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10.1. (Cramer’s rule in dimension four)

Variants of Laplace’s expansion hold for arbitrary n×n-matrices. For vectors ~x , ~y , ~z ∈ R4,

define their cross product by

~x × ~y × ~z := det





~e1 | | |... ~x ~y ~z

~e4 | | |



,

where the determinant on the right hand side is supposed to be expanded as in Lemma 3.1

(see also § 3.4 of the lecture notes).

(a) Justify that ~x , ~y , ~z ⊥ (~x × ~y × ~z).

(b) Using the above definition of the cross product, give a 4×4-analogue of Cramer’s

rule as given in Theorem 3.13. That is, find a formula for the inverse A−1 of a matrix

A ∈ R4×4 with non-zero determinant, using the columns of A, cross products and

dot products.

10.2. (Fourier series, I)

Let g : R → R be the 1-periodic function defined by g(x) = x + 1/2 for |x | < 1/2 and

g(1/2) = 1. (In particular, g(−1/2) = g(−1/2+ 1) = g(1/2) = 1.)

−3/2 −1 −1/2 0 1/2 1 3/2

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

16.12.2021, 12:15 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2021-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html


(a) Compute the Fourier coefficients ĝ(k) of g for k ∈ Z. (Hint: the solution can almost

be found in § 4.3 of the lecture notes. Please consider this exercise as a warm-up

for exercise 10.3.)

(b) Determine at which points g is represented by its Fourier series, i.e., for which x ∈ R

does

g(x) =

∞
∑

k=−∞

ĝ(k)e2πikx ?

10.3. (Fourier series, II)

Let f : R→ R be the 1-periodic function defined by f (x) = (1− 2|x |)x for |x | ≤ 1/2.

−1 −1/2 0 1/2 1

(a) Compute the Fourier coefficients f̂ (k) of f for k ∈ Z. (Hint: this is an exercise in

partial integration and requires a bit of tenacity. You may use the following values

to verify the validity of your final result: f̂ (1)≈ −0.0645i, f̂ (−8) = 0= f̂ (42).)

(b) Determine at which points f is represented by its Fourier series, i.e., for which x ∈ R

does

f (x) =

∞
∑

k=−∞

f̂ (k)e2πikx ?

(c) Compute 1−
1

33
+

1

53
−

1

73
± . . .=

∞
∑

n=0

(−1)n

(2n+ 1)3
.

(Hint: use (b) together with a suitably chosen value for x . At the end, you should

arrive at a formula for the quantity in question that you can comfortably enter into

a calculator. The answer approximately equals 0.9689.)
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