Escaping unimodularity for Pisot numeration

Milton Minervino

University of Leoben, Austria Doctoral program in Discrete Mathematics

January 14, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

- The geometry of non-unit Pisot substitutions, with J. Thuswaldner.
- Work in progress, with W. Steiner.

Beta numeration

Figure : T_{β} for $\beta^3 = \beta^2 + \beta + 1$.

Let $\beta > 1$ be a real number. Define

7

١

$$egin{aligned} & \overline{eta} : [0,1)
ightarrow [0,1) \ & x \mapsto eta x - \lfloor eta x \rfloor \end{aligned}$$

Every real $x \in [0, 1]$ has a β -expansion:

$$(x)_{\beta} = .d_1d_2d_3\cdots$$

with
$$d_i \in \mathcal{A} = \{0, 1, \dots, \lceil \beta \rceil - 1\}.$$

 $([0,1), T_{\beta})$ is conjugate to a *subshift*, the admissibility depending on $(1)_{\beta}$.

For Pisot β , the subshift is either sofic or of finite type.

イロト 不得 トイヨト イヨト ヨー ろくで

The representation space

ション ふゆ アメリア ショー シック

Where numeration, geometry and number theory join

Framework: β Pisot number.

Consider the number field $K = \mathbb{Q}(\beta)$ and the finite set of places $S = S_{\infty} \cup \{\mathfrak{p} : \mathfrak{p} \mid (\beta)\}$. The *representation space* is

$$\mathcal{K}_{\mathcal{S}} := \mathcal{K}_{\infty} imes \prod_{\mathfrak{p} \mid (eta)} \mathcal{K}_{\mathfrak{p}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathcal{K}_{\mathfrak{p}}$$

where

•
$$K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^r \times \mathbb{C}^s$$
.

• $K_{\mathfrak{p}}$ finite extension of \mathbb{Q}_p , for $\mathfrak{p} \mid (p)$.

The representation space

ション ふゆ アメリア ショー シック

Where numeration, geometry and number theory join

Framework: β Pisot number.

Consider the number field $K = \mathbb{Q}(\beta)$ and the finite set of places $S = S_{\infty} \cup \{\mathfrak{p} : \mathfrak{p} \mid (\beta)\}$. The *representation space* is

$$\mathcal{K}_{\mathcal{S}} := \mathcal{K}_{\infty} imes \prod_{\mathfrak{p} \mid (eta)} \mathcal{K}_{\mathfrak{p}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathcal{K}_{\mathfrak{p}}$$

where

•
$$K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^r \times \mathbb{C}^s$$
.

• $K_{\mathfrak{p}}$ finite extension of \mathbb{Q}_p , for $\mathfrak{p} \mid (p)$.

Cut out the first (expanding) place: $K_{S \setminus \{p_1\}}$. Here $\times \beta$ is a contraction! Embed K into K_S , $K_{S \setminus \{p_1\}}$ diagonally by δ , δ' .

Beta tiles

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

The x-tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $\mathcal{T}(x) = \overline{\bigcup_{k \ge 0} \delta'(\beta^k T_{\beta}^{-k}(x))} \in K_{S \setminus \{\mathfrak{p}_1\}}$

Beta tiles

うして ふぼう ふほう ふほう しょう

The x-tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$, $\mathcal{T}(x) = \overline{\bigcup_{k \ge 0} \delta'(\beta^k T_{\beta}^{-k}(x))} \in \mathcal{K}_{S \setminus \{\mathfrak{p}_1\}}$

Cut and project scheme:

- $\delta(\mathbb{Z}[\beta^{-1}])$ is a lattice in K_S .
- $\delta'(\mathbb{Z}[\beta^{-1}] \cap [0,1))$ is a Delone set in $\mathcal{K}_{S \setminus \{\mathfrak{p}_1\}}$.

Rauzy fractals: $\mathcal{T}(x)$

- are compact with non-zero Haar measure.
- are the closure of their interior.
- their fractal boundary has zero Haar measure.
- are self-similar (IFS).
- provide a multiple tiling of K_{S\{p1}}.
- under some conditions provide a tiling.

Figure : Euclidean Rauzy fractals by T. Jolivet

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $\beta^2 = 2\beta + 2$. Representation space: $\mathbb{R} \times \mathcal{K}_{(\beta)} \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\mathcal{T}(0)$ for $\beta^2 = 2\beta + 2$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Let $\beta^2 = 2\beta + 2$. Representation space: $\mathbb{R} \times \mathcal{K}_{(\beta)} \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\beta^{-1}\mathcal{T}(0)$ for $\beta^2 = 2\beta + 2$.

Э

Let $\beta^2 = 2\beta + 2$. Representation space: $\mathbb{R} \times \mathcal{K}_{(\beta)} \cong \mathbb{R} \times \mathbb{Q}_2^2$.

Figure : $\beta^{-1}\mathcal{T}(0)$ for $\beta^2 = 2\beta + 2$.

Э

Figure : $\beta^{-2}\mathcal{T}(0)$ for $\beta^2 = 2\beta + 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $V = \{v_1, \ldots, v_m\}$ with the $v_i \in \{T^k_\beta(1) : k \ge 0\} \cup \{0\}$ ordered increasingly. Define

$$\mathcal{X} = \bigcup_{i=1}^{m-1} [v_i, v_{i+1}) \times (\delta'(v_i) - \mathcal{T}(v_i)),$$
$$\widetilde{\mathcal{T}}_{\beta} : \mathcal{X} \to \mathcal{X}, \quad (x, \mathbf{y}) \mapsto (\mathcal{T}_{\beta}(x), \beta \cdot \mathbf{y} - \delta'(\lfloor \beta x \rfloor))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $V=\{v_1,\ldots,v_m\}$ with the $v_i\in\{T^k_\beta(1):k\ge 0\}\cup\{0\}$ ordered increasingly. Define

$$\mathcal{X} = \bigcup_{i=1}^{m-1} [v_i, v_{i+1}) \times (\delta'(v_i) - \mathcal{T}(v_i)),$$
$$\widetilde{\mathcal{T}}_{\beta} : \mathcal{X} \to \mathcal{X}, \quad (x, \mathbf{y}) \mapsto (\mathcal{T}_{\beta}(x), \beta \cdot \mathbf{y} - \delta'(\lfloor \beta x \rfloor))$$

Theorem

$$(\mathcal{X},\widetilde{\mathscr{B}},\mu,\widetilde{T}_eta)$$
 is a natural extension of $([0,1),\mathscr{B},\mu\circ\pi^{-1},T_eta)$.

Let $V = \{v_1, \ldots, v_m\}$ with the $v_i \in \{T^k_\beta(1) : k \ge 0\} \cup \{0\}$ ordered increasingly. Define

$$\mathcal{X} = \bigcup_{i=1}^{m-1} [v_i, v_{i+1}) \times (\delta'(v_i) - \mathcal{T}(v_i)),$$
$$\widetilde{\mathcal{T}}_{\beta} : \mathcal{X} \to \mathcal{X}, \quad (x, \mathbf{y}) \mapsto (\mathcal{T}_{\beta}(x), \beta \cdot \mathbf{y} - \delta'(\lfloor \beta x \rfloor))$$

Theorem

$$(\mathcal{X},\widetilde{\mathscr{B}},\mu,\widetilde{\mathcal{T}}_eta)$$
 is a natural extension of $([0,1),\mathscr{B},\mu\circ\pi^{-1},\mathcal{T}_eta)$.

Purely periodic expansions ([Ito, Rao '06], [Berthé, Siegel '07]) $x \in [0, 1)$ has a purely periodic β -expansion iff $\delta(x) \in \mathcal{X}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

イロト 不得 トイヨト イヨト ヨー ろくぐ

Smallest Pisot number natural extension in $\mathbb{R} \times \mathbb{C}$:

Natural extension associated to $\beta^2 = 2\beta + 2$ in $\mathbb{R}^2 \times \mathbb{Q}_2^2$:

What we want is that these natural extensions are conjugate to toral/solenoidal automorphisms!

Equivalent conditions for tiling

Inspired by [Ito, Rao 2006]:

Theorem

The following are equivalent:

- $\operatorname{cl}(\mathcal{X}) + \delta(\mathbb{Z}[\beta^{-1}])$ forms a tiling of K_{S} .
- $\{\mathcal{T}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms an aperiodic tiling of $K_{S \setminus \{\mathfrak{p}_1\}}$.

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < の<</p>

э

Figure : (Multiple) Tiling of $\mathbb{R} \times K_{(\beta)}$ induced by $\beta^2 = 2\beta + 2$.

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへぐ

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへぐ

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへぐ

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Integral β -tiles For $x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)$, $S(x) = \{(z_p)_{p \in S \setminus \{p_1\}} \in \mathcal{T}(x) : z_p = 0 \text{ for each } p \mid (\beta)\}$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remarks:

S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Remarks:

- S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)
- $\mathfrak{S}(x) \neq \emptyset \text{ iff } x \in \mathbb{Z}[\beta].$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Remarks:

S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)

- **2** $\mathcal{S}(x) \neq \emptyset$ iff $x \in \mathbb{Z}[\beta]$.
- **3** For $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$,

$$\mathcal{S}(x) = \lim_{k \to \infty} \delta'_{\infty}(\beta^k(T_{\beta}^{-k}(x) \cap \mathbb{Z}[\beta])) \in K'_{\infty}$$

イロト 不得 トイヨト イヨト ヨー ろくで

Remarks:

S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)

- **2** $\mathcal{S}(x) \neq \emptyset$ iff $x \in \mathbb{Z}[\beta]$.
- **3** For $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$,

$$\mathcal{S}(x) = \lim_{k o \infty} \delta'_\infty(eta^k(\mathcal{T}_eta^{-k}(x) \cap \mathbb{Z}[eta])) \in \mathcal{K}'_\infty$$

Remarks:

S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)

- **2** $\mathcal{S}(x) \neq \emptyset$ iff $x \in \mathbb{Z}[\beta]$.
- **3** For $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$,

$$\mathcal{S}(x) = \lim_{k o \infty} \delta'_\infty(eta^k(\mathcal{T}_eta^{-k}(x) \cap \mathbb{Z}[eta])) \in \mathcal{K}'_\infty$$

𝔅 S(x) - δ'_∞(x) is close to S(y) - δ'_∞(y) if |x - y|_p is small ∀ p | (β).
𝔅 S(x) are SRS tiles ([Berthé, Siegel, Steiner et al., 2011]).

イロト 不得 トイヨト イヨト ヨー ろくで

Remarks:

S(x) form "slices" of T(0) and of X.
 (Main tool: Strong approximation theorem)

- **2** $\mathcal{S}(x) \neq \emptyset$ iff $x \in \mathbb{Z}[\beta]$.
- **3** For $x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)$,

$$\mathcal{S}(x) = \lim_{k o \infty} \delta'_\infty(eta^k(\mathcal{T}_eta^{-k}(x) \cap \mathbb{Z}[eta])) \in \mathcal{K}'_\infty$$

• $\mathcal{S}(x) - \delta'_{\infty}(x)$ is close to $\mathcal{S}(y) - \delta'_{\infty}(y)$ if $|x - y|_{\mathfrak{p}}$ is small $\forall \mathfrak{p} \mid (\beta)$. • $\mathcal{S}(x)$ are SRS tiles ([Berthé, Siegel, Steiner et al., 2011]). • $\{\mathcal{S}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0, 1)\}$ forms a weak *m*-tiling of K'_{∞} .

Back to equivalent conditions for tiling

Theorem [M., Steiner 201?]

The following are equivalent:

- $\operatorname{cl}(\mathcal{X}) + \delta(\mathbb{Z}[\beta^{-1}])$ forms a tiling of K_{S} .
- $\{\mathcal{T}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms an aperiodic tiling of $K_{S \setminus \{\mathfrak{p}_1\}}$.

Back to equivalent conditions for tiling

うして ふぼう ふほう ふほう しょう

Theorem [M., Steiner 201?]

The following are equivalent:

- $\operatorname{cl}(\mathcal{X}) + \delta(\mathbb{Z}[\beta^{-1}])$ forms a tiling of K_{S} .
- $\{\mathcal{T}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms an aperiodic tiling of $K_{S \setminus \{\mathfrak{p}_1\}}$.
- $\{\mathcal{S}(x): x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms a weak tiling of K'_{∞} .

うして ふぼう ふほう ふほう しょう

Theorem [M., Steiner 201?]

The following are equivalent:

- $\operatorname{cl}(\mathcal{X}) + \delta(\mathbb{Z}[\beta^{-1}])$ forms a tiling of K_{S} .
- $\{\mathcal{T}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms an aperiodic tiling of $K_{S \setminus \{\mathfrak{p}_1\}}$.
- $\{\mathcal{S}(x): x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms a weak tiling of K'_{∞} .

 $\rightarrow\,$ Integral $\beta\text{-tiles}$ provide an easy proof that for **quadratic Pisot numbers** the statements above hold!

うして ふぼう ふほう ふほう しょう

Theorem [M., Steiner 201?]

The following are equivalent:

- $\operatorname{cl}(\mathcal{X}) + \delta(\mathbb{Z}[\beta^{-1}])$ forms a tiling of K_{S} .
- $\{\mathcal{T}(x) : x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms an aperiodic tiling of $K_{S \setminus \{\mathfrak{p}_1\}}$.
- $\{\mathcal{S}(x): x \in \mathbb{Z}[\beta^{-1}] \cap [0,1)\}$ forms a weak tiling of K'_{∞} .
- (W) holds.

 $\rightarrow\,$ Integral $\beta\text{-tiles}$ provide an easy proof that for **quadratic Pisot numbers** the statements above hold!

Property (W):

$$orall \, y \in P$$
, $\exists \, z \in \mathbb{Z}[eta^{-1}] \cap [0,arepsilon), \, k \geq 0: \; T^k_eta(y+z) = T^k_eta(z) = 0$

One application: $\gamma(\beta)$

ション ふゆ アメリア ショー シック

For β Pisot number, $\gamma(\beta)$ is the supremum of the $r \in [0,1]$ such that all $\frac{p}{q} \in \mathbb{Q} \cap (0,r]$ with $gcd(q, N(\beta)) = 1$ have a purely periodic β -expansion.

- $\gamma(\beta)$ is deeply related with the *boundary graph* ([Akiyama, Barat, Berthé, Siegel 2008]).
- It is possible to describe this graph with integral β -tiles.

One application: $\gamma(\beta)$

For β Pisot number, $\gamma(\beta)$ is the supremum of the $r \in [0,1]$ such that all $\frac{p}{q} \in \mathbb{Q} \cap (0,r]$ with $gcd(q, N(\beta)) = 1$ have a purely periodic β -expansion.

- γ(β) is deeply related with the *boundary graph* ([Akiyama, Barat, Berthé, Siegel 2008]).
- It is possible to describe this graph with integral β -tiles.

 $\begin{array}{l} \underline{\mathsf{Case}}:\ \beta^2 = a\beta + b,\ a \geq b \geq 1.\\ \text{Additional condition: } \gcd(a,b) = 1 \ \Rightarrow \ \mathbb{Q} \ \text{dense in } \prod_{\mathfrak{p}|(\beta)} K_{\mathfrak{p}}. \end{array}$

Then

$$\gamma(\beta) = \max\left(0, \frac{1-b-(a-b+1)\bar{\beta}}{1-\bar{\beta}^2}\right)$$

Thanks for the attention!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへの