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5.1. (Solving a system of linear equations) (4 credits)

Consider the following system of linear equations:
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Find the correct value of n such that the above system makes sense (i.e., such that the

matrix–vector product on the left hand side can be computed). Subsequently determine

all solutions to the above system.

(Hint: recall Gauß’s algorithm from your “Mathematik für ChemikerInnen 2” course.)
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5.2. (Solving a system of linear equations) (4 credits)

Find all solutions (x1, x2, x3) ∈ R
3 to the following system of linear equations:

�

1 0 2

3 5 0

�





x1

x2

x3





!
=

�

3

2

�

.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

09.11.2021, 23:55 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2021-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html


5.3. (Finding a matrix representation) (4 credits)

For each of the following linear maps fν, determine the matrix Aν representing fν.

(a) f1 : R→ R, x 7→ −4x .

(b) f2 : R4→ R2, ~x 7→ (x1 − x3, x2).

(c) f3 : R4→ R4, ~x 7→ (x1 − x3, x2, x1, x1 + x3).

(d) f4 : R4→ R4, ~x 7→ ~y , where the vector ~y is determined from ~x such that the following

equation is satisfied for all t

d

dt
(x1 + x2 t + x3 t2 + x4 t3) = (y1 + y2 t + y3 t2 + y4 t3).

5.4. (Volume of a parallelepiped) (4 credits)

Compute the volume of the parallelepiped

:= (~v, ~w, ~z) := {λ1~v +λ2 ~w+λ3~z : 0≤ λ1,λ2,λ3 ≤ 1 }.

spanned by the vectors ~v = (1/5, 1, 0), ~w= (1, 1/5, 0) and ~z = (1/2, 0, 1).

volume( ) = volume
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(Hint: use Cavalieri’s principle which implies that volume( (~v, ~w, ~z)) = volume( (~v −

λ~w, ~w, ~z)) for any λ ∈ R. Similar formulae hold for subtracting a multiple of an argument

of from another argument of . Geometrically this can be thought of as replacing the

initial parallelepiped with another parallelepiped that resembles a cuboid more closely,

provided that λ is chosen suitably. The volume of a cuboid is easy to compute.)
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