
(X,Qg,,u, 7’5) is a natural extension of ([0,1), Z,uon1, Tp). J

Purely periodic expansions ([Ito, Rao '06], [Berthé, Siegel '07])
x € 0,1) has a purely periodic S-expansion iff §(x) € X. }
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Smallest Pisot number natural
extension in R x C:
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Natural extension

Smallest Pisot number natural Natural extension associated to
extension in R x C: B? =2B8+2in R? x Q3%

What we want is that these natural extensions are conjugate to
toral/solenoidal automorphisms!



Equivalent conditions for tiling

Inspired by [Ito, Rao 2006]:

Theorem
The following are equivalent:
e cl(X)+ 6(Z[B7]) forms a tiling of Ks.
o {T(x): x € Z[37']N[0,1)} forms an aperiodic tiling of Kg\ p,}-
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Integral [-tiles

Kis)

Figure : (Multiple) Tiling of R x K(s) induced by 5*> = 23 + 2.



Integral [-tiles

Integral (-tiles
For x € Z[~1] N [0,1),

S(x) = {(zp)pes\(pay € T(x) : 5 =0 for each p | (5)}
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Remarks:

@ S(x) form “slices” of T(0) and of X.
(Main tool: Strong approximation theorem)

S(x) # 0 iff x € Z[A].
® For x e Z[7]n[0,1),

S(x) = Lim &, (8*(T5*(x) N Z[B))) € KL
S(x) — 0., (x) is close to S(y) — 0., (y) if [x — y|p is small Vp | (B).

) —
S(x) are SRS tiles ([Berthé, Siegel, Steiner et al., 2011]).
@ {8(x) : x € Z[37*]N[0,1)} forms a weak m-tiling of K/_.
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Back to equivalent conditions for tiling

Theorem [M., Steiner 2017]
The following are equivalent:
o cl(X) + §(Z[B1]) forms a tiling of Ks.
o {T(x): x € Z[37']N[0,1)} forms an aperiodic tiling of Kg\ p,}-
e {8(x):x € Z[B ] N[0,1)} forms a weak tiling of K.
e (W) holds.

— Integral S-tiles provide an easy proof that for quadratic Pisot
numbers the statements above hold!

Property (W):

VyeP, 3zeZ[BN[0,e), k>0: Th(y +2)=Th(z) =0
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For 8 Pisot number, v(3) is the supremum of the r € [0, 1] such that all
g € QN (0, r] with ged(g, N(B)) = 1 have a purely periodic S-expansion.

e () is deeply related with the boundary graph ([Akiyama, Barat,
Berthé, Siegel 2008]).

e |t is possible to describe this graph with integral [-tiles.



One application: v(5)

For 8 Pisot number, v(3) is the supremum of the r € [0, 1] such that all
5 € QN (0, r] with ged(g, N(B)) = 1 have a purely periodic S-expansion.

e () is deeply related with the boundary graph ([Akiyama, Barat,
Berthé, Siegel 2008]).

e |t is possible to describe this graph with integral [-tiles.

Case: f2=af+ b, a>b>1.
Additional condition: ged(a, b) =1 = Q dense in [, 5 Kp-

Then

1b@b+1ﬁ)

+(8) = max (o, e
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Thanks for the attention!
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