

5. exercise sheet for Mathematics for advanced materials science

5.1. *(Solving a system of linear equations)* Consider the following system of linear equations:

(1	0	2	0)	(\mathbf{r}_{i})		(1)	
3	5	0	3	$\begin{bmatrix} x_1 \\ \cdot \end{bmatrix}$!	2	
4	0	2	1	$\left\{ \begin{array}{c} \cdot \\ \cdot \end{array} \right\}^{2}$	_	0	•
0)	2	5	o/	$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$		(4)	

Find the correct value of n such that the above system makes sense (i.e., such that the matrix–vector product on the left hand side can be computed). Subsequently determine all solutions to the above system.

(Hint: recall Gauß's algorithm from your "Mathematik für ChemikerInnen 2" course.)

5.2. (Solving a system of linear equations) (4 credits) Find all solutions $(x_1, x_2, x_3) \in \mathbb{R}^3$ to the following system of linear equations:

$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 5 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

(4 credits)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 09.11.2021, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html

5.3. (Finding a matrix representation)

(4 credits)

For each of the following linear maps f_{y} , determine the matrix A_{y} representing f_{y} .

- (a) $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto -4x$.
- (b) $f_2: \mathbb{R}^4 \to \mathbb{R}^2, \vec{x} \mapsto (x_1 x_3, x_2).$
- (c) $f_3: \mathbb{R}^4 \to \mathbb{R}^4, \vec{x} \mapsto (x_1 x_3, x_2, x_1, x_1 + x_3).$
- (d) $f_4: \mathbb{R}^4 \to \mathbb{R}^4, \vec{x} \mapsto \vec{y}$, where the vector \vec{y} is determined from \vec{x} such that the following equation is satisfied for all t

$$\frac{\mathrm{d}}{\mathrm{d}t}(x_1 + x_2t + x_3t^2 + x_4t^3) = (y_1 + y_2t + y_3t^2 + y_4t^3)$$

5.4. (Volume of a parallelepiped)

(4 credits)

Compute the volume of the parallelepiped

$$\square := \square(\vec{v}, \vec{w}, \vec{z}) := \{\lambda_1 \vec{v} + \lambda_2 \vec{w} + \lambda_3 \vec{z} : 0 \le \lambda_1, \lambda_2, \lambda_3 \le 1\}.$$

spanned by the vectors $\vec{v} = (1/5, 1, 0)$, $\vec{w} = (1, 1/5, 0)$ and $\vec{z} = (1/2, 0, 1)$.

(Hint: use Cavalieri's principle which implies that $volume(\square(\vec{v}, \vec{w}, \vec{z})) = volume(\square(\vec{v} - \lambda \vec{w}, \vec{w}, \vec{z}))$ for any $\lambda \in \mathbb{R}$. Similar formulae hold for subtracting a multiple of an argument of \square from another argument of \square . Geometrically this can be thought of as replacing the initial parallelepiped with another parallelepiped that resembles a cuboid more closely, provided that λ is chosen suitably. The volume of a cuboid is easy to compute.)