Winter term 2021
Graz, 19.10.2021

3. exercise sheet for Mathematics for advanced materials science

 (first name) (student id number)

3.1. (Computing with complex exponential function)
(4 credits)
For real x, write the following complex number in the form $a+\mathrm{i} b$ with real numbers a and b.

$$
\sum_{\substack{k=-3 \\ k \neq 0}}^{3} \frac{\mathrm{i}}{k} \exp (2 \pi \mathrm{i} k x)
$$

(Hint: the sum is over $k= \pm 1, \pm 2, \pm 3$ without $k=0$. You should get some sines or cosines depending on x; the imaginary part b should look particularly simple.)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 26.10.2021, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html
3.2. (Complex and real forms of Fourier series)
(4 credits)
Let $c_{0}, c_{ \pm 1}, \ldots, c_{ \pm K}$ be complex numbers. Find complex numbers a_{k} and b_{k} such that for every real x

$$
\sum_{k=-K}^{K} c_{k} \exp (\mathrm{i} k x)=\frac{a_{0}}{2}+\sum_{k=1}^{K}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right) .
$$

3.3. (Laplace transform)

Let x be a solution to the following initial value problem:

$$
\left\{\begin{array}{c}
\text { differential equation: } 3 \ddot{x}+x \stackrel{!}{=} \sin \text { on } \mathbb{R}_{+} \\
\text {initial conditions: }\left\{\begin{array}{l}
\dot{x}(0) \stackrel{!}{=} 1 \\
x(0) \stackrel{!}{=} 1
\end{array}\right.
\end{array}\right.
$$

Find the Laplace transform $\mathscr{L}\{x\}$.
(Hint: you may use $\mathscr{L}\{\sin \}(s)=1 /\left(s^{2}+1\right)$. You may check your solution using $\mathscr{L}\{x\}(0)=$ 4 and $\mathscr{L}\{x\}(2) \approx 0.70769$.)

$$
\mathscr{L}\{x\}(s)=\square
$$

3.4. (Laplace transform)

Find $\mathscr{L}\{f\}$ where $f(t)=t \sin (t) \exp (t)$.
(Hint: $\mathscr{L}\{f\}(4)=0.06$. To find the solution you can try to use partial integration a couple of times. If done correctly, four(!) partial integrations should suffice. Alternatively, you are free to use Proposition 2.4 and Table 1 from the lecture notes. This should be much easier.)

