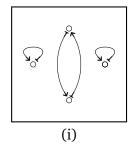
TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE Marc Technau

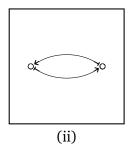
10. Übung zur Algebra

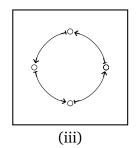
10.1. (Operation der Galois-Gruppe eines Polynoms) Gegeben seien die folgenden Polynome über \mathbb{Q} :

$$P_1 = X^4 - 2$$
, $P_2 = X^4 - 1$, $P_3 = X^2 - 4X + 2$.

Die folgenden Abbildungen zeigen jeweils die Operation eines Elements von $Gal(P_u)$ (u = 1, 2, 3) auf den Nullstellen von P_u (weiße Punkte; eingebettet in \mathbb{C}):

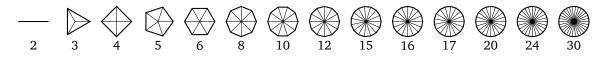






- (a) Ordnen Sie den Abbildungen (i)–(iii) jeweils eine Zahl $u \in \{1, 2, 3\}$ zu derart, dass die in der Abbildung gezeigte Operation durch ein Element von $Gal(P_u)$ bewirkt werden kann.
- (b) Ist die in der ersten Teilaufgabe zu bestimmende Zuordnung eindeutig?
- **10.2.** (Konstruierbarkeit von regelmäßigen n-Ecken)

Zeigen Sie, dass das regelmäßige n-Eck $\{\exp(2\pi i \nu/n) : \nu \in \mathbb{N}\} \subseteq \mathbb{C}$ genau dann mit Zirkel und Lineal konstruierbar ist, wenn $\varphi(n)$ eine Zweierpotenz ist.



(Hinweis: Sie können den Beweis von Korollar 5.22 übertragen. Beachten Sie jedoch, dass $(\mathbb{Z}/n\mathbb{Z})^{\times}$ nicht immer zyklisch ist [z.B. $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong C_2 \times C_2$]. Das macht die Konstruktion des benötigten Körperturms etwas komplizierter.)

Geben Sie Ihre Lösung bitte digital bis zum 12.12.2021, 23:55 Uhr, im zugehörigen TeachCenter-Kurs ab. Dort und auf der Vorlesungswebseite finden Sie auch weitere Informationen.

https://tc.tugraz.at/main/course/view.php?id=1518

https://www.math.tugraz.at/~mtechnau/teaching/2021-w-algebra.html

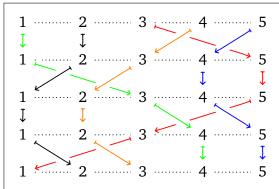
- 10.3. (Beipiele für (nicht-)auflösbare Gruppen)
 - (a) Zeigen Sie, dass die folgenden Gruppen auflösbar sind:
 - (1) Alle abelschen Gruppen *G*;
 - (2) Alle Diedergruppen D_{2n} $(n \in \mathbb{N})$;
 - (3) Alle symmetrischen Gruppen \mathfrak{S}_n mit $1 \le n \le 4$;
 - (4) Die Gruppe $\begin{pmatrix} \mathbb{F}_5^{\times} & \mathbb{F}_5 \\ 0 & 1 \end{pmatrix}$ (siehe auch Aufgabe 9.2).

(Hinweis: Hier ist es gegebenenfalls schneller, direkt mit der Definition zu arbeiten, anstatt Kommutatorgruppen zu berechnen. Bei \mathfrak{S}_4 muss man ein wenig nachdenken, kommt aber auch ohne viel Rechenarbeit zum Ziel.)

(b) Beweisen Sie Satz 5.30: Für $n \ge 5$ ist die symmetrische Gruppe \mathfrak{S}_n nicht auflösbar. (Hinweis: Ist $N \triangleleft \mathfrak{S}_n$ und \mathfrak{S}_n/N abelsch, so benutzen Sie

$$(123) \circ (345) \circ (123)^{-1} \circ (345)^{-1} = (143),$$

um $(1 \ 4 \ 3) \in N$ einzusehen. Zeigen Sie auf ähnliche Weise, dass N alle 3-Zyklen enthält. Folgern Sie hieraus $N = A_n$ mittels Aufgabe 6.2 aus der *Einführung in die Algebra*. Wie folgt dann, dass \mathfrak{S}_n nicht auflösbar ist? Alternativ zeigen Sie $\mathfrak{S}_n^{(t)} = A_n$ für $t \in \mathbb{N}$.)



Hinweis: Bitte füllen Sie bis zum 31.12.2021 auf TUGRAZ∎online die beiden Evaluierungen zur Vorlesung und Übung aus.