TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR ANALYSIS UND ZAHLENTHEORIE Marc Technau

15. Übung zur Algebra

15.1. (Erzeuger und Relationen)

Stellen Sie sich ein Szenario vor, bei dem Sie (aus irgendwelchen Gründen) an einer abelschen Gruppe (G,+) interessiert sind. Im Zuge Ihrer bisherigen Untersuchungen konnten Sie feststellen, dass sich G von den drei (nicht notwendigerweise verschiedenen) Elementen $a,b,c\in G$ erzeugen lässt, und zwischen diesen die folgenden Beziehungen gelten:

$$2a + c = 0$$
, $8b - c = 0$, $a - 3c = 0$, $a - c = 0$.

(0 bezeichne hier das neutrale Element in G und Ausdrücke wie 2a sind natürlich als a + a zu verstehen.) Bestimmen Sie alle möglichen Isomorphietypen von G (im Sinne von Beispiel 6.1), welche die obigen Voraussetzungen erfüllen!

(Hinweis: Sie sollten erwarten hier mehrere mögliche Isomorphietypen zu erhalten, denn immerhin erfüllt schon die einelementige Gruppe alle obigen Voraussetzungen. Wenn man günstig argumentiert, genügt es *eine* Smith-Normalform auszurechnen, um gewissermaßen *das allgemeinste G* zu finden, welches die obigen Voraussetzungen erfüllt, und dann alle gesuchten Isomorphietypen durch Faktorbildung aus diesem allgemeinsten *G* abzulesen.)

15.2. (Der Hauptsatz und \mathbb{Z} -Moduln)

Betrachten Sie die Untermoduln $U = \mathbb{Z}(-3+i)$ und $V = \mathbb{Z}(6+2i)$ des \mathbb{Z} -Moduls $\mathbb{Z}[i]$ aus Aufgabe 13.2. Bestimmen Sie für $M = \mathbb{Z}[i]/U$ bzw. $M = \mathbb{Z}[i]/V$ jeweils Zahlen $k, \ell \in \mathbb{N}_0$ und Ideale $\mathbb{Z}[i] \supset \mathfrak{a}_1 \supseteq \ldots \supseteq \mathfrak{a}_\ell \supset \{0\}$ (wie aus Satz 8.2 (1)) mit

$$M \cong \mathbb{Z}^k \oplus \bigoplus_{i=1}^{\ell} (\mathbb{Z}/\mathfrak{a}_i).$$

(Hinweis: Zumindest für U kann man die Lösung eigentlich auch schon direkt aus Aufgabe 13.2 entnehmen. Tatsächlich wäre es hier aber eher im Sinne des Aufgabenstellers, wenn Sie einen \mathbb{Z} -Modulhomomorphismus $f:\mathbb{Z}\to\mathbb{Z}^2$ mit $M\cong\mathbb{Z}^2$ / im f fänden und die gesuchten Kenngrößen an der Smith-Normalform von $[f]_1^2\in\mathbb{Z}^{2\times 1}$ abläsen.)

15.3. (*In Richtung Jordan-Normalform*)

Es sei K ein Körper und $B \in K^{n \times n}$. Dann wird der K-Vektorraum $V = K^n$ wie in Aufgabe 12.1 zu einem K[X]-Modul (den wir zur Unterscheidung als V_B notieren), wobei die

Skalarmultiplikation von X mit $v \in V_B$ wie Anwenden der Matrix B auf den Vektor v wirkt. Betrachten Sie den K[X]-Modulhomomorphismus $g: (K[X])^n \to V_B$, welcher für $i=1,\ldots,n$ den i-ten Standardeinheitsvektor von $(K[X])^n$ auf den i-ten Standardeinheitsvektor in V_B abbildet.

- (a) Für $K = \mathbb{Q}$, n = 2 ist g(X, 0) die erste Spalte von B. Wieso? Beschreiben Sie in ähnlicher Weise auch, wie das Element $g(X^2 + 1, X 3) \in V_B$ aussieht.
- (b) Zeigen Sie, dass g surjektiv ist, und der Kern von g von den Spalten der Matrix $A := X \cdot \mathbf{1}_n B \in (K[X])^n$ aus Aufgabe 13.3 erzeugt wird:

$$\ker g = \operatorname{span}_{K[X]} \left\{ \begin{pmatrix} | \\ A_{\bullet 1} \\ | \end{pmatrix}, \dots, \begin{pmatrix} | \\ A_{\bullet n} \\ | \end{pmatrix} \right\} = \operatorname{im} \begin{pmatrix} (K[X])^n \to (K[X])^n \\ Q \mapsto A \cdot Q \end{pmatrix}.$$

(Hinweis: Mit dem richtigen Hilfssatz ist die Aufgabe fast schon trivial...) (Bemerkung: Die Aufgabe impliziert $V_B \cong (K[X])^n / \operatorname{im}(v \mapsto Av)$. Dies ermöglicht es, den Isomorphietyp von V_B anhand der Smith-Normalform von A abzulesen.)

Hinweis: Auf das vorliegende Blatt ist nicht abzugeben und wird auch nicht bepunktet. Lösungen werden zeitnah auf der Vorlesungswebseite zur Verfügung gestellt.