Winter term 2021
Graz, 09.11.2021

6. exercise sheet for Mathematics for advanced materials science

6.1. (Laplace transform)

Compute $\mathscr{L}\left\{t \mapsto e^{\text {it }}\right\}(s)=\int_{0}^{\infty} e^{\text {it }} e^{-s t} \mathrm{~d} t$ and compare real and imaginary parts to prove that

$$
\mathscr{L}\{\cos \}(s)=\frac{s}{s^{2}+1} \quad \text { and } \quad \mathscr{L}\{\sin \}(s)=\frac{1}{s^{2}+1} .
$$

6.2. (Computing determinants)

Compute the determinant of each of the following matrices:
(a) $\left(\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right)$,
(b) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 0\end{array}\right)$,
(c) $\left(\begin{array}{ccc}\cos (\varphi) \sin (\theta) & r \cos (\varphi) \cos (\theta) & -r \sin (\varphi) \sin (\theta) \\ \sin (\varphi) \sin (\theta) & r \sin (\varphi) \cos (\theta) & r \cos (\varphi) \sin (\theta) \\ \cos (\theta) & -r \sin (\theta) & 0\end{array}\right)$ for $r, \varphi, \theta \in \mathbb{R}$.
(Hint: for (c) employ the identity $\cos (\varphi)^{2}+\sin (\varphi)^{2}=|\exp (\mathrm{i} \varphi)|=1$ from Theorem 1.3. Your final result should only depend on r and θ and look very simple.)
6.3. (Inverting matrices)

Find the inverse matrix A^{-1} of

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(Hint: there are several ways to do this. From your "Mathematik für ChemikerInnen 2" course you may know a variant of Gauß's algorithm which accomplishes this. Alternatively, you may solve the system of linear equations $A \vec{b}_{j} \stackrel{!}{=} \vec{e}_{j}$ for each $j=1,2,3$. What do the vectors \vec{b}_{j} have to do with A^{-1} ? Lastly, you could also use Cramer's rule. You may verify the validity of your solution by checking that $A A^{-1}=\mathbf{1}_{3}$.)

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 16.11.2021, 23:55 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html

