TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE

Marc Technau & Christian Elsholtz

12. Übung zur Einführung in die Algebra

12.1. (Irreduzibilität)

(4 Punkte)

Untersuchen Sie die folgenden Polynome auf Irreduzibilität:

- (a) $X^4 + 4X^3 + 6X^2 + 4X + 10 \in \mathbb{Q}[X]$.
- (b) $X^4 + 9 \in \mathbb{Q}[X]$.
- (c) $X^2 + Y^2 1 \in \mathbb{Q}[X, Y]$. (Hinweis: $\mathbb{Q}[X, Y] \cong (\mathbb{Q}[X])[Y]$ und Eisenstein.)
- (d) $X^2 + Y^2 \in \mathbb{R}[X, Y]$. (Hinweis: man faktorisiere zunächst in $\mathbb{C}[X, Y]$.)
- (e) $X^4 + 4Y^4 \in \mathbb{R}[X, Y]$. (Hinweis: $X^2 + Y^2 aXY$.)

Zeigen Sie ferner:

(f) Es gibt unendlich viele irreduzible Polynome $f \in \mathbb{Q}[X]$ mit deg f = 12.

12.2. (Faktorisierungsmethode von Kronecker)

(4 Punkte)

Es sei R ein Integritätsbereich mit unendlich vielen Elementen und $K = \operatorname{Quot}(R)$ sein Quotientenkörper. Für jedes $a \in R$ sei $T(a) = \{b \in R : b \mid a\}$ die Menge seiner Teiler und diese sei für alle $a \neq 0_R$ endlich.

- (a) Es sei $f \in R[X]$ ein Polynom vom Grad n > 1 und m sei $\max\{r \in \mathbb{N} : 2r \le n\}$. Zeigen Sie:
 - (1) Es gibt paarweise verschiedene $a_0, \ldots, a_m \in R$ derart, dass die Mengen $T_i := T(f(a_i))$ für $i = 0, \ldots, m$ endlich sind.
 - (2) Zu jedem $\mathbf{b} = (b_0, \dots, b_m) \in T_0 \times \dots \times T_m =: T$ gibt es genau ein $g_b \in K[X]$ mit Grad $\leq m$ und $g_b(a_i) = b_i$ für $i = 0, \dots, m$.
 - (3) f ist genau dann reduzibel in R[X], wenn es ein $b \in T$ gibt derart, dass g_b in $R[X] \setminus R^* \subseteq K[X]$ liegt und ein Teiler von f ist.
- (b) Nun sei zusätzlich angenommen, dass für jedes $r \in R \setminus \{0_R\}$ die Menge T(r) in endlich vielen "Rechenschritten" bestimmbar ist und auch Addition und Multiplikation von Elementen in R in endlich vielen Rechenschritten durchführbar sind. Beschreiben Sie dann ein Verfahren, welches jedes Polynom aus R[X] in endlich vielen Schritten in über R irreduzible Polynome zerlegt.

Geben Sie Ihre Lösung bitte digital bis zum 18.06.2021, 10:00 Uhr, im zugehörigen TeachCenter-Kurs ab. Dort und auf der Vorlesungswebseite finden Sie auch weitere Informationen.

https://tc.tugraz.at/main/course/view.php?id=352

https://www.math.tugraz.at/~mtechnau/teaching/2021-s-einf-algebra.html

(c) Zerlegen Sie das folgende Polynom unter Anwendung der durch Teil (a) nahegelegten Methode in irreduzible Faktoren über Z:

$$3X^5 + 2X^4 - 24X^3 - 26X^2 + 11X - 1$$
.

(Achtung: dies ist ggf. aufwändig. Bloßes Hinschreiben einer geeigneten Faktorisierung und Prüfen, dass diese passt, ist nicht erlaubt. Der Rechenweg sollte — jedenfalls grob — ersichtlich sein.)

12.3. (Adjunktion algebraischer Elemente)

Die komplexe Zahl α sei Nullstelle eines Polynoms $f \in \mathbb{Q}[X] \setminus \{0_{\mathbb{Q}[X]}\}$. Zeigen Sie dann, dass $\mathbb{Q}[\alpha]$, der kleinste Teilring von \mathbb{C} , der $\mathbb{Q} \cup \{\alpha\}$ enthält, sogar ein Körper ist. (Hinweis: $\mathbb{Q}[\alpha] \cong \mathbb{Q}[X]/\mathfrak{m}$ für ein geeignetes Ideal \mathfrak{m} .)

12.4. (Ein irreduzibles Polynom über \mathbb{F}_p)

Für eine Primzahl p sei $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Zeigen Sie, dass das Polynom $f = X^p - X - 1 \in \mathbb{F}_p[X]$ irreduzibel ist.

(Hinweis: zeigen Sie, dass f invariant unter Einsetzen von X+1 für X ist. Betrachten Sie anschließend die hieraus hervorgehende Operation von $(\mathbb{F}_p,+)\cong (C_p,\oplus)$ auf der Menge der Primteiler von f.)