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Escaping unimodularity

• The geometry of non-unit Pisot substitutions, with J. Thuswaldner.

• Work in progress, with W. Steiner.



Beta numeration
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Figure : Tβ for β3 = β2 + β + 1.

Let β > 1 be a real number. De�ne

Tβ : [0, 1)→ [0, 1)

x 7→ βx − bβxc

Every real x ∈ [0, 1] has a β-expansion:

(x)β = .d1d2d3 · · ·

with di ∈ A = {0, 1, . . . , dβe − 1}.

([0, 1),Tβ) is conjugate to a subshift, the
admissibility depending on (1)β .

For Pisot β, the subshift is either so�c or of
�nite type.



The representation space
Where numeration, geometry and number theory join

Framework: β Pisot number.

Consider the number �eld K = Q(β) and the �nite set of places
S = S∞ ∪ {p : p | (β)}. The representation space is

KS := K∞ ×
∏
p|(β)

Kp =
∏
p∈S

Kp

where

• K∞ = K ⊗Q R ∼= Rr × Cs .

• Kp �nite extension of Qp, for p | (p).

Cut out the �rst (expanding) place: KS\{p1}. Here ×β is a contraction!

Embed K into KS , KS\{p1} diagonally by δ, δ′.
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Beta tiles

The x-tiles

For x ∈ Z[β−1] ∩ [0, 1),

T (x) =
⋃
k≥0

δ′(βkT−kβ (x)) ∈ KS\{p1}

Cut and project scheme:

R
πp1←− KS

π−→ KS\{p1}

∪ ∪ ∪

Z[β−1]
1−1←→ δ(Z[β−1])

1−1←→ δ′(Z[β−1])

• δ(Z[β−1]) is a lattice in KS .

• δ′(Z[β−1] ∩ [0, 1)) is a Delone set in KS\{p1}.
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Rauzy fractals

Rauzy fractals: T (x)

• are compact with
non-zero Haar measure.

• are the closure of their
interior.

• their fractal boundary
has zero Haar measure.

• are self-similar (IFS).

• provide a multiple tiling
of KS\{p1}.

• under some conditions
provide a tiling. Figure : Euclidean Rauzy fractals by T. Jolivet



Rauzy fractals

Let β2 = 2β + 2. Representation space: R× K(β)
∼= R×Q2

2.

R

O(β)

Figure : T (0) for β2 = 2β + 2.
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Figure : β−1T (0) for β2 = 2β + 2.



Rauzy fractals

Let β2 = 2β + 2. Representation space: R× K(β)
∼= R×Q2

2.

R

K(β)

Figure : β−2T (0) for β2 = 2β + 2.



Natural extension

Let V = {v1, . . . , vm} with the vi ∈ {T k
β (1) : k ≥ 0} ∪ {0} ordered

increasingly. De�ne

X =
m−1⋃
i=1

[vi , vi+1)× (δ′(vi )− T (vi )),

T̃β : X → X , (x , y) 7→
(
Tβ(x), β · y − δ′(bβxc)

)

Theorem

(X , B̃, µ, T̃β) is a natural extension of ([0, 1),B, µ ◦ π−1,Tβ).

Purely periodic expansions ([Ito, Rao '06], [Berthé, Siegel '07])

x ∈ [0, 1) has a purely periodic β-expansion i� δ(x) ∈ X .
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Natural extension

Smallest Pisot number natural
extension in R× C:

Natural extension associated to
β2 = 2β + 2 in R2 ×Q2

2:

What we want is that these natural extensions are conjugate to
toral/solenoidal automorphisms!
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Equivalent conditions for tiling

Inspired by [Ito, Rao 2006]:

Theorem

The following are equivalent:

• cl(X ) + δ(Z[β−1]) forms a tiling of KS .

• {T (x) : x ∈ Z[β−1] ∩ [0, 1)} forms an aperiodic tiling of KS\{p1}.

• {S(x) : x ∈ Z[β−1] ∩ [0, 1)} forms a weak tiling of K ′∞.

• And more!



Integral β-tiles

R

K(β)

Figure : (Multiple) Tiling of R× K(β) induced by β2 = 2β + 2.

Integral β-tiles

For x ∈ Z[β−1] ∩ [0, 1),

S(x) = {(zp)p∈S\{p1} ∈ T (x) : zp = 0 for each p | (β)}
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Integral β-tiles

Remarks:

1 S(x) form �slices� of T (0) and of X .
(Main tool: Strong approximation theorem)

2 S(x) 6= ∅ i� x ∈ Z[β].

3 For x ∈ Z[β−1] ∩ [0, 1),

S(x) = Lim
k→∞

δ′∞(βk(T−kβ (x) ∩ Z[β])) ∈ K ′∞

4 S(x)− δ′∞(x) is close to S(y)− δ′∞(y) if |x − y |p is small ∀ p | (β).

5 S(x) are SRS tiles ([Berthé, Siegel, Steiner et al., 2011]).

6 {S(x) : x ∈ Z[β−1] ∩ [0, 1)} forms a weak m-tiling of K ′∞.
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Back to equivalent conditions for tiling

Theorem [M., Steiner 201?]

The following are equivalent:

• cl(X ) + δ(Z[β−1]) forms a tiling of KS .

• {T (x) : x ∈ Z[β−1] ∩ [0, 1)} forms an aperiodic tiling of KS\{p1}.

• {S(x) : x ∈ Z[β−1] ∩ [0, 1)} forms a weak tiling of K ′∞.

• (W) holds.

→ Integral β-tiles provide an easy proof that for quadratic Pisot

numbers the statements above hold!

Property (W):

∀ y ∈ P, ∃ z ∈ Z[β−1] ∩ [0, ε), k ≥ 0 : T k
β (y + z) = T k

β (z) = 0
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One application: γ(β)

For β Pisot number, γ(β) is the supremum of the r ∈ [0, 1] such that all
p

q
∈ Q ∩ (0, r ] with gcd(q,N(β)) = 1 have a purely periodic β-expansion.

• γ(β) is deeply related with the boundary graph ([Akiyama, Barat,
Berthé, Siegel 2008]).

• It is possible to describe this graph with integral β-tiles.

Case: β2 = aβ + b, a ≥ b ≥ 1.
Additional condition: gcd(a, b) = 1 ⇒ Q dense in

∏
p|(β) Kp.

Then

γ(β) = max

(
0,

1− b − (a− b + 1)β̄

1− β̄2

)
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Thanks for the attention!


