## 10. exercise sheet for Mathematics for advanced materials science

10.1. (Cramer's rule in dimension four)

Variants of Laplace's expansion hold for arbitrary $n \times n$-matrices. For vectors $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{4}$, define their cross product by

$$
\vec{x} \times \vec{y} \times \vec{z}:=\operatorname{det}\left(\begin{array}{cccc}
\vec{e}_{1} & \mid & \mid & \mid \\
\vdots & \vec{x} & \vec{y} & \vec{z} \\
\vec{e}_{4} & \mid & \mid & \mid
\end{array}\right),
$$

where the determinant on the right hand side is supposed to be expanded as in Lemma 3.1 (see also § 3.4 of the lecture notes).
(a) Justify that $\vec{x}, \vec{y}, \vec{z} \perp(\vec{x} \times \vec{y} \times \vec{z})$.
(b) Using the above definition of the cross product, give a $4 \times 4$-analogue of Cramer's rule as given in Theorem 3.13. That is, find a formula for the inverse $A^{-1}$ of a matrix $A \in \mathbb{R}^{4 \times 4}$ with non-zero determinant, using the columns of $A$, cross products and dot products.
10.2. (Fourier series, $I$ )

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $g(x)=x+1 / 2$ for $|x|<1 / 2$ and $g(1 / 2)=1$. (In particular, $g(-1 / 2)=g(-1 / 2+1)=g(1 / 2)=1$.)


Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 16.12.2021, $12: 15$ o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html
(a) Compute the Fourier coefficients $\hat{g}(k)$ of $g$ for $k \in \mathbb{Z}$. (Hint: the solution can almost be found in § 4.3 of the lecture notes. Please consider this exercise as a warm-up for exercise 10.3.)
(b) Determine at which points $g$ is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$
g(x)=\sum_{k=-\infty}^{\infty} \hat{g}(k) e^{2 \pi \mathrm{i} k x} ?
$$

10.3. (Fourier series, II)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $f(x)=(1-2|x|) x$ for $|x| \leq 1 / 2$.

(a) Compute the Fourier coefficients $\hat{f}(k)$ of $f$ for $k \in \mathbb{Z}$. (Hint: this is an exercise in partial integration and requires a bit of tenacity. You may use the following values to verify the validity of your final result: $\hat{f}(1) \approx-0.0645 i, \hat{f}(-8)=0=\hat{f}(42)$.)
(b) Determine at which points $f$ is represented by its Fourier series, i.e., for which $x \in \mathbb{R}$ does

$$
f(x)=\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{2 \pi \mathrm{i} k x} ?
$$

(c) Compute $1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}} \pm \ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}$.
(Hint: use (b) together with a suitably chosen value for $x$. At the end, you should arrive at a formula for the quantity in question that you can comfortably enter into a calculator. The answer approximately equals 0.9689.)

