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12.1. (Differentiation)
Consider f : R* —» R?, ¥ — (x?—x,,cos(x;x,)) and g: R* - R, ¥ — y,+3y;. Moreover,

let h: R? — R be given by the composition h = g o f: R? - R? — R.
(a) Compute the matrices J;(X), J,(¥), J,(X) \_/
and J,(f () - J¢ (). et

(b) Argue why f, g and h are differentiable and compute df, dgy as well as dh;.
(c) Compute df(; 1)(4,8).
12.2. (Length of a curve)

Consider the image y([0,1]) = {y(t) : t €[0,1]} of [0, 1] under the function y: R — R?
t — (2t2—t,t —t3). Itis a curve in R?:

r([0,1]) dy,n([0,1/N]) (shifted by y(n/N))

N=8
(a) Compute dy,: R — R2.
(b) For T > 0, compute the length of dy,([0, 7]). (Hint: exercise 7.3.)
N-1
(c) Compute and Z length(dy, x([0,1/N1])) for N = 4.
n=0

12.3. (Heat equation)
Imagine some thin, heated wire spanned between two points which are kept at equal
temperature. We model the wire by the interval [0, 1] and let u(t, x) denote the temper-
ature of the wire at the point x € [0,1] and time t > 0. Abstracting away all units and
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constants of proportionality, the evolution of the resulting function u: Ry, x [0,1] = R
in this model problem can be seen to be governed by the heat equation

du o%u
E(tﬂf) = ﬁ(tﬂf)
at all points (t,x) € R, x (0,1).
(a) For k € N, verify that x — sin(mkx) is an eigenfunction of the operator mapping
infinitely often differentiable functions R — R to their second derivative.

(b) (Particular solutions:) Verify that, for every k € N, the function
b:R2 SR, (t,x)— e ™ tsin(mkx),
satisfies the heat equation, as well as the “boundary condition” b,(t,0) = 0 =
b.(t,1) for all t and b, (0, x) = sin(rtkx) for all x.

(c) (Superposition principle:) Verify that any linear combination Af + ug (with num-
bers A and u) of any two functions f, g satisfying the heat equation again satisfies
the heat equation.

(d) Let f:[0,1] — R be a continuous, piecewise continuously differentiable function
with £(0) = 0= f(1). Show that f can be written as

oo 1
flx)= Zf(k) sin(tkx) with f(k) = Zf f(x)sin(mkx)dx.
k=1 0

(e) (Grand finale:) Use your insights from all of the above exercises to find an infinite
series representing a (the) continuous function u: Ry, x [0,1] — R that

e solves the heat equation,

e satisfies the boundary condition u(t,0) =0 =u(t, 1) for all t, and

e satisfies the initial condition (initial temperature distribution)
u0,x)=(y*xx)x) for0<x<1,

where y * y should be taken from Example 4.8 with parameter ¢ = 1/2.

N
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t

(Hints: (a), (b) and (c) are [meant to be] easy exercises in differentiation. For part (d)
try to build a 2-periodic function out of f and deduce the desired result from Theo-
rem 4.1 adapted to 2-periodic functions as in Example 4.9. To find the correct function,
recall exercise 3.2. Part (e) may require some partial integration to compute the relevant
integral from (d).)



