TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE Marc Technau

4. Übung zur Einführung in die komplexe Analysis

4.1. (Satz von Cauchy für Sterngebiete)

(4 Punkte)

Eine Menge $U\subseteq\mathbb{C}$ heißt sternförmig, falls es einen Punkt $z_0\in U$ gibt derart, dass für jedes $z\in U$ das gesamte Geradenstück $[z_*,z]=\{(1-t)z_*+tz\in\mathbb{C}:t\in[0,1]\}$ in U enthalten ist. (Einen Punkt z_* mit der eben genannten Eigenschaft nennt man auch Sternpunkt von U.)



Zeigen Sie, dass Satz 2.14 auch gültig bleibt, wenn man die Voraussetzung "konvex" durch "sternförmig" ersetzt, d.h. sei $U \subseteq \mathbb{C}$ offen und sternförmig und $f: U \to \mathbb{C}$ stetig auf U und holomorph auf $U \setminus \{p\}$ für ein $p \in U$. Zeigen Sie, dass ein holomorphes $F: U \to \mathbb{C}$ mit F' = f existiert.

4.2. (Variante vom Satz von Liouville)

(4 Punkte)

Es sei $f: \mathbb{C} \to \mathbb{C}$ holomorph. Zeigen Sie, dass entweder $f(\mathbb{C})$ dicht in \mathbb{C} liegt, oder f konstant ist.

4.3. (Legendre-Polynome)

Die Legendre-Polynome P_n sind definiert durch

$$P_n(x) = \frac{1}{n! \, 2^n} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$

Zeigen Sie für $x \in (-1, 1)$ die Integraldarstellung

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} (x + i\sqrt{1 - x^2} \cos(t))^n dt.$$

(Hinweis: P_n ist beinahe schon als Taylor-Koeffizient einer gewissen Funktion definiert. Wie man an so etwas mittels Integration ran kommen kann, sollte Ihnen aus Kapitel 3 bekannt sein. Anschließend hilft nur noch stoisches Rechnen...)

Geben Sie Ihre Lösung bitte digital bis zum 05.11.2020, 23:55 Uhr, im zugehörigen TeachCenter-Kurs ab. Dort und auf der Vorlesungswebseite finden Sie auch weitere Informationen.

https://tc.tugraz.at/main/course/view.php?id=3113

https://www.math.tugraz.at/~mtechnau/teaching/2020-w-einf-kompl-analysis.html

- **4.4.** (Anwendungen der Cauchyschen Abschätzungen) Zeigen Sie für $n \in \mathbb{N}$ die folgenden beiden Ungleichungen:
 - (a) $n! \ge (n/e)^n$, mit $e := \exp(1)$;
 - (b) $\binom{2n}{n} \leq 4^n$.

(Historische Notiz: Die vorliegende Ungleichung war instrumental in einem frühen Durchbruch in der Theorie der Primzahlverteilung durch Čebyšëv, dem es 1851/52 mittels der Beobachtung, dass $\binom{2n}{n}$ von allen Primzahlen im Intervall (n,2n] geteilt wird, zu zeigen gelang, dass für die Anzahl $\pi(x)$ aller Primzahlen $\leq x$ eine Ungleichungskette $c\frac{x}{\log x} \leq \pi(x) \leq C\frac{x}{\log x}$ mit geeigneten Konstanten 0 < c < C besteht.)

(Hinweis: Man sollte für die Ungleichung relevante Zahlen als Taylor-Koeffizienten einer holomorphen Funktion auffassen. Der Rest vom Hinweis steht dann im Titel.)