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9.1. (Vectors and angles) (4 credits)

Consider the linear map f : R2→ R2, (v1, v2) 7→ (−v2, v1).

(a) Check which of the following statements are true. (None, one or multiple of them

may be true.)

© Geometrically, f describes a rotation by 90◦ in clockwise direction.

© Geometrically, f describes a rotation by 90◦ in anti-clockwise direction.

© Geometrically, f describes a reflection across the line R(01).

© area f (Ω) = area f (Ω), where Ω is the set [1, 2]× [0, 1].

© area f (Ω) = 2 area f (Ω), where Ω is the set [1, 8]× [1, 8].

© There is a non-zero vector ~b such that f (~b) = ~0.

© f has an eigenvector ~b ∈ R2.

(b) For vectors ~v = (v1, v2) and ~w= (w1, w2), compute
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9.2. (Area of a triangle) (4 credits)

Compute the area of the two triangles with the following edges:

(a) (0, 0, 0), (1, 2, 3) and (1, 3, 3) in R3.

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

09.12.2021, 12:15 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2021-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html


(b) (0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 2, 1, 1, 1) and (1, 3, 3, 0, 1, 0, 1) in R7.

(Hint: . For (b), cross products in R3 are of no immediate use. However, you should

know another approach from earlier lectures.)

Area from (a)= , area from (b)= .

9.3. (Eigenvalues and eigenvectors, I) (4 credits)

Consider (C , n) ∈ {(A, 2), (B, 3)}, where A and B are the following matrices:

A=

�
2 1

−1 0

�

, B =





1 2 1

2 1 1

0 3 1



,

For both choices of (C , n) do the following:

(a) determine the characteristic polynomial χC = det(X1n − C) (here “X ” should be

treated like a variable; think of your favourite number, but do not plug it in),

χA = , χB = ,

(b) compute the eigenvalues of C (= the numbers λ that yield zero when substituted for

X in the polynomial χC) and all associated eigenvectors (= the non-zero solutions

~v ∈ Rn of (λ1n − C)~v
!
= ~0),

(c) and discern whether the matrix C is diagonalisable or not (i.e., decide whether you

can choose eigenvectors ~v1, . . . , ~vn such that the matrix with these eigenvectors as

columns has non-zero determinant).

A is diagonalisable:

�

© yes

© no

�

, B is diagonalisable:

�

© yes

© no

�

.

(Hint: you can find some worked examples in § 3.5 of the lecture notes.)
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9.4. (Eigenvalues and eigenvectors, II) (4 credits)

Consider the matrix A∈ R2×2 and the vectors ~b1, . . . ,~b5 ∈ R
2 given below:

A=

�
11 −12

8 −9

�

, ~b1 =

�
1

1

�

, ~b2 =

�
0

0

�

, ~b3 =

�
3

1

�

, ~b4 =

�
3

2

�

, ~b5 =

�
1

0

�

.

(a) For each vector ~b j ( j = 1, . . . , 5), check whether it is an eigenvector of A and, if it is,

determine the corresponding eigenvalue.

j ~b j is an eigenvector of A

1 © yes, with associated eigenvalue

© no

2 © yes, with associated eigenvalue

© no

3 © yes, with associated eigenvalue

© no

4 © yes, with associated eigenvalue

© no

5 © yes, with associated eigenvalue

© no

(b) Let Bi j ∈ R
2×2 denote the matrix with columns ~bi and ~b j. Compute the matrix

Ci j := B−1
i j

ABi j

for all three pairs (i, j) ∈ {(1, 3), (1, 4), (3, 5)}.
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