Winter term 2021
Graz, 16.12.2021

11. exercise sheet for Mathematics for advanced materials science

(first name)

\square
(student id number)
11.1. (Shifting integral bounds for periodic functions)
(4 credits) The following text is supposed to provide an answer to a question asked during the last lecture regarding the relation of \int_{0}^{1} and $\int_{-1 / 2}^{1 / 2}$ when computing Fourier coefficients (cf. exercise 10.2). Fill in the gaps and select the correct statements.
The well-known rule for
\bigcirc integration by substitution; \bigcirc partial integration; \bigcirc Fourier analysis states that for all continuous function $f:[a, b] \rightarrow \mathbb{R}$ and continuously differentiable φ : ...
$\bigcirc:[a, b] \rightarrow[c, d]$ one has $\int_{a}^{b} f(x) \mathrm{d} x=\int_{\varphi(a)}^{\varphi(b)} f(\varphi(y)) \varphi^{\prime}(y) \mathrm{d} y ;$
$\bigcirc:[c, d] \rightarrow[a, b]$ one has $\int_{\varphi(c)}^{\varphi(d)} f(x) \mathrm{d} x=\int_{c}^{d} f(\varphi(y)) \varphi^{\prime}(y) \mathrm{d} y$;
$\varphi:[c, d] \rightarrow[a, b]$ one has $\int_{a}^{b} f(x) \varphi^{\prime}(x) \mathrm{d} x=\int_{\varphi(c)}^{\varphi(d)} f(\varphi(y)) \mathrm{d} y ;$
$\bigcirc:[c, d] \rightarrow[a, b]$ one has $\int_{\varphi(c)}^{\varphi(d)} f(\varphi(x)) \mathrm{d} x=\int_{a}^{b} f(y) \varphi^{\prime}(y) \mathrm{d} y$.
Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 13.01.2022, $12: 15$ o'clock. https://tc.tugraz.at/main/course/view.php?id=3543
https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html

Upon using this with

$$
\varphi(t)=\square
$$

one finds that $\int_{-1 / 2}^{0} f(x) \mathrm{d} x=\int_{1 / 2}^{1} f(x-1) \mathrm{d} x$. Therefore, one has

$$
\begin{aligned}
\int_{-1 / 2}^{1 / 2} f(x) \mathrm{d} x & =\int_{-1 / 2}^{0} f(x) \mathrm{d} x+\int_{0}^{1 / 2} f(x) \mathrm{d} x=\int_{1 / 2}^{1} f(x-1) \mathrm{d} x+\int_{0}^{1 / 2} f(x) \mathrm{d} x \\
& =\int_{1 / 2}^{1} f(x) \mathrm{d} x+\int_{0}^{1 / 2} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x
\end{aligned}
$$

for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is
1-periodic2-periodic;1/2-periodic;constant.
(Hint: for the last part, multiple answers may be correct.)
11.2. (Fourier series, III)
(4 credits)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the 1-periodic function defined by $f(x)=x^{4}-2 x^{3}+x^{2}$ for $0 \leq x<1$:

(a) Compute the Fourier coefficients $\hat{f}(k)$ of f for $k \in \mathbb{Z}$.
(Hint: depending on how you go about doing this, this requires partial integration four times. You may check your final result using $\hat{f}(0) \approx 1, \hat{f}(1) \approx-0.015399$, $\hat{f}(1) \approx-0.015399, \hat{f}(-2) \approx-0.00096$.)

(b) Find complex numbers a_{k} and b_{k} such that

$$
f(x)=\hat{f}(0)+\sum_{k=1}^{\infty}\left(a_{k} \cos (2 \pi k x)+b_{k} \sin (2 \pi k x)\right)
$$

holds for all $x \in \mathbb{R}$.
(Hint: exercise 3.2. Moreover, you can easily test your solution by replacing ∞ in
the sum by 3 [the series in question converges rather quickly], plotting the resulting sum on $[0,1]$ and comparing with a plot of f. They should look almost identical.)

$$
a_{k}=\square \text { and } b_{k}=\square .
$$

11.3. (3-periodic functions)
(4 credits)
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the 3-periodic function defined by $g(x)=1$ for $0 \leq x<3 / 2$ and $g(x)=0$ for $3 / 2 \leq x<3$:

(a) What are the values of r for which one might be interested in computing $\hat{g}(r)$? (Hint: " $r \in \mathbb{Z}$ " is a wrong answer. You should consult Example 4.9 from the lecture notes.)

(b) Compute the Fourier coefficients $\hat{g}(r)$ of g for r as in (a).
(Hint: because g is 3-periodic, but not 1-periodic, the Fourier coefficients are not given by $\int_{0}^{1} g(x) e^{-2 \pi \mathrm{i} k x} \mathrm{~d} x$ which, incidentally, would be zero for all $k \neq 0$. Once you are done, you may compare your answer with the Fourier coefficients $\hat{\chi}(k)$ from Example 4.7.)

$$
\hat{g}(0)=\square \text { and } \hat{g}(r)=\square \quad(\text { for } r \neq 0)
$$

11.4. (Fourier series in two dimensions)

Suppose that you are given a (suitably nice) function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is known to be periodic with respect to the vectors $\vec{a}_{1}=(2,3)$ and $\vec{a}_{2}=(1,2)$. Work as in Example 4.10 to find the correct way to write f as a Fourier series:

$$
f(\vec{x})=\sum_{\vec{k}}^{k}\left(\frac{1}{\sqrt[?_{1}]{ }} \int_{?_{2}} f(\vec{\xi}) e^{-2 \pi i ?_{3}} \mathrm{~d}^{2} \vec{\xi}\right) e^{2 \pi i ?_{4}} .
$$

(Here the sum over \vec{k} ranges over all vectors in \mathbb{Z}^{2}.)

(Hint: this turns out to be an exercise in linear algebra rather than Fourier analysis.)

