

Winter term 2021
Graz, 13.01.2022

12. exercise sheet for Mathematics for advanced materials science

12.1. (Differentiation)

Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \vec{x} \mapsto\left(x_{1}^{2}-x_{2}, \cos \left(x_{1} x_{2}\right)\right)$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \vec{y} \mapsto y_{1}+3 y_{2}^{3}$. Moreover, let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by the composition $h=g \circ f: \mathbb{R}^{2}$
(a) Compute the matrices $J_{f}(\vec{x}), J_{g}(\vec{y}), J_{h}(\vec{x})$ and $J_{h}(f(\vec{x})) \cdot J_{f}(\vec{x})$.

(b) Argue why f, g and h are differentiable and compute $\mathrm{d} f_{\vec{x}}, \mathrm{~d} g_{\vec{y}}$ as well as $\mathrm{d} h_{\vec{x}}$.
(c) Compute $\mathrm{d} f_{(1,1)}(4,8)$.
12.2. (Length of a curve)

Consider the image $\gamma([0,1])=\{\gamma(t): t \in[0,1]\}$ of $[0,1]$ under the function $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$, $t \mapsto\left(2 t^{2}-t, t-t^{3}\right)$. It is a curve in \mathbb{R}^{2} :

(a) Compute $\mathrm{d} \gamma_{t}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.
(b) For $\tau>0$, compute the length of $\mathrm{d} \gamma_{t}([0, \tau])$.
(Hint: exercise 7.3.)
(c) Compute $\sum_{n=0}^{N-1}\|\gamma((n+1) / N)-\gamma(n / N)\|$ and $\sum_{n=0}^{N-1}$ length $\left(\mathrm{d} \gamma_{n / N}([0,1 / N])\right)$ for $N=4$.
12.3. (Heat equation)

Imagine some thin, heated wire spanned between two points which are kept at equal temperature. We model the wire by the interval $[0,1]$ and let $u(t, x)$ denote the temperature of the wire at the point $x \in[0,1]$ and time $t \geq 0$. Abstracting away all units and

Please submit your solutions digitally at the corresponding TeachCenter course. The deadline is 20.01.2022, 12:15 o'clock. https://tc.tugraz.at/main/course/view.php?id=3543 https://www.math.tugraz.at/~mtechnau/teaching/2021-w-mams.html
constants of proportionality, the evolution of the resulting function $u: \mathbb{R}_{\geq 0} \times[0,1] \rightarrow \mathbb{R}$ in this model problem can be seen to be governed by the heat equation

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)
$$

at all points $(t, x) \in \mathbb{R}_{>0} \times(0,1)$.
(a) For $k \in \mathbb{N}$, verify that $x \mapsto \sin (\pi k x)$ is an eigenfunction of the operator mapping infinitely often differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ to their second derivative.
(b) (Particular solutions:) Verify that, for every $k \in \mathbb{N}$, the function

$$
b_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad(t, x) \mapsto e^{-\pi^{2} k^{2} t} \sin (\pi k x)
$$

satisfies the heat equation, as well as the "boundary condition" $b_{k}(t, 0)=0=$ $b_{k}(t, 1)$ for all t and $b_{k}(0, x)=\sin (\pi k x)$ for all x.
(c) (Superposition principle:) Verify that any linear combination $\lambda f+\mu g$ (with numbers λ and μ) of any two functions f, g satisfying the heat equation again satisfies the heat equation.
(d) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous, piecewise continuously differentiable function with $f(0)=0=f(1)$. Show that f can be written as

$$
f(x)=\sum_{k=1}^{\infty} \tilde{f}(k) \sin (\pi k x) \quad \text { with } \quad \tilde{f}(k):=2 \int_{0}^{1} f(x) \sin (\pi k x) \mathrm{d} x
$$

(e) (Grand finale:) Use your insights from all of the above exercises to find an infinite series representing a (the) continuous function $u: \mathbb{R}_{\geq 0} \times[0,1] \rightarrow \mathbb{R}$ that

- solves the heat equation,
- satisfies the boundary condition $u(t, 0)=0=u(t, 1)$ for all t, and
- satisfies the initial condition (initial temperature distribution)

$$
u(0, x)=(\chi * \chi)(x) \text { for } 0 \leq x \leq 1
$$

where $\chi * \chi$ should be taken from Example 4.8 with parameter $c=1 / 2$.

(Hints: (a), (b) and (c) are [meant to be] easy exercises in differentiation. For part (d) try to build a 2-periodic function out of f and deduce the desired result from Theorem 4.1 adapted to 2-periodic functions as in Example 4.9. To find the correct function, recall exercise 3.2. Part (e) may require some partial integration to compute the relevant integral from (d).)

