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11.1. (Shifting integral bounds for periodic functions) (4 credits)

The following text is supposed to provide an answer to a question asked during the last

lecture regarding the relation of
∫ 1

0
and
∫ 1/2

−1/2
when computing Fourier coefficients (cf.

exercise 10.2). Fill in the gaps and select the correct statements.

The well-known rule for

© integration by substitution; © partial integration; © Fourier analysis

states that for all continuous function f : [a, b] → R and continuously differentiable

ϕ : . . .

© ϕ : [a, b]→ [c, d] one has

∫ b

a

f (x)dx =

∫ ϕ(b)

ϕ(a)

f (ϕ(y))ϕ′(y)dy;

© ϕ : [c, d]→ [a, b] one has

∫ ϕ(d)

ϕ(c)

f (x)dx =

∫ d

c

f (ϕ(y))ϕ′(y)dy;

© ϕ : [c, d]→ [a, b] one has

∫ b

a

f (x)ϕ′(x)dx =

∫ ϕ(d)

ϕ(c)

f (ϕ(y))dy;

© ϕ : [c, d]→ [a, b] one has

∫ ϕ(d)

ϕ(c)

f (ϕ(x))dx =

∫ b

a

f (y)ϕ′(y)dy .

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is

13.01.2022, 12:15 o’clock. https://tc.tugraz.at/main/course/view.php?id=3543

https://www.math.tugraz.at/∼mtechnau/teaching/2021-w-mams.html

https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html


Upon using this with

ϕ(t) =

one finds that

∫ 0

−1/2

f (x)dx =

∫ 1

1/2

f (x − 1)dx . Therefore, one has

∫ 1/2

−1/2

f (x)dx =

∫ 0

−1/2

f (x)dx +

∫ 1/2

0

f (x)dx =

∫ 1

1/2

f (x − 1)dx +

∫ 1/2

0

f (x)dx

=

∫ 1

1/2

f (x)dx +

∫ 1/2

0

f (x)dx =

∫ 1

0

f (x)dx

for every continuous function f : R→ R that is

© 1-periodic; © 2-periodic; © 1/2-periodic; © constant.

(Hint: for the last part, multiple answers may be correct.)

11.2. (Fourier series, III) (4 credits)

Let f : R→ R be the 1-periodic function defined by f (x) = x4− 2x3+ x2 for 0≤ x < 1:

−2 −1 0 1 2

(a) Compute the Fourier coefficients f̂ (k) of f for k ∈ Z.
(Hint: depending on how you go about doing this, this requires partial integration

four times. You may check your final result using f̂ (0) ≈ 1, f̂ (1) ≈ −0.015399,

f̂ (1)≈ −0.015399, f̂ (−2)≈ −0.00096.)

f̂ (0) = and f̂ (k) = (for k 6= 0).

(b) Find complex numbers ak and bk such that

f (x) = f̂ (0) +

∞
∑

k=1

(ak cos(2πkx) + bk sin(2πkx))

holds for all x ∈ R.

(Hint: exercise 3.2. Moreover, you can easily test your solution by replacing∞ in

2



the sum by 3 [the series in question converges rather quickly], plotting the resulting

sum on [0, 1] and comparing with a plot of f . They should look almost identical.)

ak = and bk = .

11.3. (3-periodic functions) (4 credits)

Let g : R → R be the 3-periodic function defined by g(x) = 1 for 0 ≤ x < 3/2 and

g(x) = 0 for 3/2≤ x < 3:

−6 −3 0 3 6

(a) What are the values of r for which one might be interested in computing ĝ(r)?

(Hint: “r ∈ Z” is a wrong answer. You should consult Example 4.9 from the lecture

notes.)

(b) Compute the Fourier coefficients ĝ(r) of g for r as in (a).

(Hint: because g is 3-periodic, but not 1-periodic, the Fourier coefficients are not

given by
∫ 1

0
g(x)e−2πikx dx which, incidentally, would be zero for all k 6= 0. Once

you are done, you may compare your answer with the Fourier coefficients χ̂(k)

from Example 4.7.)

ĝ(0) = and ĝ(r) = (for r 6= 0).

11.4. (Fourier series in two dimensions) (4 credits)

Suppose that you are given a (suitably nice) function f : R2 → R that is known to be

periodic with respect to the vectors ~a1 = (2, 3) and ~a2 = (1, 2). Work as in Example 4.10

to find the correct way to write f as a Fourier series:

f (~x) =
∑ 

~k





1

?1

∫

?2

f (~ξ)e
−2πi ?3

d2 ~ξ



e
2πi ?4

.
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(Here the sum over ~k ranges over all vectors in Z2.)

?1 = , ?2 = ,

?3 = , ?4 = .

(Hint: this turns out to be an exercise in linear algebra rather than Fourier analysis.)
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