## TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE Marc Technau & Christian Elsholtz



## 9. Übung zur Einführung in die Algebra

**9.1.** (Struktur von  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ )

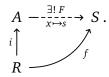
(4 Punkte)

Es sei  $G := (\mathbb{Z}/540\mathbb{Z})^{\times}$ . Wegen  $540 = 2^23^35$ , Korollar 6.18 und Satz 6.21 ist  $(\mathbb{Z}/540\mathbb{Z})^{\times} \cong C_2 \times C_{18} \times C_4$ . Finden Sie Elemente  $a, b, c \in G$  mit  $\operatorname{ord}(a) = 2$ ,  $\operatorname{ord}(b) = 18$  und  $\operatorname{ord}(c) = 4$  und  $\{1_G\} = \langle a \rangle \cap \langle b, c \rangle = \langle b \rangle \cap \langle a, c \rangle = \langle c \rangle \cap \langle a, b \rangle$ .

**9.2.** (Universelle Eigenschaft von R[X])

(4 Punkte)

Es sei  $i: R \to A$  ein Homomorphismus zwischen kommutativen Ringen und  $x \in A$  sei fixiert. Ferner gelte die folgende Aussage: für jeden Ringhomomorphismus  $f: R \to S$  in einen kommutativen Ring S und jedes  $s \in S$  gibt es genau einen Ringhomomorphismuis  $F: A \to S$  mit F(x) = s, der das folgende Diagramm kommutativ macht:

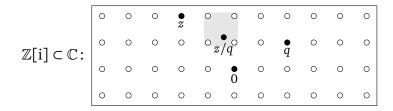


Zeigen Sie, dass A isomorph zum Polynomring R[X] ist.

**9.3.** (Die ganzen Gaußsche Zahlen)

Betrachten Sie  $\mathbb{Z}[i] = \{a + ib \in \mathbb{C} : a, b \in \mathbb{Z}\}$  zusammen mit der Funktion  $N : \mathbb{Z}[i] \to \mathbb{N}_0$ ,  $a + ib \mapsto (a + ib)(a - ib) = a^2 + b^2$  (mit  $a, b \in \mathbb{Z}$ ). Zeigen Sie:

(a) Zu  $z, q \in \mathbb{Z}[i]$  mit  $q \neq 0$  existieren  $w, r \in \mathbb{Z}[i]$  mit z = wq + r derart, dass r = 0 oder N(r) < N(q) gilt.



(Bemerkung: dies ist eine Analogon zur Division mit Rest in  $\mathbb{Z}$  oder bei Polynomen.)

(b) 
$$(\mathbb{Z}[i])^{\times} = \{-1, 1, -i, i\}$$
. Ist  $(\mathbb{Z}[i])^{\times} \cong C_4$  oder  $(\mathbb{Z}[i])^{\times} \cong C_2 \times C_2$ ?

Geben Sie Ihre Lösung bitte digital bis zum 28.05.2021, 10:00 Uhr, im zugehörigen TeachCenter-Kurs ab. Dort und auf der Vorlesungswebseite finden Sie auch weitere Informationen.

https://tc.tugraz.at/main/course/view.php?id=352

https://www.math.tugraz.at/~mtechnau/teaching/2021-s-einf-algebra.html

## **9.4.** (Multivariate Polynome)

Es bezeichne I eine beliebige Indexmenge und  $\mathbb{N}_0^{(I)}$  sei die Menge aller Abbildungen  $I \to \mathbb{N}_0$ , die für alle bis auf höchstens endlich viele Indizes aus I den Wert 0 annehmen, zusammen mit punktweise definierter Addition. Für einen kommutativen Ring R sei  $R[\mathbb{N}_0^{(I)}]$  die Menge aller Abbildungen  $\mathbb{N}_0^{(I)} \to R$ , welche auf allen bis auf höchstens endlich vielen Elementen von  $\mathbb{N}_0^{(I)}$  den Wert  $\mathbb{O}_R$  annehmen, zusammen mit punktweise definierter Addition und der wie folgt zu definierenden Multiplikation:

$$(f: \mathbb{N}_0^{(I)} \to R) \cdot (g: \mathbb{N}_0^{(I)} \to R) \coloneqq \left( \mathbb{N}_0^{(I)} \to R, c \mapsto \sum_{\substack{a,b \in \mathbb{N}_0^{(I)} \\ a+b=c}} f(a)g(b) \right).$$
Für  $i \in I$  bezeichne  $X_i: \mathbb{N}_0^{(I)} \to R$  die Abbildung mit  $X_i(i) = 1_R$  und  $X_i(j) = 0_R$  für alle

 $j \in I \setminus \{i\}$ . Zeigen Sie die folgenden Aussagen:

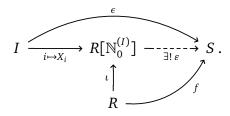
(a) Das oben definierte Produkt  $f \cdot g$  zweier Elemente  $f, g \in R[\mathbb{N}_0^{(I)}]$  ist tatsächlich ein Element von  $R[\mathbb{N}_0^{(I)}]$  und  $R[\mathbb{N}_0^{(I)}]$  bildet zusammen mit den hier definierten inneren Verknüpfungen einen kommutativen Ring. (Hinweis: alle Ringaxiome zu verifizieren wäre etwas lästig. Besprechen Sie nur eine repräsentative Auswahl nach eigenem Ermessen.)

(b) 
$$\iota: R \to R[\mathbb{N}_0^{(I)}], r \mapsto \begin{cases} \mathbb{N}_0^{(I)} \to R, \\ a \mapsto \begin{cases} r & \text{falls } a = (i \mapsto 0), \\ 0_R & \text{sonst,} \end{cases}$$

(c) Jedes 
$$f \in R[\mathbb{N}_0^{(I)}]$$
 lässt sich als  $f = \sum_{a \in \mathbb{N}_0^{(I)}} \iota(f(a)) \prod_{i \in I} X_i^{a(i)}$  schreiben. (Die auftretenden Produkte haben stets höchstens endlich viele von  $1_{R[\mathbb{N}_0^{(I)}]} = X_i^0$ 

verschiedene Faktoren und die auftretende Summe nur höchstens endlich viele von  $0_{R[\mathbb{N}_0^{(I)}]}$  verschiedene Summanden und können somit betrachtet werden, ohne über Konvergenz sprechen zu müssen.)

(d) Ist  $f: R \to S$  ein Homomorphismus in einen beliebigen kommutativen Ring S und  $\epsilon\colon I\to S$  eine beliebige Abbildung, so gibt es genau einen Ringhomomorphismus  $\varepsilon: R[\mathbb{N}_0^{(I)}] \to S$ , welcher das folgende Diagramm kommutativ macht:



Bemerkung: man schreibt auch R[X] statt  $R[\mathbb{N}_0^{(I)}]$  mit  $X = \{X_i : i \in I\}$  und nennt R[X] den **Polynomring** über R in den Variablen (oder Unbestimmten/Veränderlichen)  $X_i$  ( $i \in I$ ). Eigentlich sind die hier diskutierten Objekte sehr konkret: etwa für  $I = \{1, 2, 3, 4\}$  und  $R = \mathbb{Z}$  ist ein typisches Element von R[X] gleich  $10X_1^0 + X_1^{20} + 60X_1^9X_2X_4^7$ . Das Bild dieses Elements unter f aus Teil (d) wäre dann  $f(10)\epsilon(1)^0 + \epsilon(1)^{20} + f(60)\epsilon(1)^9\epsilon(2)\epsilon(4)^7$ .