TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE

Marc Technau & Christian Elsholtz

8. Übung zur Einführung in die Algebra

8.1. (Primideale, Teil I)

(4 Punkte)

Ein Ideal $\mathfrak{p} \subsetneq R$ eines Ringes R heißt **Primideal** (oder **prim**), falls für alle Ideale \mathfrak{a} und \mathfrak{b} von R aus $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{p}$ schon $\mathfrak{a} \subseteq \mathfrak{p}$ oder $\mathfrak{b} \subseteq \mathfrak{p}$ folgt. Im Folgenden sei R zusätzlich als *kommutativ* vorausgesetzt. Zeigen Sie dann die folgenden Aussagen:

- (a) Für jedes Ideal $\mathfrak{p} \subsetneq R$ von R sind die folgenden Aussagen äquivalent:
 - (1) p ist prim;
 - (2) $\forall a, b \in \mathbb{R} : ab \in \mathfrak{p} \Rightarrow a \in \mathfrak{p} \text{ oder } b \in \mathfrak{p}$;
 - (3) R/\mathfrak{p} ist ein Integritätsbereich.
- (b) Jedes maximale Ideal \mathfrak{m} von R ist prim.
- (c) Alle Primideale $\mathfrak{p} \neq \{0\}$ von \mathbb{Z} sind maximal.
- **8.2.** (Primideale, Teil II)

Es sei $f: R \to S$ Homomorphismus zwischen kommutativen Ringen R und S.

- (a) Zeigen Sie: ist \mathfrak{p} ein Primideal von S, so ist das Urbild $f^{-1}(\mathfrak{p})$ ein Primideal von R.
- (b) Belegen Sie durch ein Beispiel, dass das Urbild $f^{-1}(\mathfrak{m})$ eines maximalen Ideals \mathfrak{m} von S nicht maximal in R zu sein braucht.
- **8.3.** (Zum Chinesischen Restsatz)

(4 Punkte)

Finden Sie einen Ring R mit Idealen \mathfrak{a}_1 , \mathfrak{a}_2 und \mathfrak{a}_3 derart, dass $\mathfrak{a}_1 + \mathfrak{a}_2 + \mathfrak{a}_3 = R$ gilt, aber $R/\bigcap_i \mathfrak{a}_i$ nicht isomorph zu $\prod_i (R/\mathfrak{a}_i)$ ist.

8.4. (Einheitengruppe von $\mathbb{Z}/p^{\nu}\mathbb{Z}$)

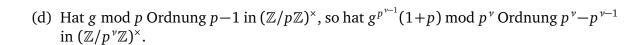
Es sei p eine ungerade Primzahl und $v \ge 2$. Wir setzen $\lfloor \varrho \rfloor := \max\{r \in \mathbb{Z} : r \le \varrho\}$. Beweisen Sie die folgenden Aussagen:

- (a) Es gilt $(1+p)^{p^{\nu-2}} \equiv 1+p^{\nu-1} \mod p^{\nu}$. (Hinweis: Induktion & Binomischer Lehrsatz.)
- (b) $1 + p \mod p^{\nu}$ hat Ordnung $p^{\nu-1}$ in $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$.
- (c) Sind x und y Elemente einer endlichen abelschen Gruppe (G, \cdot) mit teilerfremden Ordnungen, so ist ord(xy) = ord(x) ord(y).

Geben Sie Ihre Lösung bitte digital bis zum 14.05.2021, 10:00 Uhr, im zugehörigen TeachCenter-Kurs ab. Dort und auf der Vorlesungswebseite finden Sie auch weitere Informationen.

https://tc.tugraz.at/main/course/view.php?id=352

https://www.math.tugraz.at/~mtechnau/teaching/2021-s-einf-algebra.html



Ankündigung: die *Evaluierungen* für die Vorlesung und Übungen sind vom 07.05. bis zum 30.05.2021 in TUGRAZonline freigeschaltet. Bitte nehmen Sie sich Zeit, diese auszufüllen.