Winter term 2021
Graz, 02.10.2021

## 5. exercise sheet for Mathematics for advanced materials science



## 5.1. (Solving a system of linear equations)

(4 credits)
Consider the following system of linear equations:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
3 & 5 & 0 & 3 \\
4 & 0 & 2 & 1 \\
0 & 2 & 5 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \stackrel{!}{=}\left(\begin{array}{l}
1 \\
2 \\
0 \\
4
\end{array}\right)
$$

Find the correct value of $n$ such that the above system makes sense (i.e., such that the matrix-vector product on the left hand side can be computed). Subsequently determine all solutions to the above system.
(Hint: recall Gauß's algorithm from your "Mathematik für ChemikerInnen 2" course.)

$$
n=\square, \quad\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=(\quad)
$$

5.2. (Solving a system of linear equations)
(4 credits)
Find all solutions $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ to the following system of linear equations:

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \stackrel{!}{=}\binom{3}{2}
$$

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 09.11.2021, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html
5.3. (Finding a matrix representation)
(4 credits)
For each of the following linear maps $f_{v}$, determine the matrix $A_{v}$ representing $f_{v}$.
(a) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto-4 x$.
(b) $f_{2}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, \vec{x} \mapsto\left(x_{1}-x_{3}, x_{2}\right)$.
(c) $f_{3}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \vec{x} \mapsto\left(x_{1}-x_{3}, x_{2}, x_{1}, x_{1}+x_{3}\right)$.
(d) $f_{4}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \vec{x} \mapsto \vec{y}$, where the vector $\vec{y}$ is determined from $\vec{x}$ such that the following equation is satisfied for all $t$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(x_{1}+x_{2} t+x_{3} t^{2}+x_{4} t^{3}\right)=\left(y_{1}+y_{2} t+y_{3} t^{2}+y_{4} t^{3}\right)
$$

5.4. (Volume of a parallelepiped)

Compute the volume of the parallelepiped

$$
\square:=\square(\vec{v}, \vec{w}, \vec{z}):=\left\{\lambda_{1} \vec{v}+\lambda_{2} \vec{w}+\lambda_{3} \vec{z}: 0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1\right\} .
$$

spanned by the vectors $\vec{v}=(1 / 5,1,0), \vec{w}=(1,1 / 5,0)$ and $\vec{z}=(1 / 2,0,1)$.

(Hint: use Cavalieri's principle which implies that volume $(\square(\vec{v}, \vec{w}, \vec{z}))=\operatorname{volume}(\square(\vec{v}-$ $\lambda \vec{w}, \vec{w}, \vec{z})$ ) for any $\lambda \in \mathbb{R}$. Similar formulae hold for subtracting a multiple of an argument of $\square$ from another argument of $\square$. Geometrically this can be thought of as replacing the initial parallelepiped with another parallelepiped that resembles a cuboid more closely, provided that $\lambda$ is chosen suitably. The volume of a cuboid is easy to compute.)

