Winter term 2021
Graz, 02.12.2021

9. exercise sheet for Mathematics for advanced materials science

(first name)

\square
(student id number)
9.1. (Vectors and angles)
(4 credits)
Consider the linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left(v_{1}, v_{2}\right) \mapsto\left(-v_{2}, v_{1}\right)$.
(a) Check which of the following statements are true. (None, one or multiple of them may be true.)

Geometrically, f describes a rotation by 90° in clockwise direction.
Geometrically, f describes a rotation by 90° in anti-clockwise direction.
Geometrically, f describes a reflection across the line $\mathbb{R}\binom{0}{1}$.
\bigcirc area $f(\Omega)=\operatorname{area} f(\Omega)$, where Ω is the set $[1,2] \times[0,1]$.
\bigcirc area $f(\Omega)=2$ area $f(\Omega)$, where Ω is the set $[1,8] \times[1,8]$.
There is a non-zero vector \vec{b} such that $f(\vec{b})=\overrightarrow{0}$.
$\bigcirc f$ has an eigenvector $\vec{b} \in \mathbb{R}^{2}$.
(b) For vectors $\vec{v}=\left(v_{1}, v_{2}\right)$ and $\vec{w}=\left(w_{1}, w_{2}\right)$, compute

$$
\left(\begin{array}{cc}
\mid & \mid \\
-f(\vec{w}) & f(\vec{v}) \\
\mid & \mid
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{cc}
\mid & \mid \\
\vec{v} & \vec{w} \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{lc}
\square \\
\square & \square \\
\square
\end{array}\right)
$$

9.2. (Area of a triangle)

Compute the area of the two triangles with the following edges:
(a) $(0,0,0),(1,2,3)$ and $(1,3,3)$ in \mathbb{R}^{3}.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 09.12.2021, 12:15 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html
(b) $(0,0,0,0,0,0,0),(1,1,0,2,1,1,1)$ and $(1,3,3,0,1,0,1)$ in \mathbb{R}^{7}.
(Hint: $\boldsymbol{\nabla}$. For (b), cross products in \mathbb{R}^{3} are of no immediate use. However, you should know another approach from earlier lectures.)
Area from (a) $=\square$, area from (b) $=\square$.
9.3. (Eigenvalues and eigenvectors, I)

Consider $(C, n) \in\{(A, 2),(B, 3)\}$, where A and B are the following matrices:

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
0 & 3 & 1
\end{array}\right)
$$

For both choices of (C, n) do the following:
(a) determine the characteristic polynomial $\chi_{C}=\operatorname{det}\left(X \mathbf{1}_{n}-C\right)$ (here " X " should be treated like a variable; think of your favourite number, but do not plug it in),

$$
\chi_{A}=\square, \quad \chi_{B}=\square,
$$

(b) compute the eigenvalues of C ($=$ the numbers λ that yield zero when substituted for X in the polynomial χ_{C}) and all associated eigenvectors ($=$ the non-zero solutions $\vec{v} \in \mathbb{R}^{n}$ of $\left.\left(\lambda \mathbf{1}_{n}-C\right) \vec{v} \stackrel{!}{=} \overrightarrow{0}\right)$,
(c) and discern whether the matrix C is diagonalisable or not (i.e., decide whether you can choose eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ such that the matrix with these eigenvectors as columns has non-zero determinant).

$$
A \text { is diagonalisable: }\left\{\begin{array}{ll}
\bigcirc & \text { yes } \\
\bigcirc & \text { no }
\end{array}\right\}, \quad B \text { is diagonalisable: }\left\{\begin{array}{ll}
\bigcirc & \text { yes } \\
\bigcirc & \text { no }
\end{array}\right\} .
$$

(Hint: you can find some worked examples in § 3.5 of the lecture notes.)
9.4. (Eigenvalues and eigenvectors, II)

Consider the matrix $A \in \mathbb{R}^{2 \times 2}$ and the vectors $\vec{b}_{1}, \ldots, \vec{b}_{5} \in \mathbb{R}^{2}$ given below:

$$
A=\left(\begin{array}{cc}
11 & -12 \\
8 & -9
\end{array}\right), \quad \vec{b}_{1}=\binom{1}{1}, \quad \vec{b}_{2}=\binom{0}{0}, \quad \vec{b}_{3}=\binom{3}{1}, \quad \vec{b}_{4}=\binom{3}{2}, \quad \vec{b}_{5}=\binom{1}{0} .
$$

(a) For each vector $\vec{b}_{j}(j=1, \ldots, 5)$, check whether it is an eigenvector of A and, if it is, determine the corresponding eigenvalue.

j	\vec{b}_{j} is an eigenvector of A
1	yes, with associated eigenvalue
	Ono
2	yes, with associated eigenvalue
	\bigcirc no
3	\bigcirc yes, with associated eigenvalue
	\bigcirc no
4	yes, with associated eigenvalue
	\bigcirc no
5	yes, with associated eigenvalue
	\bigcirc no

(b) Let $B_{i j} \in \mathbb{R}^{2 \times 2}$ denote the matrix with columns \vec{b}_{i} and \vec{b}_{j}. Compute the matrix

$$
C_{i j}:=B_{i j}^{-1} A B_{i j}
$$

for all three pairs $(i, j) \in\{(1,3),(1,4),(3,5)\}$.

